SYMMETRIC NILPOTENT MATRICES WITH MAXIMAL RANK AND A CONJECTURE OF GROTHENDIECK-KOBLITZ

CHING-LI CHAI
APPENDIX BY MICHAEL LARSEN
(Communicated by Maurice Auslander)

Abstract

All pairs (p, n) such that there exists an $n \times n$ symmetric matrix A with entries in the ring \mathbb{Z}_{p} of p-adic integers such that $A^{n}=p \cdot U$ with U invertible in $M_{n \times n}\left(\mathbb{Z}_{p}\right)$ are determined. It is shown that such matrices A can be used to construct examples of deformations of abelian varieties.

While contemplating the converse of Grothendieck's specialization theorem for the Newton polygon of p-divisible groups and abelian varieties (cf. [G]), I chanced upon the following question in linear algebra.
Q. For which integer n and prime number p does there exist an $n \times n$ symmetric matrix A with entries in the ring \mathbb{Z}_{p} of p-adic integers such that $A^{n}=p \cdot U$ with U invertible in $M_{n \times n}\left(\mathbb{Z}_{p}\right)$?

It turns out that this seemingly innocuous question has an interesting answer, at least when p is an odd prime, which we would like to share with the reader. The connection with Koblitz's conjecture will also be discussed. When $p=2$, M. Larsen proved that the answer is always affirmative. It is a pleasure to thank him for writing up his solution as an appendix.

First note that when $p \neq 2$, the question above has an equivalent formulation:
Q^{\prime}. For which integer n and prime number p does there exist an $n \times n$ symmetric matrix A with entries in the prime field \mathbb{F}_{p} such that A is nilpotent and has rank $n-1$?

The equivalence follows from Hensel's lemma and an easy derivative calculation:

$$
\begin{aligned}
d\left(\operatorname{det}\left(x_{i j}\right)_{1 \leq i, j \leq n)}\right. & =\sum_{1 \leq i, j \leq n} A_{i j} d x_{i j} \\
& \quad\left(\text { where } A_{i j} \text { is the }(i, j)\right. \text { th cofactor) } \\
& =\sum_{1 \leq i \leq n} A_{i i} d x_{i i}+2 \sum_{1 \leq i<j \leq n} A_{i j} d x_{i j}
\end{aligned}
$$

Received by the editors July 31, 1990 and, in revised form, February 5, 1992.
1991 Mathematics Subject Classification. Primary 14K10, 14D10.
The author is partially supported by a grant from NSF.
if we impose the symmetry condition that $x_{i j}=x_{j i} \forall 1 \leq i, j \leq n$.
We shall first work out the geometry of symmetric nilpotent matrices with maximal rank. Since the prime 2 causes problems at several places, a familiar phenomenon, we shall restrict ourselves to fields of characteristic $\neq 2$. Thus we fix a field k with $\operatorname{char}(k) \neq 2$, a positive integer n, and let $V=V_{n}$ be the variety over k such that $V(F)=$ the set of all symmetric $n \times n$ matrices of rank $n-1$ with entries in F, for any field F over k. The above calculation says that V is smooth over $k . V$ has lots of symmetries: the orthogonal group O_{n} (for the standard form) operates on V by $g: A \mapsto g A g^{-1}=g A^{t} g, \forall g \in \mathrm{O}_{n}$, $\forall A \in V$.

Examples. (i) When $n=2$,

$$
V_{2}=\left\{\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]: a^{2}+b^{2}=0, a \neq 0, b \neq 0\right\}
$$

hence, $V\left(\mathbb{F}_{p}\right) \neq \varnothing$ iff $p \equiv 1(\bmod 4)$.
(ii) When $n=3$, the rational point

$$
\left[\begin{array}{ccc}
1 & \sqrt{-1} & 1 \\
\sqrt{-1} & -1 & \sqrt{-1} \\
1 & \sqrt{-1} & 0
\end{array}\right]
$$

in $V_{3}(\mathbb{Q}(\sqrt{-1}))$ shows that $V_{3}\left(\mathbb{F}_{p}\right) \neq \varnothing$ if $p \equiv 1(\bmod 4)$.
(iii) When $n=3$ and $p=3, V_{3}\left(\mathbb{F}_{3}\right) \neq \varnothing$ since

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \\
1 & -1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

is a rational point in $V_{3}\left(\mathbb{F}_{3}\right)$.
The following lemma is very useful.
Lemma. For any field F over k and any A in $V(F)$, the commutator of A inside $M_{n \times n}(F)$ is just $F[A]\left(=F+F A+F A^{2}+\cdots+F A^{n-1}\right)$, which as an F-algebra is isomorphic to $F[x] /\left(x^{n}\right)$.
Proof. We shall prove this statement for any nilpotent matrix B of maximal rank. Hence we can assume that B is already in the canonical form with l's below the diagonal. The proof is finished by a direct computation.

Psychologically the first thing we want to know about V is that it is not empty. Thus let N be the nilpotent $n \times n$ matrix with l's below the diagonal; we want to find some $g \in \operatorname{GL}(\bar{k})$ such that $g N g^{-1}$ is symmetric. Clearly $g N g^{-1}={ }^{t} g^{-1 t} N^{t} g \Leftrightarrow{ }^{t} g g N={ }^{t} N^{t} g g$. We know that (by Witt's theorem) $g \mapsto{ }^{t} g g$ establishes an isomorphism $\mathrm{O}_{n} \backslash \mathrm{GL}_{n} \approx Z_{n}$ since char $(k) \neq 2$, where Z_{n} is the variety of all invertible symmetric $n \times n$ matrices. Hence we are reduced to finding a symmetric invertible matrix X such that $X N={ }^{t} N X$. By explicit computation, the necessary and sufficient condition for a symmetric
matrix Y to satisfy $Y N={ }^{t} N Y$ is that Y has the form

$$
\left[\begin{array}{ccccccc}
a_{n} & a_{n-1} & \cdot & \cdot & \cdot & a_{2} & a_{1} \\
a_{n-1} & a_{n-2} & \cdot & \cdot & a_{2} & a_{1} & 0 \\
a_{n-2} & \cdot & \cdot & a_{2} & a_{1} & 0 & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{2} & a_{1} & 0 & \cdot & \cdot & \cdot & 0 \\
a_{1} & 0 & 0 & \cdot & \cdot & \cdot & 0
\end{array}\right]
$$

and the condition for such a Y to be invertible is that the antidiagonal entries (all equal to a_{1}) are invertible. In particular, such Y 's surely exist. Note that the above analysis also gives an explicit way to construct points in V : one just has to extract a "square root" for an invertible Y as above.

Next we show that O_{n} operates transitively on V. Thus let A_{1}, A_{2} be elements of $V(\bar{k})$; there exists (by the theory of canonical forms) an element $g \in \mathrm{GL}_{n}(\bar{k})$ such that $g A_{1} g^{-1}=A_{2}$, and we want to show that there exists a $g_{1} \in \mathrm{O}_{n}(\bar{k})$ such that $g_{1} A_{1} g_{1}^{-1}=A_{2}$. We have $g A_{1} g^{-1}=A_{2} \Rightarrow g A_{1}=A_{2} g$, $A_{1}{ }^{t} g={ }^{t} g A_{2} \Rightarrow{ }^{t} g g A_{1}={ }^{t} g A_{2} g=A_{1}{ }^{t} g g$; hence by the lemma we know that ${ }^{t} g g \in \bar{k}\left[A_{1}\right]^{\times}$. Since $\operatorname{char}(k) \neq 2$ and A_{1} is nilpotent, there exists an $h \in$ $\bar{k}\left[A_{1}\right]^{\times}$such that ${ }^{t} g g=h^{2}$. (A trivial case of Hensel's lemma, since $\bar{k}\left[A_{1}\right] \approx$ $\bar{k}[x] /\left(x^{n}\right)$.) Let $g_{1}=g h^{-1}$. We have ${ }^{t} g_{1} g_{1}=h^{-1 t} g g h^{-1}=h^{-1} h^{2} h^{-1}=1$ since h is symmetric (as in A_{1}); hence, $g_{1} \in \mathrm{O}_{n}(\bar{k})$, and clearly $g_{1} A_{1} g_{1}^{-1}=$ $g A_{1} g^{-1}=A_{2}$.

Finally let us pick and fix $A_{0} \in V(\bar{k})$. We want to find its stabilizer in O_{n}. Suppose $g A_{0} g^{-1}=A_{0}$. By the lemma we know that $g \in \bar{k}\left[A_{0}\right]^{\times}$; hence, $1={ }^{t} g g=g^{2}$. Since $\operatorname{char}(k) \neq 2$, we conclude that $g= \pm 1$ again because $\bar{k}\left[A_{0}\right] \approx \bar{k}[x] /\left(x^{n}\right)$. So we have proved:
Proposition 1. V_{n} is a principal homogeneous space for $\mathrm{PO}_{n}=\mathrm{O}_{n} /\{ \pm 1\}$ over k. Therefore V_{n} is a principal homogeneous space for SO_{n} if n is odd, while V_{n} has two geometric components if n is even.

Now we take $k=\mathbb{F}_{p}(p \neq 2)$. If n is odd, we conclude that V has an \mathbb{F}_{p}-rational point by Lang's theorem. (Every principal homogeneous space for a connected algebraic group over a finite field is trivial, see [La].) If $n=2 m$ is even, again by Lang's theorem we see that $V\left(\mathbb{F}_{p}\right) \neq \varnothing$ iff both geometric components of V are defined over \mathbb{F}_{p}; hence, we must compute the Galois action on the geometric components of V. This can be done by constructing rational points over a quadratic extension of k, as explained in the first part of the proof of Proposition 1. If we take the Y there to be

$$
Y_{0}=\left[\begin{array}{cccccc}
0 & 0 & \cdots & 0 & 0 & 2 \\
0 & 0 & \cdots & 0 & 2 & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
2 & 0 & \cdots & 0 & 0 & 0
\end{array}\right]
$$

we have to find a $g_{0} \in \mathrm{GL}_{n}$ such that ${ }^{t} g_{0} g_{0}=Y_{0}$. Any such g_{0} produces a point $g_{0} N g_{0}^{-1} \in V(\bar{K})$ by the first paragraph in the proof of Proposition 1.

Taking k to be \mathbb{Q}, we have

$$
\left[\begin{array}{cc}
1 & -\sqrt{-1} \\
1 & \sqrt{-1}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-\sqrt{-1} & \sqrt{-1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right] .
$$

So we can take g_{0} to be

$$
\left[\begin{array}{cc}
I_{m} & J_{m} \\
-\sqrt{-1} J_{m} & \sqrt{-1} I_{m}
\end{array}\right]
$$

where J_{m} denotes the $m \times m$ matrix with 1 's on the antidiagonal and 0 's elsewhere and $g_{0} N g_{0}^{-1} \in V(\mathbb{Q}(\sqrt{-1}))$. If $\operatorname{Gal}(\mathbb{Q}(\sqrt{-1}) / \mathbb{Q})=\{$ id, $\tau\}$, then

$$
g_{0}^{\tau}=\left[\begin{array}{cc}
I_{m} & 0 \\
0 & -I_{m}
\end{array}\right] \cdot g_{0}
$$

Since

$$
\operatorname{det}\left(\left[\begin{array}{cc}
I_{m} & 0 \\
0 & -I_{m}
\end{array}\right]\right)=(-1)^{m}
$$

we see that τ operates on the two geometric components of V / \mathbb{Q} by $(-1)^{m}$, i.e., τ stabilizes both geometric components if $n \equiv 0(\bmod 4)$, and τ interchanges them if $n \equiv 2(\bmod 4)$. From the splitting behavior of primes in $\mathbb{Q}(\sqrt{-1}) / \mathbb{Q}$, we conclude:
Proposition 2. Suppose n is even and p is an odd prime number. Then
(i) if $n \equiv 0(\bmod 4)$ or $p \equiv 1(\bmod 4)$, then each geometric component of $V_{n / \mathbb{F}_{p}}$ is defined over \mathbb{F}_{p} and is a principal homogeneous space under $\mathrm{PSO}_{n}=$ $\mathrm{SO}_{n} /\{ \pm 1\}$;
(ii) if $n \equiv 2(\bmod 4)$ and $p \equiv 3(\bmod 4)$, then the Frobenius interchanges the two geometric components of $V_{n / \mathbb{F}_{p}}$.

We summarize our results as
Theorem. Let p be an odd prime number and n a positive integer. Then $V_{n}\left(\mathbb{F}_{p}\right)=\varnothing$ iff $p \equiv 3(\bmod 4)$ and $n \equiv 2(\bmod 4)$. Therefore there exists a symmetric $n \times n$ matrix with entries in \mathbb{Z}_{p} whose nth power is equal to p times a unit in $M_{n \times n}\left(\mathbb{Z}_{p}\right)$ iff $p \equiv 1(\bmod 4)$ or $n \equiv 0,1$, or $3(\bmod 4)$.
Remark. Let $W=W_{n}$ be the variety of all symmetric $n \times n$ mattices. O O operates on W and V is contained in the null cone. As the referee pointed out, the ring of invariants of O_{n} operating on W is a polynomial ring with the coefficients of the characteristic polynomials as generators, at least in characteristic 0 . This implies that the null cone has a beautiful structure.

We now turn to discuss the connection with a conjecture of GrothendieckKoblitz (cf. [Ko]), which states that if $N P_{1}, \ldots, N P_{m}$ is a sequence of Newton polygons with the same end points such that $N P_{i+1}$ lies above $N P_{i}$ for each i, then this sequence can be realized by successive specialization of principally polarized varieties in characteristic $p>0$. To the best of my knowledge, this conjecture is still open and so is the case for Barsotti-Tate groups. ${ }^{1}$ Here we shall give some examples such that all slopes of $N P_{m}$ are $\frac{1}{2}$ (this is not a restriction because this $N P_{m}$ is the highest possible Newton polygon), by deforming a product of supersingular elliptic curves. We shall not try to state our result in the ultimate generality; rather we only present our calculation as a way to construct some example of deformations.

Let k be an algebraically closed field of characteristic $p>0$, and let M_{0} be the Dieudonne module of a product of r copies of supersingular elliptic curves.

[^0]In other words, M_{0} has a free $W(k)$ basis $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}$, and the Frobenius and Verschibung send x_{i} to $y_{i}: F x_{i}=y_{i}=V x_{i}, 1 \leq i \leq r$. The product polarization corresponds to the symplectic pairing having x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r} as a symplectic basis: $\left\langle x_{i}, y_{j}\right\rangle=\delta_{i j}$. Using the Cartier-Dieudonné theory, a general deformation of M_{0} over a complete local ring R over k can be given as follows:

$$
F x_{i}=\sum T_{i j} x_{j}+y_{i}, \quad V x_{i}=y_{i}, \quad 1 \leq i \leq r
$$

where $T_{i j}=\left[t_{i j}\right]=\left(t_{i j}, 0,0, \ldots\right)$ is the Teichmüller representative of $t_{i j}$ in the ring of infinite Witt vectors $W(R), t_{i j} \in R, 1 \leq i, j \leq r$. If we write F in block form, its entries are $T, p I_{r}, I_{r}, 0$, where $T=\left(T_{i j}\right)$. If we take polarization into account and want the product polarization to extend to the deformation, we must require that $t_{i j}=t_{j i}, 1 \leq i, j \leq r$. In practice, we shall choose R to be a formal power series ring (possibly with several variables), and we want to estimate the slope of the deformation over the fraction field of R. One way to do this is to use the result in [Ka], which requires some information about iteration of Frobenius.

We shall write the nth iteration F^{n} of F in block form with entries $A^{(n)}$, $B^{(n)}, C^{(n)}, D^{(n)}$. Let us first see some examples:
$n=2: A^{(2)}=T T^{\sigma}+p, B^{(2)}=p T, C^{(2)}=T^{\sigma}, D^{(2)}=p$, where σ denotes the Frobenius automorphism on $W(R)$.

$$
\begin{aligned}
& n=3: A^{(3)}=T T^{\sigma} T^{\sigma^{2}}+p T^{\sigma^{2}}+p T, B^{(3)}=p T T^{\sigma}+p^{2}, \\
& C^{(3)}=T^{\sigma} T^{\sigma^{2}}+p, D^{(3)}=p T^{\sigma} \\
& n=4: A^{(4)}=T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p T^{\sigma^{2}} T^{\sigma^{3}}+p T T^{\sigma^{3}}+p T T^{\sigma}+p^{2}, \\
& B^{(4)}=p T T^{\sigma} T^{\sigma^{2}}+p^{2} T^{\sigma^{2}}+p^{2} T, \\
& C^{(4)}=T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p T^{\sigma^{3}}+p T^{\sigma^{3}}, D^{(4)}=p T^{\sigma} T^{\sigma^{2}}+p^{2} . \\
& n=5: A^{(5)}=T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p T T^{\sigma^{3}} T^{\sigma^{4}}+p T T^{\sigma} T^{\sigma^{4}} \\
& +p T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T^{\sigma^{4}}+p^{2} T^{\sigma^{2}}+p^{2} T, \\
& B^{(5)}=p T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T T^{\sigma^{3}}+p^{2} T T^{\sigma}+p^{3}, \\
& C^{(5)}=T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p T^{\sigma^{3}} T^{\sigma^{4}}+p T^{\sigma} T^{\sigma^{4}}+p T^{\sigma} T^{\sigma^{2}}+p^{2}, \\
& D^{(5)}=p T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T^{\sigma^{3}}+p^{2} T^{\sigma} . \\
& n=6: A^{(6)}=T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{5}}+p T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}} T^{\sigma^{5}}+p T T^{\sigma^{3}} T^{\sigma^{4}} T^{\sigma^{5}} \\
& +p T T^{\sigma} T^{\sigma^{4}} T^{\sigma^{5}}+p T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{5}}+p T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T^{\sigma^{4}} T^{\sigma^{5}} \\
& +p^{2} T^{\sigma^{2}} T^{\sigma^{5}}+p^{2} T T^{\sigma^{5}}+p^{2} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T T^{\sigma}+p^{3}, \\
& B^{(6)}=p T T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T T^{\sigma} T^{\sigma^{4}} \\
& +p^{2} T T^{\sigma} T^{\sigma^{2}}+p^{3} T^{\sigma^{4}}+p^{3} T^{\sigma^{2}}+p^{3} T, \\
& C^{(6)}=T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}} T^{\sigma^{5}}+p T^{\sigma^{3}} T^{\sigma^{4}} T^{\sigma^{5}}+p T^{\sigma} T^{\sigma^{4}} T^{\sigma^{5}}+p T^{\sigma} T^{\sigma^{2}} T^{\sigma^{5}} \\
& +p T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}}+p^{2} T^{\sigma^{5}}+p^{2} T^{\sigma^{3}}+p^{2} T^{\sigma}, \\
& D^{(6)}=p T^{\sigma} T^{\sigma^{2}} T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T^{\sigma^{3}} T^{\sigma^{4}}+p^{2} T^{\sigma} T^{\sigma^{4}}+p^{2} T^{\sigma} T^{\sigma^{2}}+p^{3} .
\end{aligned}
$$

In general we have

$$
\begin{aligned}
& A^{(n)}=T T^{\sigma} T^{\sigma^{2}} \cdots T \sigma^{n-1}+p \cdot \sum \prod \text { (drop a pair of consecutive terms) } \\
& +p^{2} \cdot \sum \prod \text { (drop two pairs of consecutive terms) }+\cdots \text {, } \\
& B^{(n)}=p T T^{\sigma} T^{\sigma^{2}} \cdots T^{\sigma^{n-2}}+p^{2} \cdot \sum \prod \text { (drop a pair of consecutive terms) } \\
& +p^{3} \cdot \sum \prod \text { (drop two pairs of consecutive terms) }+\cdots \text {, } \\
& C^{(n)}=T^{\sigma} T^{\sigma^{2}} \cdots T^{\sigma^{n-1}}+p \cdot \sum \prod \text { (drop a pair of consecutive terms) } \\
& +p^{2} \cdot \sum \prod \text { (drop two pairs of consecutive terms) }+\cdots \text {, } \\
& D^{(n)}=p T^{\sigma} T^{\sigma^{2}} \cdots T^{\sigma^{n-2}}+p^{2} \cdot \sum \prod \text { (drop a pair of consecutive terms) } \\
& +p^{3} \cdot \sum \prod \text { (drop two pairs of consecutive terms) }+\cdots \text {. }
\end{aligned}
$$

If we take $R=k[t], T=[t] \cdot A$ where $A \in M_{r \times r}\left(\mathbb{Z}_{p}\right)$ and $A^{r}=p^{s} \cdot$ (unit), $2 s<r$, then any product of m terms of the form $T^{\sigma^{i}}$ is always of the form $p^{[m / r] s}$. (a matrix not congruent to $\left.0 \bmod p\right)$. Note that such A exists: start with a cyclic permutation matrix, replace the first s l's by p. Moreover since $[t]^{\sigma^{i}}=\left[t^{p^{i}}\right]$, there is no cancellation. Therefore $F^{n}=p^{[n / r] s}$. (a matrix whose determinant is not congruent to $0 \bmod p$). Thus by Katz's "basic slope estimate" [Ka, 1.4.3, p. 125], we see that the first r slopes are all equal to s / r; therefore, the last r slopes are all equal to $(r-s) / r$. This argument also works for higher-dimensional base rings R : take $s<r / 2, U \in M_{r \times r}\left(\mathbb{Z}_{p}\right)$, $U^{r}=p \cdot($ unit $)$, and $T=\left[t_{0}\right] \cdot I_{r}+\left[t_{1}\right] \cdot U+\left[t_{2}\right] \cdot U^{2}+\cdots+\left[t_{s}\right] \cdot U^{s}$. This produces a sequence of Newton polygons $N P_{0}, N P_{1}, \ldots, N P_{s}, N P_{s+1}$ such that $N P_{i}$ has slopes i / r and $(t-s) / r$ with multiplicity r if $0 \leq i \leq s$ and $N P_{s+1}$ has slope $1 / 2$ and multiplicity $2 r$. With polarization, we need a symmetric $U \in M_{r \times r}\left(\mathbb{Z}_{p}\right)$ such that $U^{r}=p \cdot($ unit $)$. This is possible if $p \equiv 1(\bmod 4)$, or $r \equiv 0,1,3(\bmod 4)$ and $p>2$. Thus we have shown

Proposition 3. Let r, s be positive integers such that $2 s<r$. Let $N P_{0}$, $N P_{1}, \ldots, N P_{s}, N P_{s+1}$ be the Newton polygons connecting $(0,0)$ to $(2 r, r)$ such that $N P_{i}$ has slopes i / r and $(t-s) / r$ with multiplicity r for $0 \leq i \leq s$ and $N P_{s+1}$ has slope $1 / 2$ and multiplicity $2 r$.
(a) $N P_{0}, N P_{1}, \ldots, N P_{s}, N P_{s+1}$ can always be realized by a Barsotti-Tate group over $k\left[\left[t_{0}, t_{1}, \ldots, t_{s}\right]\right]$.
(b) Assume either $p \equiv 1(\bmod 4)$, or $r \equiv 0,1,3(\bmod 4)$ and $p>2$. Then $N P_{0}, N P_{1}, \ldots, N P_{s}, N P_{s+1}$ can be realized by a principally polarized abelian scheme over $k\left[\left[t_{0}, t_{1}, \ldots, t_{s}\right]\right]$.

Appendix: A 2-adic lifting problem by Michael Larsen ${ }^{2}$

This appendix gives, for all $n \in N$, an affirmative answer to the question of whether there exists a symmetric matrix A in $M_{n \times n}\left(\mathbf{Z}_{2}\right)$ with A^{n} equal to $2 U, U$ invertible.

[^1]We begin by constructing, for each n, an $n \times n$ symmetric matrix with entries in \mathbf{F}_{2}, nilpotent of rank $n-1$. For n fixed, define $e_{i, j}$ for $1 \leq i, j \leq n$ to be the matrix with (i, j) th entry 1 and all other entries 0 . For i or j out of range, let $e_{i, j}=0$. Let $N=\sum_{i=1}^{n} e_{i, i+1}$ denote the standard nilpotent matrix of rank $n-1$. Over \mathbf{F}_{2},

$$
(I+N)^{-1}=I+N+N^{2}+\cdots+N^{n-1}
$$

Define the permutation $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ as follows:

$$
\sigma(k)= \begin{cases}2 k & \text { if } k \leq n / 2 \\ 2(n-k)+1 & \text { otherwise }\end{cases}
$$

Let P_{σ} denote the corresponding permutation matrix and

$$
M=(I+N)^{-1} P_{\sigma}^{-1} N P_{\sigma}(I+N)=\sum_{1 \leq i \leq j \leq n} e_{i, j} \sum_{i=1}^{n-1} e_{\sigma(i), \sigma(i+1)} \sum_{i=1}^{n}\left(e_{i, i}+e_{i, i+1}\right) .
$$

Evidently M is nilpotent of rank $n-1$; we claim that it is symmetric. The cases n even and n odd must be considered separately.

Suppose $n=2 m$. Then

$$
\sum_{i=1}^{n-1} e_{\sigma(i), \sigma(i+1)}=\sum_{i=1}^{m-1} e_{2 i, 2 i+2}+\sum_{i=1}^{m-1} e_{2 i+1,2 i-1}+e_{2 m, 2 m-1}
$$

As $e_{i, j} e_{k, l}=\delta_{j, k} e_{i, l}$,

$$
\begin{aligned}
M= & \sum_{j=1}^{m-1} \sum_{i=1}^{2 j} e_{i, 2 j+2}+\sum_{j=1}^{m-2} \sum_{i=1}^{2 j} e_{i, 2 j+3}+\sum_{j=1}^{m-1} \sum_{i=1}^{2 j+1} e_{i, 2 j-1} \\
& +\sum_{j=1}^{m-1} \sum_{i=1}^{2 j+1} e_{i, 2 j}+\sum_{i=1}^{2 m} e_{i, 2 m-1}+\sum_{i=1}^{2 m} e_{i, 2 m}
\end{aligned}
$$

Combining the third and fifth terms and likewise the fourth and sixth terms, we get

$$
\sum_{j=1}^{m-1} \sum_{i=1}^{2 j} e_{i, 2 j+2}+\sum_{j=1}^{m-2} \sum_{i=1}^{2 j} e_{i, 2 j+3}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j-1}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j}
$$

(harmlessly) extending the ranges of summation,

$$
\begin{aligned}
\sum_{j=0}^{m} & \sum_{i=1}^{2 j} e_{i, 2 j+2}+\sum_{j=0}^{m} \sum_{i=1}^{2 j} e_{i, 2 j+3}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j-1}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j} \\
& =\sum_{k \text { even }}\left(\sum_{i=1}^{k-2} e_{i, k}+\sum_{i=1}^{k+1} e_{i, k}\right)+\sum_{k \text { odd }}\left(\sum_{i=1}^{k-3} e_{i, k}+\sum_{i=1}^{k+2} e_{i, k}\right) \\
& =\sum_{k \text { even }} \sum_{i=k-1}^{k+1} e_{i, k}+\sum_{k \text { odd }} \sum_{i=k-2}^{k+2} e_{i, k} .
\end{aligned}
$$

The right-hand side is evidently symmetric; the matrix looks like

$$
M_{2 m}=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1
\end{array}\right) .
$$

If $n=2 m+1$,
$M=\sum_{j=1}^{m} \sum_{i=1}^{2 j} e_{i, 2 j+2}+\sum_{j=1}^{m} \sum_{i=1}^{2 j} e_{i, 2 j+3}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j-1}+\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j}+\sum_{i=1}^{2 m} e_{i, 2 m+1}$.
Combining the third and fifth terms, we get

$$
\begin{aligned}
M= & \sum_{j=1}^{m} \sum_{i=1}^{2 j} e_{i, 2 j+2}+\sum_{j=1}^{m} \sum_{i=1}^{2 j} e_{i, 2 j+3}+\sum_{j=1}^{m+1} \sum_{i=1}^{2 j+1} e_{i, 2 j-1} \\
& +\sum_{j=1}^{m} \sum_{i=1}^{2 j+1} e_{i, 2 j}-e_{m+1, m+1} \\
= & e_{m+1, m+1}+\sum_{k \text { even }}\left(\sum_{i=1}^{k-2} e_{i, k}+\sum_{i=1}^{k+1} e_{i, k}\right)+\sum_{k \text { odd }}\left(\sum_{i=1}^{k-3} e_{i, k}+\sum_{i=1}^{k+2} e_{i, k}\right) \\
= & e_{m+1, m+1}+\sum_{k \text { even }} \sum_{i=k-1}^{k+1} e_{i, k}+\sum_{k \text { odd }} \sum_{i=k-2}^{k+2} e_{i, k} .
\end{aligned}
$$

The right-hand side is again symmetric; it looks like

$$
M_{2 m+1}=\left(\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 & 1 & 0
\end{array}\right) .
$$

To finish the proof, it remains only to show that the matrices constructed in this way can be lifted to \mathbf{Z}_{2} in such a way that the determinant is in $2 \mathbf{Z}_{2}^{*}$. The Hensel's lemma argument described above works as long as at least one of the diagonal cofactors $A_{i, i}$ is nonzero. It is easy to prove by induction on n that the cofactor $A_{1,1} \neq 0$. All entries of M_{2}, and hence all cofactors, are 1. If $n=2 m>2$, subtract row $2 m$ from row $2 m-1$, then row $2 m-2$ from row $2 m$, and then add row $2 m-1$ to row $2 m$. If $n=2 m+1$, subtract row $2 m$ from row $2 m+1$, add row $2 m+1$ to row $2 m$, then add row $2 m+1$ to row
$2 m-1$. In each case, the row operations leave the first row untouched and replace M_{n} by the block diagonal matrix

$$
\left(\begin{array}{cc}
M_{n-1} & 0 \\
0 & (-1)^{n}
\end{array}\right) .
$$

In fact, not only does this show that the lower left $n \times n$ submatrix of M_{n} is invertible over $\mathbf{Z} / 2 \mathbf{Z}$, it even proves invertibility over \mathbf{Z}. As the first two rows of M_{n} are the same, the matrix $X=2 e_{1,1}+M_{n}$ is a symmetric $n \times n$ matrix such that $X^{n} / 2 \in \mathrm{GL}_{n}(\mathbf{Z})$.

References

[CN] C.-L. Chai and P. Norman, Bad reduction of Seigel moduli schemes with $\Gamma_{0}(p)$-level structure, Amer. J. Math. 112 (1990), 1003-1071.
[G] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, Presses de l'Université de Montréal, Montréal, 1974.
[Ka] N. Katz, Slope filtration of F-crystals, Asterisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113-164.
[Ko] N. Koblitz, p-adic variation of the zeta-function over families of varieties defined over the finite fields, Compositio Math. 31 (1975), 119-218.
[La] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
[No] P. Norman, An algorithm for computing local moduli of abelian varieties, Ann. of Math. (2) 101 (1975), 499-509.
[NO] P. Norman and F. Oort, Moduli of abelian varieties, Ann. of Math. (2) 112 (1980), 413-439.
Department of Mathematics, University of Pennsylvania, Philadelphia, PennsylvaNIA 19104

E-mail address, C.-L.Chai: chai@math.upenn.edu
E-mail address, M. Larsen: larsen@math.upenn.edu

[^0]: ${ }^{1}$ Shortly after this paper was submitted, this conjecture was proved by F. Oort. A preliminary note of his important result is available and titled Moduli of abelian varieties and Newton polygons.

[^1]: ${ }^{2}$ Michael Larsen was supported by NSF Grant No. DMS-8807203. He is affiliated with the University of Pennsylvania, Philadelphia, Pennsylvania 19104.

