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(Communicated by Louis J. Ratliff, Jr.)

Abstract. It is well known that the only simple distributive lattice is the two-

element chain. We can generalize the concept of a simple lattice to complete

lattices as follows: a complete lattice is complete-simple if it has only the two

trivial complete congruences. In this paper we show the existence of infinite

complete-simple distributive lattices.

1. Introduction

A number of authors (Freese, Gratzer, Johnson, Lakser, Reuter, Schmidt,

Teo, Wille, and Wolk, see the references) have investigated the lattice of all

complete congruence relations of a complete lattice. They have proved repre-

sentation theorems of the form: given a complete lattice L, a complete lattice

K is constructed such that the lattice of all complete congruence relations of

K is isomorphic to L. This result was first proved by Gratzer in [3]; a planar

K was constructed by Gratzer and Lakser in [6], and a modular K was con-

structed by Freese, Gratzer, and Schmidt in [1]. All these constructions were

based on manipulating prime intervals in various ways.

It was observed in [1] that such techniques cannot be applied to complete

distributive lattices since the congruence relation generated by a prime interval

is always a complete congruence relation. Let us call a complete lattice complete-
simple if it has only the two trivial complete congruences. It follows from the

observation quoted above that a complete-simple distributive lattice containing

a prime interval is the two-element chain.

The question naturally arises whether there is a complete-simple distributive

lattice without a prime interval.

Theorem. There exists a complete-simple distributive lattice K with more than

two elements.
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2. Notation

For the notation and basic concepts, we refer the reader to [2].

Let L be a complete lattice. A complete congruence relation 9 of L is a

congruence relation for which the Substitution Property holds for arbitrary joins

and meets, that is, if x, = y, (O) for i e I, then \J(xj \ i e I) = \J(yt | /' e /)
(6) and /\(xj \ i e /) = /\( >>,■ | / e /) (8). The smallest and largest congruence,

denoted by co and i, respectively, are complete. The complete congruences of

L form a complete lattice; if this lattice contains only co and t, then we shall

call L complete-simple.
Q and E will denote the chain of rational and real numbers, respectively.

Let Li, i € I, he lattices. Then T[(Li \i e I) denotes their direct product.

If t e Yi(Li \i € I), then t(/) e L, is the /'th component of t.

3.  A UNARY OPERATION

The construction is based on a special unary operation x+ on Q. This will

be introduced in this section.

For a unary operation x+ on a set A, we will use the following notation

for iterated applications: x[0] = x, xlX] = x+ , ... , x[n+x] = (x[n])+ , ... . For

a e A , set av = (fl[°l, a'1], ...) and Ha = { b \ b e A and b+ = a } .

Lemma 1. For every infinite set A, there exists a unary operation x+ satisfying

the following two properties:

(1) al"' ^ a[ml for all a e A and for all natural numbers n £ m.

(2) There exists a bijection between Ha and A fior every a £ A.

Proof. Without loss of generality, we can assume that A = B2 x Z, where

\A\ = \B\ and Z is the set of integers. Since \B\2 = \B\, there is a bijection tp

between B and B2. For a = ((bx, b2), i), define a+ = (cp(bx), i + I).
The Z-coordinate of a[kx is i + k ; therefore, fl[n] = fl[m] implies that i + n -

i + m , so n = m, verifying (1).
Since cp is onto, we can choose a b e B with cp(b) = (bx,b2). Then

Ha = {((b,x),i-l)\x £B}, implying (2).   □

Henceforth, let A = Q, and let x+ he a unary operation on Q satisfying (1)

and (2) of Lemma 1. We take a family of pairwise disjoint chains (M, | / e Q),

where each R, is isomorphic to the chain R. We denote by Q, the chain of

rational numbers in R,, i'gQ. By the second condition of Lemma 1, there is

a bijection between H, and Q for every i'eQ; hence, there is a bijection a,,

i'eQ, between 77, and Q,. We keep the a,■-, /eQ, fixed for the rest of this

paper.

Let Q denote the disjoint union of the bijections a,, /eQ. More formally,

we define a map q of Q into U(Q< I ' e Q) as follows:

Let /eQ. Then g(i) = ai+(i) e Q,-+ C Ri+ .
Observe that g(i) is an element of Q,-+ and, in fact, every element of Q,+

is of the form g(i) for some / e Q. Obviously, aj is a bijection between Q

and U(Qih'eQ)-
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4. Construction

Let P = Y[(Rj | / e Q). We adjoin to P a zero, 0, and a unit element, 1,

to obtain the poset P. Let t e P; for / e Q, we introduce Condition (C,) for
t as follows:

(Q) holds for t if and only if t(i') = 0; or t(/) > 0 and t(/+) > g(i); or
t(z) <0 and t(/+) < g(i).

Condition (C) holds for t if (Q) holds for t for all /eQ.
Now we define the subset S of P as the set of all t e P for which Condition

(C) holds. Define S = S U {0, 1} .

Lemma 2. S is a sublattice of P; hence, S is a distributive lattice.   S is a

complete distributive lattice.

Proof. Observe that S / 0. Indeed, let z e P he defined by z(/) = 0 for all
/eQ. Condition (C) obviously holds for z, hence, z e S.

Let s, t e S; we form s V t in P . We claim that s V t e S, that is, (C,) holds

for s V t, for /eQ. Indeed, if (s V t)(/) > 0, then s(/) V t(/) = (s V t)(/) > 0;
therefore, s(/) > 0 or t(/) > 0 (since R, is a chain). Since (C,) holds for

s and t, s(/+) > g(i) or t(/+) > g(i), concluding that (s V t)(/+) > g(i).

If (svt)(/) < 0, then s(/) V t(/) = (s V t)(/) < 0; therefore, s(/) < 0 and
t(/) < 0. It follows that s(/+) < g(i) and t(/+) < g(i); therefore, (s V t)(/+) =

s(/+) V t(/+) < g(i) (since R, is a chain). Similarly, we prove that s A t e S.

Hence, S is a lattice; in fact, since it is a sublattice of P, it is a distributive

lattice.
Next we prove that S is a complete lattice. In order to do this, first, for

every v e P, we define v e P as follows: If v e P - P, then v = v. If v e P,

then let v0 = v. Consider the set C/Vo = Co of all i e Q such that v0(/) < 0

and v0(/+) < g(i). Define vx e P: \x(i) = 0 for i e Co and \x(j) = \0(j)

for j e Q - Co. Inductively, let a? be a natural number > 1 , and let v„ be

defined. Then let U„ — CVn and v„+i = (v„)i. Finally, let \ = \J(vn \ n <co).
Observe that v < v and if ?(/) ^ v(/) for some /eQ, then ?(/) = 0.

Let T he a subset of S, and let u = V T in P. If u e S, then u = \J T

in S. So we_ can assume that u € P - S. We shall prove that, in this case,

u = \JTinS.
To verify that u e S, it is sufficient to prove that if u ^ {0, 1}, then fieS.

Let /eQ, u(/) < 0, and u(/+) £ g(i). Then choose the natural numbers Ac

and aw so that u(/) = Ujt(/) and u(/+) = uw(/+). With at. = max{ Ac, aw }, we

have u„(/) < 0 and u„(/+) ^ g(i). Therefore, i e U„n, hence u„(/) had to be

corrected at step n+1. We conclude that u(/) = u„+i(/) = 0, contradicting the

assumption that u(/) < 0. Next let /eQ, u(/) > 0, and u(/+) > g(i). Since

u(/) > 0, it follows that u(/) = u(/). Therefore, o(/) = u(/) = V( v(/) | v e T) >

0, hence v(/) > 0 for some v e T (since R, is a chain). Since veT, (C,)

holds for v, so g(i) < v(/+) < u(/+) < u(/+), contradicting the assumption that

u('+) ^ Q(i) • We conclude that Condition (C,) holds for u.

Finally, we have to verify that u is the complete join of T in S. Let s e S

be an upper bound of T, that is, t < s, for all teT. We want to show that

u < s. This is obvious if s e { 0, 1} . Solets£{0,l}, that is, let seS.

Obviously, u < s. Now we prove that u„ < s by induction on at. . For at = 0,

we have Uq — u, and we already know that u < s . Let u„ < s ; for every /eQ,
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we have to verify that u„+i(/) < s(/). If i x\t U„, then u„(/) = u„+i(/), so

Un+i(/) < s(/) follows from the induction hypothesis. If i &U„, then u„(/) < 0

and u„(/+) ■£ g(i). It follows that s(/+) > u„(/+) > g(i). Since s satisfies

Condition (C), we conclude that s(/) > 0. Therefore, s(/) > 0 — u„+i(/),

completing the induction.   □

5. Complete congruences

In this section, we shall prove that S is a complete-simple lattice. Let 6 be

a complete congruence relation of S, and let 8 > co. We are going to prove

that 0 = 1 (8), that is, 8 = i.
We introduce some notation. With a = (ao, ax, ...) eR01 and k e Q, we

associate the element ak of P defined by a*(Ac["]) = a„ , for at = 0, 1 , ... ,

and ak(l) = 0, otherwise. It is obvious that ak e S iff Condition (Q) holds

for all / = #"1, n = 0, 1, ... .
Since 8 > co, there exist s, te5 such that s < t and s = t (8). Without

loss of generality, we can assume that s, teS.

There exists a j e Q such that s(j) < t(j). Recall that a7 is a bijection

between Hj and Q7-. Since Q7 is dense in Rj, there is an i e Hj such that

&(j) = S(i+)<g(i)<t(i+) = t(j).

(By definition, j = i+ and g(i) — <*,■+(/).)
Henceforth, s, t,and / will refer to these elements. Define s„ — s(/M) and

t„ = t(/t"l), for at = 0, 1, .... Let g(n) stand for g(i[n]), at = 0, 1 , ... .

Then the condition on s, t, and / can be rewritten as follows:

sx < g(0) <tx.

For a = (ao, ax, ...) eRw and for this / e Q, we identify a with a'; in

other words, a = (ao, ax, ...) will be regarded as an element of P. Then

(s0,sx,s2, ...), (t0,tx,t2,...)€Sand (0, s,, s2, ...), (0, tx, t2, ...) e

S.
From s = t (8), we conclude that

(sA(0, tx,t2,...))V(0,sx,s2,...)

= (tA(0,tx,t2,...))V(0,sx,s2,...) (8),

that is,

(0,sx,s2,...) = (0,tx,t2,...)   (8).

Let us choose u, v e R so that 0 < u and g(0) < v < tx; if g(0) < 0, then
we further assume that v < 0. Define the element (u, v, v2, v^, ...) of S
as follows: if 0 < g(0), let v,■ = t,■, i = 2 , 3, ... ; if #(0) < 0, then v, = s,,
i = 2, 3 , ... . It is clear that (u, v , v2, tj3 , ...) e S and that vt, / = 2,
3, ... , do not depend on the choice of u and v . Also, (u, tx, t2, ...) e S.

Computing with these elements, we conclude from the last congruence that

(( 0, Si , s2, s3, ...) V (u, V , v2, v3, ...)) A (u, tx, t2 , A3 , . . . )

= ((0,ti,t2,h,...)V(u,v,v2,v3,...))A(u,ti, t2,h,...) (8),
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that is,

(u,v,v2,v3, ...) = (u,tx,t2,h, ...)    (8).

Observe that s„ <vn < tn holds for all at > 1.

For any 0 < u, for all v e R satisfying g(0) < v < tx and v < 0 if

g(0) < 0, we obtain a congruence as above. Forming the complete meet of

these congruences, we get the congruence

f\((u,v ,v2,V}, ...) \ g(0) <v <tx and tj < 0 if g (0) < 0)

= (u,tx,t2,...) (8).

Since f\(v \ g(0) < v < tx and tj < 0 if aj(0) < 0) = aj(0) , the complete meet

f\((u,v,...)\ g(0) < v < tx andTj < 0 if g(0) < 0) in S is (0, g(0),v2,
?J3,...), so we have arrived at the congruence

(0,Q(0),v2,v3,...) = (u,ti,t2,h,...)   (8),

where sn <vn < t„ for all at > 1. For every u > 0, we obtain a congruence as

above. We now form the complete join of these congruences:

\/((0,g(0),v2,v3,...)\u>0) = \/((u,ti,t2,ti,...)\u>0)   (8).

This is obviously of the form

rj = (0, aj(0),tj2,tj3,...) = 1    (8),

where sn < v„ < tn for all at > 1 . It follows that

(0,*i,Ji,...)<IJ<(0,fi,/2,...)-

We can proceed similarly for u < 0 and sx < v < g(0) (where tj > 0 if

aj(0) > 0), forming the complete join of the congruences for fixed u and all v ,

and then forming the complete meet for all u. We obtain a congruence of the

form

i = (0,Q(0),v'2,v'3,...) = 0   (8),

where sn <v'n< tn for all at > 1 ; therefore,

(0,si,s2, ...) <a< (0, fi, t2--->-

Now the last two congruences along with the congruence (0, sx, s2, ...) =

(0, 11, t2, ■ ■ ■) (8), yield 0 = 1 (8), completing the proof of 8 = t.

This completes the proof of the theorem.

6. Concluding comments

Let c denote the power of the continuum. Obviously, the complete-simple

lattice K constructed for the theorem is of power c. This is the smallest

possible cardinality. Indeed, let K be a complete-simple distributive lattice.

Let C be a maximal chain in K. By the observation quoted from [ 1 ] in the

introduction, if C contains a prime interval, then C is the two-element chain

and so is K. Therefore, if K has more than two elements, then C is dense.

It follows that C contains a subchain isomorphic to Q. Since C is complete,

it contains a subchain isomorphic to R. We conclude that c < \C\ < \K\.
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We can construct a complete-simple distributive lattice of any cardinality n >

c. The proof of the theorem gives us such a K for n = c. Now let a be any

ordinal of cardinality n > c. Utilizing the fact that 0 is meet-irreducible and

1 is join-irreducible in the lattice K constructed for the theorem, we construct

a complete-simple distributive lattice K7, for every y < a, in which the zero

Oj, is meet-irreducible and the unit \y is join-irreducible as follows:

#0 = K; if y = /3 + 1, then

KY = (Kp-{0p,l/i})2ij{07,l7};

and Kp- has a natural embedding into Kp+i ; if y is a limit ordinal, then Ky

is the direct limit of the Kg , 8 <y .
It is easy to check that Ka is a complete-simple distributive lattice of cardi-

nality n.

An alternative proof, by modifying the construction for the theorem, was

carried out by Johnson.
The topic described in the introduction, namely, the representation of a com-

plete lattice as the lattice of all complete congruence relations of a complete lat-

tice, was extended to the m-complete case by Gratzer and Lakser [7] and Gratzer

and Schmidt [9], where m is an infinite regular cardinal satisfying m > No .

Let m be an infinite regular cardinal. A lattice K is m-complete if \J X

and f\X exist in K whenever X C K and 0 < \X\ < m. A congruence

relation 8 of an m-complete lattice K is an m-complete congruence relation

if the Substitution Property holds for fewer than m elements, that is, if x, = y,

(8) for i e I, and 0 < |/| < m, then

\/(xi 11 € /) = \J(y, |/e/)   (8),

and dually. An m-complete lattice K is called m-simple if it has only the two

trivial m-complete congruence relations.

Now we state the analogue of the theorem for the m-complete case; in this

version of the theorem, we also state some properties of the lattice K we con-

struct.

Theorem'. Let m > No be an infinite regular cardinal. There exists an m-

simple distributive lattice K with more than two elements. The lattice K can

be constructed to have the following additional properties:

(1) K is complete.
(2) K is self-dual.
(3) The zero ofi K is meet-irreducible and it is m-complete meet-reducible.

(4) The unit ofi K is join-irreducible and it is m-complete join-reducible.

The lattice K constructed for the theorem satisfies (1); it is clear that prop-

erties (3) and (4) hold for K. Since m > N0 and c > Wx , it is enough to show

that K is Ni-simple.
Whenever we form a join \J X = a in some R,, we can take a countable

subset Xx of X with V Xx — a , and dually. So in the proof that K is complete-

simple (see §5), all the applications of the complete Substitution Property could

be replaced by applications of the Ni -Substitution Property. Therefore, K is

Ni-simple.
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Finally, one can argue that by carefully choosing the function g , the lattice

K is self-dual. It is much simpler, however, to verify (2) by observing that

((K - {0*, \K}) x (K - {0*, 1*})) U {0,1},

where K is the dual of K, is self-dual, and satisfies all the requirements of

Theorem'.
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