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SYMMETRIC NILPOTENT MATRICES WITH MAXIMAL RANK
AND A CONJECTURE OF GROTHENDIECK-KOBLITZ

ching-li chai
appendix by michael larsen

(Communicated by Maurice Auslander)

Abstract. All pairs (p, n) such that there exists an n x n symmetric matrix

A with entries in the ring Zp of p-adic integers such that A" = p- U with U

invertible in Mn>,„CLp) are determined. It is shown that such matrices A can

be used to construct examples of deformations of abelian varieties.

While contemplating the converse of Grothendieck's specialization theorem

for the Newton polygon of p-divisible groups and abelian varieties (cf. [G]), I

chanced upon the following question in linear algebra.

Q. For which integer n and prime number p does there exist an « x az

symmetric matrix A with entries in the ring Zp of p-adic integers such that

A" =p-U with U invertible in Mnxn(Zp) ?

It turns out that this seemingly innocuous question has an interesting answer,

at least when p is an odd prime, which we would like to share with the reader.

The connection with Koblitz's conjecture will also be discussed. When p = 2,

M. Larsen proved that the answer is always affirmative. It is a pleasure to thank

him for writing up his solution as an appendix.

First note that when p ^ 2, the question above has an equivalent formula-

tion:

Q'. For which integer n and prime number p does there exist an n x n

symmetric matrix A with entries in the prime field ¥p such that A is nilpotent

and has rank n - 1 ?

The equivalence follows from Hensel's lemma and an easy derivative calcu-

lation:

d(det(Xij)i<ij<„)=    ^2   Aijdxij
1<'\7<"

(where Ajj is the (/, j)th cofactor)

=   ^ AudXji + 2    ^2    AjjdXjj
X<i<n l<i<j<n
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if we impose the symmetry condition that Xjj = Xjj VI < i, j < n .

We shall first work out the geometry of symmetric nilpotent matrices with

maximal rank. Since the prime 2 causes problems at several places, a familiar

phenomenon, we shall restrict ourselves to fields of characteristic ^ 2. Thus

we fix a field ac with char(Ac) ̂  2, a positive integer n , and let V = Vn be the

variety over k such that V(F) = the set of all symmetric ajxaj matrices of rank

n - 1 with entries in F , for any field F over Ac . The above calculation says

that V is smooth over ac . V has lots of symmetries: the orthogonal group 0„
(for the standard form) operates on V by g: A i-> gAg~x = gA'g, Vg G 0„ ,

VAeV.

Examples, (i) When aj = 2,

Vl = {  I   -a   :a2 + 62 = 0,fl^0,M0J;

hence, V(¥p) ^ 0 iff p = 1   (mod4).
(ii) When n = 3, the rational point

1       sfA       1
v^T    -l    v^

1 yf^l 0

in F3(Q(-/rT)) shows that F3(FP) ̂  0 if p = 1   (mod4).
(iii) When aj = 3 and p = 3 , F3(F3) ̂  0 since

"0      1-1"

1     -1     0
-10      1

is a rational point in Vi(¥^).

The following lemma is very useful.

Lemma. For any field F over k and any A in V(F), the commutator of A

inside Mnxn(F) is just F[A] (= F + FA + FA2 + ■ ■ ■ + FA"~X), which as an

F-algebra is isomorphic to F[x]/(xn).

Proof. We shall prove this statement for any nilpotent matrix B of maximal

rank. Hence we can assume that B is already in the canonical form with l's
below the diagonal. The proof is finished by a direct computation.

Psychologically the first thing we want to know about V is that it is not

empty. Thus let N be the nilpotent n x aj matrix with l's below the diagonal;

we want to find some g G GL(Ac) such that gNg~x is symmetric. Clearly

gNg~x = 'g~x'N'g •«• 'ggN - 'N'gg. We know that (by Witt's theorem)

S •-» 'g8 establishes an isomorphism 0„\GL„ « Z„ since char(Ac) ̂  2 , where

Zn is the variety of all invertible symmetric aj x aj matrices. Hence we are

reduced to finding a symmetric invertible matrix X such that XN = 'NX.

By explicit computation, the necessary and sufficient condition for a symmetric
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matrix Y to satisfy YN = 'NY is that Y has the form

a„     a„_i    •     •     -    a2   ax-

an-x   fln-2    •     •    a2   fli    0

fl«-2      •       •    a2   ax    0    0

a2       fli     0    •      •      •     0

. ai        0      0    •      •      •     0.

and the condition for such a Y to be invertible is that the antidiagonal entries

(all equal to ax) are invertible. In particular, such Y 's surely exist. Note that

the above analysis also gives an explicit way to construct points in V: one just

has to extract a "square root" for an invertible Y as above.

Next we show that On operates transitively on V. Thus let AX,A2 be

elements of V(k); there exists (by the theory of canonical forms) an element

g G GL„(ac) such that gAxg~x = A2, and we want to show that there exists a

gx G 0„(k) such that g\Axg~x =A2. We have gAxg~x = A2 => gAx = A2g,

Ax'g =_[gA2 => 'ggAx = 'gA2g = Ax'gg; hence by the lemma we know that

'gg S k[Ax]x . Since char(Ac) ̂  2 and Ax is nilpotent, there exists an aj g

Ac[y4i]x such that 'gg = h2. (A trivial case of Hensel's lemma, since k[Ax] w

k[x]/(xn).) Let gx = gh~x. We have <gxgx '= h^'ggh'1 = h~xh2h~x = 1

since aj is symmetric (as in Ax); hence, gx G 0„(ac) , and clearly g\Axgx~x =

gAxg~x=A2.

Finally let us pick and fix A0 G V(k). We want to find its stabilizer in 0„ .

Suppose gA0g~x = Ao. By the lemma we know that g G ac[^0]x ', hence,

1 = 'gg = g2 ■ Since char(Ac) ̂  2, we conclude that g = ±1 again because

ac[j4o] w k[x]/(x"). So we have proved:

Proposition 1. Vn is a principal homogeneous space fior PO„ = 0„/{±l} over

ac. Therefore Vn is a principal homogeneous space for SO„ // aj is odd, while

Vn has two geometric components if n is even.

Now we take Ac = ¥p (p / 2). If aj is odd, we conclude that V has an

Fp-rational point by Lang's theorem. (Every principal homogeneous space for

a connected algebraic group over a finite field is trivial, see [La].) If aj = 2m

is even, again by Lang's theorem we see that V(¥p) ^ 0 iff both geometric

components of V are defined over ¥p; hence, we must compute the Galois

action on the geometric components of V. This can be done by constructing

rational points over a quadratic extension of ac , as explained in the first part of

the proof of Proposition 1. If we take the Y there to be
"0   0   •■•    0   0   2"

0   0   •••    0   2   0
yo=     :     : :     :     :

.2   0   •••    0   0   0.

we have to find a go G GL„ such that 'gogo - Y0. Any such g0 produces a

point goNg0~l G V(K) by the first paragraph in the proof of Proposition 1.

Taking ac to be Q, we have

"1    -v^Tl [     1 1    1      [0   2"
1     /-I J [-V^l    v/^TJ ~ [2   0_ •
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So we can take go to be

L/n Jm

-yf-lJm      \f-llm\

where Jm denotes the m x m matrix with l's on the antidiagonal and 0's

elsewhere and goNg~x e V(Q(yfA)). If Gal(Q(v/rT)/Q) = {id, t} , then

a<        I7* 0    1      a
. m

Since

de,(['o   -l]) = <-""'
we see that x operates on the two geometric components of V/Q by (-l)m ,

i.e., t stabilizes both geometric components if aj = 0 (mod 4), and t inter-

changes them if aj = 2 (mod 4). From the splitting behavior of primes in

Q(\/=:T)/Q, we conclude:

Proposition 2. Suppose n is even and p is an odd prime number. Then

(i) if n = 0   (mod 4) or p = 1   (mod 4), then each geometric component of

Vn/¥   is defined over ¥p and is a principal homogeneous space under PSO„ =

S0„/{±1};
(ii) if aj = 2  (mod 4) and p = 3   (mod 4), aTz^aj the Frobenius interchanges

the two geometric components ofi Vn/¥p.

We summarize our results as

Theorem. Let p be an odd prime number and n a positive integer. Then

Vn(¥p) = 0 iff p = 3 (mod4) flAJfl" aj = 2 (mod4). Therefore there exists
a symmetric n x aj matrix with entries in %p whose nth power is equal to p

times a unit in Mnxn(Zp) iff p = 1   (mod4) or n = 0,  1, or 3 (mod4).

Remark. Let W — W„ be the variety of all symmetric az x aj mattices. On op-

erates on W and V is contained in the null cone. As the referee pointed out,

the ring of invariants of 0„ operating on W is a polynomial ring with the coef-

ficients of the characteristic polynomials as generators, at least in characteristic

0. This implies that the null cone has a beautiful structure.

We now turn to discuss the connection with a conjecture of Grothendieck-

Koblitz (cf. [Ko]), which states that if NPX, ... , NPm is a sequence of Newton

polygons with the same end points such that NPi+x lies above NPj for each

i, then this sequence can be realized by successive specialization of principally

polarized varieties in characteristic p > 0. To the best of my knowledge, this

conjecture is still open and so is the case for Barsotti-Tate groups.1 Here we shall

give some examples such that all slopes of NPm are \ (this is not a restriction

because this NPm is the highest possible Newton polygon), by deforming a

product of supersingular elliptic curves. We shall not try to state our result

in the ultimate generality; rather we only present our calculation as a way to

construct some example of deformations.

Let Ac be an algebraically closed field of characteristic p > 0, and let Mo be

the Dieudonne module of a product of r copies of supersingular elliptic curves.

1 Shortly after this paper was submitted, this conjecture was proved by F. Oort. A preliminary

note of his important result is available and titled Moduli of abelian varieties and Newton polygons.
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In other words, M0 has a free W(k) basis Xi,... ,xr, yx, ... , yr, and the

Frobenius and Verschibung send x, to y,: Fx, = y, = Vxj , 1 < i < r. The

product polarization corresponds to the symplectic pairing having xx, ... , xr,

yx, ... , yr as a symplectic basis: (Xj, yj) = 8tj. Using the Cartier-Dieudonne

theory, a general deformation of Mo over a complete local ring R over Ac can

be given as follows:

Fxt = Y, TijXj + yi >     Vxi =yi>        1 <i<r,

where 7y = [<,■_,■] = (<y ,0,0,...) is the Teichmiiller representative of Uj in

the ring of infinite Witt vectors W(R), tjj € R, 1 < /, j < r. If we write

F in block form, its entries are T, plr, Ir, 0, where T = (Ty). If we take

polarization into account and want the product polarization to extend to the

deformation, we must require that tjj = tji, 1 < i, j < r. In practice, we shall

choose R to be a formal power series ring (possibly with several variables), and

we want to estimate the slope of the deformation over the fraction field of R .

One way to do this is to use the result in [Ka], which requires some information

about iteration of Frobenius.
We shall write the Azth iteration F" of F in block form with entries A^n),

g(n)) £{n) ^ j){n)   Let. us first see some examples:

aj = 2: A(2) = TTa +p, B{2) = pT,  C(2) = Ta, D(2) = p, where a denotes

the Frobenius automorphism on W(R).

n = 3: A{i) = TTaT"2 + pT"2 +pT, B{3) = pTTa + p2,

C(3) = TaT"2 + p, D{i) =pTa

n = 4: A^> = TW^V* + pT°2Ta' + pTTa' +pTTa + p2,

BW =pTTaTal +p2T"2 +p2T,

C(4) _ jaj^jc' +pT<ji +pT"\ £)(4) =pTaT°2 +/J2.

n = 5: A{5) = TT"TalTaiTa* + pT°''Ta't"A + pTT^Ta* + pTT°T°*

+ pTa2TaiT"4 +p2T"4 +p2T"2 +p2T,

B{5)=pTTaTa2Tal +p2T°2Tai +p2TT°' +p2TTa + p\

C(5) _ ja Ta2 To> To> + p jt? r<x4 + p jc ja* + p jo ja1 + p2 ^

D(5) = pT°T°2 Ta' + p2Ta' + p2Ta.

aj = 6: y4(6) = TTaTa2TaiTaS + pT"'T":'rCT''Tai + pTT°3Ta*T°5

+ pTTaTa4Tai +pTTaT"2Tai +pTTaT°2Tai +p2TaAT°5

+ p2T°2T"' + p2TTa* +p2T"2Tai +p2TTa + p3,

2?(6) = pTT"T"2T"2Ta" + p2T"2 Tai Ta* + p2TTa^T"* + p2TTaTai

+ p2TTaT"2 +piTa* +piT"2 +p3T,

("■(6) __ -t-o yr/2 t-ct3 T'cr4 t-'CT5 _i_ nT17  Ta  'Ta   _t_ r)Ta Ta Ta   4- r)Ta Ta Ta

+ pTaTa2Tai +p2Ta" +p2Tai +p2T" ,

D(6) =pToTo2TaiTa4 + p2 px3 yV + p2 jo jo* j^pT-J^ja1 +;?3_
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In general we have

A(n) = TT"T° • ■ ■ To"~x + p - ̂ 2 T[ (dr°P a PaxT 0I" consecutive terms)

+ /?2-^P[ (drop two pairs of consecutive terms) -I-,

B^=pTTaTa •■■Ta"    + p2 '^2\[ (drop a pair of consecutive terms)

+ /j3 • ̂ 2 \[ (drop two pairs of consecutive terms) -I-,

C(n) = T°Ta ■■■ T°"    + p • ̂ 2 T [ (drop a pair of consecutive terms)

+ p2 • ̂ 2 T[ (drop two pairs of consecutive terms) H-,

D(n]=pTaTa   ■Ta"    +P2-5Zr[ (drop a pair of consecutive terms)

+ p2 • ̂ 2 T[ (drop two pairs of consecutive terms) H-.

If we take R = k[t], T = [t] - A where A e Mrxr(ZP) and Ar = ps - (unit),

2s < r, then any product of ajj terms of the form Ta' is always of the form

p[m/r]s. ra matrix not congruent to 0 mod p). Note that such A exists: start

with a cyclic permutation matrix, replace the first 5 l's by p . Moreover since

[(]"' = [tp], there is no cancellation. Therefore F" - p1-"/^- (a matrix whose

determinant is not congruent to 0 mod/?). Thus by Katz's "basic slope esti-

mate" [Ka, 1.4.3, p. 125], we see that the first r slopes are all equal to s/r;

therefore, the last r slopes are all equal to (r - s)/r. This argument also

works for higher-dimensional base rings R: take s < r/2, U e MrXrC^P),

Ur=p- (unit), and T = [An] -Ir + [ti]-U + [t2] -U2 + --- + [ts] - Us. This pro-

duces a sequence of Newton polygons NP0, NPi, ... , NPS, A/Fs+1 such that

NF, has slopes i/r and (t — s)/r with multiplicity r if 0 < i < 5 and NPs+]

has slope 1/2 and multiplicity 2r. With polarization, we need a symmetric

U G MrxrC^p) such that Ur = p • (unit). This is possible if p = 1 (mod 4), or

r = 0, 1,3 (mod 4) and p > 2. Thus we have shown

Proposition 3. Let r,  s  be positive integers such that 2s < r.   Let  NPo,

NPi, ... , NPS, NPS+X be the Newton polygons connecting (0, 0) to (2r, r)

such that NPj has slopes i/r and (t - s)/r with multiplicity r for 0 < i < s

and NPS+X has slope 1/2 and multiplicity 2r.
(a) NPo, NPX, ... , NPS, NPS+X can always be realized by a Barsotti-Tate

group over k[[t0 ,tx, ... , ts]].

(b) Assume either p = 1 (mod 4), or r = 0, 1, 3 (mod 4) AAZfl" p > 2. Then

NPo, NPX, ... , NPS, NPS+X can be realized by a principally polarized abelian

scheme over k[[t0, tx, ... , ts]].

Appendix: A 2-adic lifting problem by Michael Larsen2

This appendix gives, for all aj g N, an affirmative answer to the question

of whether there exists a symmetric matrix A in Mnxn(Z2) with A" equal to

2C, U invertible.

2Michael Larsen was supported by NSF Grant No. DMS-8807203. He is affiliated with the

University of Pennsylvania, Philadelphia, Pennsylvania 19104.
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We begin by constructing, for each aj , an aj x az symmetric matrix with entries

in F2, nilpotent of rank aj - 1. For az fixed, define e,yj for 1 < i, j < n to

be the matrix with (i, j)th entry 1 and all other entries 0. For i or j out of

range, let elyj — 0. Let N — YH=i ei,i+x denote the standard nilpotent matrix

of rank aj - 1. Over F2 ,

(I + N)~x = I + N + N2 + ■ ■ ■ + Nn~x.

Define the permutation c: {1, 2,..., «} -* {1, 2,..., n) as follows:

/tl f  2AC ifAC<AZ/2,
a(k) = <

i 2(aj - k) + 1    otherwise.

Let Pa denote the corresponding permutation matrix and

n—X n

M = (I + N)-xp-xNPa(I + N)=    J2    *u£«««.*(i+i>I>.«- + 'U+i)-
1<<<7<« <=1 '=1

Evidently M is nilpotent of rank az - 1; we claim that it is symmetric. The

cases aj even and aj odd must be considered separately.

Suppose aj = 2w . Then

n—X m—X m—X

2_^e<j(i),o(i+X) =  / „ ?2i,2i+2 + / . *!2i+l,2i-l +^2m,2m-l-

i=l (=1 (=1

As eiyjekyi = djykeiyi,

m-X   2/ m-2  2j m-X2j+X

M = E E^.2,+2 + E IX2./+3 + EE e*>v-\
j=X   i=X j=\   i=X j=X   i=X

m-12./+1 2m 2m

+ £ £e<»2/ + £e,,2m-l + £<?.,2m-

;"=1   i=l 1=1 i=l

Combining the third and fifth terms and likewise the fourth and sixth terms,

we get

m-X   2j m-2  Ij m   2j+X m   2j+X

£ ZXv+2 + £ Ee'.2;+3 + Y £ *'.v-i + EE **.*/;
7=1   1=1 7=1   ;=1 7=1   i=l /=1   i=l

(harmlessly) extending the ranges of summation,

m     2j m     2j m   2j+X m   2j+X

Y £ e'>2,+2 + £ £ ei,V+i + E E e'.2;-l + E E e'.2y
7=0 1=1 7=0 i=X 7 = 1   i=l 7=1   1=1

(fc-2 fc+1        \ /ifc-3 fc+2        \

£e|,*+£*«,*)+   £   I £<?/,*+ £**,* J
1=1 /=1 /       k odd \i=l 1=1 /

k+X k+2

= E E e>,k+ Y E **.*•
A: even /=<:— 1 i odd i=k—2
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The right-hand side is evidently symmetric; the matrix looks like

/l 1 1 0 0 ... 0 0 0\
1 1 1 0 0 ... 0 0 0
1 1 1 1 1 ... 0 0 0
0 0 1 1 1 ... 0 0 0

M2m=    0 0 1 1 1 ... 0 0 0    .

0   0   0   0   0   ...    1    10
0   0   0   0   0   ...    1    1    1

\0   0   0   0   0   ...    0   1    1/

If AJ = 2m + 1 ,

m    27 m    27 m   2j+X m   2j+l 2m

M = £I>,27+2 + ££e/,27+3 + £ £ ely2j-X +£ £ e,, 27 + £ ?„ 2m+l •

7=1  1=1 7=1 i=l 7=1   ;=1 7 = 1   /=1 i=X

Combining the third and fifth terms, we get

m    27 m    2j m+1 27+1

M= £ E^,27+2+ ££^-,27+3+ £ £^,27-1

7=1 (=1 7=11=1 7=1 1=1

m   27+I

+ £ £ ei,2j -?m+X,m+X

7=1   1=1

(k-2 k+X \ /k-1 k+2 \

£^,fc+£^,fc) + £ I £*/,*+£*/,*)
1=1 i=l /       k odd  \;=1 i=l /

fc+1 A:+2

= em+iym+X+   Y     £   ei.k+  Y    E   *'.*•
A: even i=k— 1 A: odd i=k—2

The right-hand side is again symmetric; it looks like

/l 1 1 0 0 ... 0 0 0\
1 1 1 0 0 ... 0 0 0
1 1 1 1 1 ... 0 0 0
0 0 1 1 1 ... 0 0 0

A/2m+1 =     0 0 1 1 1 ... 0 0 0    .

0   0   0   0   0   ...    1    1    1
0   0   0   0   0   ...    1    1    1

Vo   0   0   0   0   ...    1    10/

To finish the proof, it remains only to show that the matrices constructed in

this way can be lifted to Z2 in such a way that the determinant is in 2Z2. The

Hensel's lemma argument described above works as long as at least one of the

diagonal cofactors Alyl is nonzero. It is easy to prove by induction on aj that

the cofactor Ax x ^ 0. All entries of M2, and hence all cofactors, are 1. If

aj = 2atj > 2, subtract row 2ajj from row 2ajj - 1 , then row 2m — 2 from row

2m , and then add row 2ajj - 1 to row 2ajj . If aj = 2ajj + 1, subtract row 2ajj

from row 2a?j + 1, add row 2aaj + 1 to row 2a?j , then add row 2ajj + 1 to row
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2m — 1. In each case, the row operations leave the first row untouched and

replace Mn by the block diagonal matrix

(Mn-X       0    \

v    0      (-If)-

In fact, not only does this show that the lower left az x az submatrix of M„ is

invertible over Z/2Z, it even proves invertibility over Z. As the first two rows

of Mn are the same, the matrix X — 2ex x + M„ is a symmetric az x az matrix

such that r/2eGL„(Z).
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