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Abstract. We derive a generalized collar lemma, called the stable neighbor-

hood theorem, for nonsimple closed geodesies. As an application, we show that

there is a lower bound for the length of a closed geodesic having crossing number

Ac on a hyperbolic surface. This lower bound only depends on k and tends

to infinity as k goes to infinity. Also, we show that the shortest nonsimple

closed geodesic on a closed hyperbolic surface has (geometric) crossing number

bounded above by a constant which only depends on the genus.

0. Introduction

It is well known that a simple closed geodesic on a hyperbolic surface has a

collar neighborhood whose width only depends on the length of the geodesic [Bu,

Ha, K, M, Ma, R]. In this paper, we derive a type of generalized collar lemma

(the stable neighborhood theorem) for closed geodesies with self-intersection.

The notion of a collar is replaced by the concept of a stable neighborhood

about a closed geodesic. The stable neighborhood theorem says that a closed

geodesic on a hyperbolic surface has a stable neighborhood whose width only

depends on the length of the closed geodesic.

Hempel, Nakanishi, and Yamada [He, N, YI, Y2] have shown that there
is a universal lower bound for the length of a nonsimple closed geodesic on a

hyperbolic surface. As a consequence of the stable neighborhood theorem, we

show that in fact one can improve this lower bound (Corollary 1.2) by knowing

the crossing number of the closed geodesic.

Finally, using a theorem of Bers on pants decompositions of Riemann sur-

faces, we show that the number of crossings of the shortest closed geodesic with

at least Ac-fold crossings on a closed hyperbolic surface is bounded from above

by a constant depending only on Ac and the genus of the surface.
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1. Statement of results

The neighborhood of width d, Ud(co), about a geodesic co in a hyperbolic

surface is the set of all points within a distance d from the geodesic. Suppose

co is a closed geodesic. Then the neighborhood Ud(co) is said to be stable if

for any two connected (smooth) lifts of co, say cox and co2, we have

coxr\co2^ 0   if and only if   U<i(cox) n Ud(co2) / 0.

Clearly a closed geodesic has stable neighborhoods for sufficiently small

widths (which depend on the hyperbolic structure of the surface). Our interest

is in finding stable neighborhoods whose widths depend only on the length of

the geodesic and not on the underlying hyperbolic structure of the surface.

We associate to each closed geodesic co of length I — t(co) the function,

c(co) = c(l) = logcoth(*/4).

Theorem 1.1 (The stable neighborhood theorem). A closed geodesic of length £

on a hyperbolic surface has a stable neighborhood of width c(£). Furthermore,

two disjoint closed geodesies cox and co2 on the surface having lengths £x and

l2 have disjoint stable neighborhoods ofi widths c(tx) and c(t2), respectively, if

cox and co2 are separated by a disjoint union of simple closed geodesies.

We remark that the separation condition in the first part of the theorem is

necessary. For example, a pair of pants has closed geodesies that get arbitrarily

close to any fixed boundary geodesic. Of course, the crossing numbers of these

closed geodesies get arbitrarily large as they get closer to the boundary geodesic.

Thus the width of the stable neighborhood must take into account the crossing

number of the other closed geodesic.

Corollary 1.2. There exists an increasing sequence Mk (for k = 1,2,3,...)

tending to infinity so that if co is a closed geodesic with self-intersection number
k, then £(co) > Mk . Thus the length of a closed geodesic gets arbitrarily large

as its self-intersection gets large.

It is well known that the shortest closed geodesic on a hyperbolic surface

which is not a thrice punctured sphere is simple. In other words, it has crossing

number zero. Furthermore, the length of the shortest closed geodesic on a

hyperbolic surface of genus g is bounded from above by a constant which

only depends on the genus of the surface (see [Ber]). Following these lines,

we let sk(S) be the length of the shortest closed geodesic with at least Ac-fold

intersection on the hyperbolic surface S. We are interested in upper bounds

(depending only on topological data) for the lengths of these short geodesies.

Proposition 1.3. There are constants Nk (g), depending only on the crossing num-

ber of the geodesic and the genus ofi the surface, so that the shortest closed geodesic

with at least k-fiold intersection on a surface of genus g has length bounded from

above by Nk(g).

Peter Buser has asked whether the shortest nonsimple closed geodesic on a

hyperbolic surface has only one self-intersection. As an elementary consequence

of Corollary 1.2 and Proposition 1.3, we have

Corollary 1.4. Suppose ys is the shortest closed geodesic with crossing number

at least k on the hyperbolic surface S of genus g .  Then the crossing number
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of Is is bounded from above by a constant which only depends on k and g. Of

course, for k = 0 we know that the upper bound can be taken to be zero.

The author wishes to thank Peter Buser, Jozef Dodziuk, Darryl McCullough,

Burton Randol, and Mark Thornber for helpful suggestions in the preparation of

this manuscript, and also the referee for pointing out that the original definition

of stable neighborhood was not correct.

2. Basics and notation

The reader is referred to the paper [Ba] for most of the basic definitions

involved. In this paper, we use d(-, •) to denote hyperbolic distance in the

hyperbolic plane.
In order to prove the above theorems we need to define some words. A

fuchsian group is a discrete subgroup of orientation preserving isometries of the

hyperbolic plane H2 . The quotient of the hyperbolic plane by a fuchsian group

is a hyperbolic surface. A hyperbolic surface (and the group representing it) is

said to be a pair of pants if it is topologically a thrice-punctured sphere.

Let T1 be the unit circle and suppose co : T1 -»5 is a (parametrized) closed

geodesic on the hyperbolic surface S. Define the crossing (or self-intersection)

number of co to be the number of transverse intersections that co makes with

itself.
The action of the isometries on the hyperbolic plane extends to the circle at

infinity. An isometry having two fixed points on the circle at infinity is known

as a hyperbolic element. The axis of a hyperbolic element is the unique geodesic

in the hyperbolic plane joining the fixed points. We use A(y) to denote the axis

of y. The translation length of y, denoted t(y), is the hyperbolic distance that

a point on A(y) is moved. We will use the same notation for the length of a

closed geodesic on the surface.

Suppose y and fi are hyperbolic elements having disjoint axes. We say that

y and fl are standard generators for a pair of pants G if

(1) y and fi generate a torsion-free fuchsian group which represents a pair

of pants;

(2) after possibly changing the orientations of y and /? so that their axes

are oriented to the right of each other, y , ft, and fly are primitive boundary

elements of G, each representing different boundary components of the pair of

pants.
The main tool in the following arguments is the pair of pants theorem [Ba],

which states that y and /? are standard generators for a pair of pants if and

only if c(y) + c(P) < d, where d is the distance from the axis of y to the axis

of p.

3. The proofs of Theorem 1.1 and Corollary 1.2

In order to prove Theorem 1.1 we need the following lemma, which appears

in the proof of a proposition in [GM, p. 19].

Lemma 3.1. Two hyperbolic elements with equal translation lengths having dis-

joint axes in a torsion-free fuchsian group form standard generators for a pair of

pants.
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For the reader's convenience, we supply the proof.

Proof. Without loss of generality, we can normalize the hyperbolic elements

and call them fi and y, as in Figure 1. Now, as usual, embed the group (fi , y)

as an index two subgroup of the reflection group (ox, o2, o$). Thus y = a2ax

and fi = oio2. The pair (y, fi) will be standard generators for a pair of pants

if and only if the cr,-reflection circles bound a free polygon (see [Ba] for the

details).
If fiA(y) n A(y) ^ 0, this means that the ^-reflection circle must intersect

A(y). Then either the o^-reflection separates a2 from di or the ox reflection

circle intersects A(fi). Note that the reflection circles cannot intersect since
this would introduce torsion into the original group. Let z be the intersection

point between A(y) and the (73-reflection circle. Now, if the er3-reflection circle

separates then (Figure 1)

^ = d(o2, <73) < d(o2, z) <d(o2,ox) = e-^,

where the first inequality follows from the fact that the common orthogonal

between two geodesies realizes the minimum distance between any two points

on the geodesies. This clearly contradicts our assumption that t(y) = £(fi).

If, on the other hand, the ax-reflection circle intersects A(fi) then the same

argument as above works by considering the distance Hp = d(ox, o2). Thus

the cr,-reflection circles must bound a free polygon and hence are standard

generators for a pair of pants.   □

Suppose co is a closed geodesic on the hyperbolic surface S. Fix a lift fi of

the geodesic co. Consider the region £% of points in the hyperbolic plane that

are a distance less than c(co) from the axis A(fi). That is,

3? = {z eM2\d(z, A(fi)) < c(co)}.

We claim that this projects to S as a stable neighborhood of co.

Proof ofi Theorem 1.1. Let G be the fuchsian group representing the hyperbolic

surface 5. We first would like to show that co has a stable neighborhood

of width c(co).  Consider the region 3$ constructed above and suppose that
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g&l x-\£% ± & for some g e G. We claim that gA(fi) n A(fi) ^ 0. To see

this, consider the hyperbolic elements fi and gfig~x and suppose that the

^-translate of A(fi) does not cross A(fi). Then since the translation length

of fi equals the translation length of its conjugate gfig~x , by Lemma 3.1,

(/? > gP8~x) are standard generators for a pair of pants. Hence

2c(co) = c(fi) + c(gfig~x) < d(A(fi), A(gfig~x)),

contradicting our assumption that gf% C\3l ^ 0. Thus, gA(fi)C\A(fi) ^ 0.
This implies that the region & projects to the desired stable neighborhood.

Now, suppose cox and co2 are disjoint closed geodesies which are separated

by simple closed geodesies. If the stable neighborhoods of these geodesies over-

lap, then we can find lifts y and fi to the fuchsian group G so that the length

d of the common orthogonal between them satisfies d < c(y) + c(fi) . On

the other hand, since the orthogonal from the axis A(y) to the axis A(fi) must

intersect the axis of a simple hyperbolic in G, it must be that fiA(y)\~\A(y) - 0

and yA(fi) n A(fi) = 0 . This implies that (y, fi) are standard generators for

a pair of pants and hence, by the pair of pants theorem, c(y) + c(fi) < d. This

is clearly a contradiction.   □

Before we prove Corollary 1.2, we need a couple of lemmas.

Lemma 3.2. There exists a decreasing function A = A(£) depending only on £

and tending to zero so that if co is any closed geodesic on a hyperbolic surface of

length £ , then any geodesic loop contained in co has length bigger than A. In

other words, any segment in co of length less than or equal to A(£) is embedded.

Proof. Suppose cox is a geodesic loop in co, and let co2 be the other geodesic

loop so that co = cox U co2. Using Theorem (8.3.1) of [Bea] we have

£(cox) > 2sinh_1 [   . , „.—— ) > 2sinh~' [.,,.„) ,
v   "- \smh£(co2)/2J \smht/2J

where the last inequality follows from the fact that co2 is shorter than co.

Setting A to be this last term yields the lemma.   □

Lemma 3.3. Suppose fi is a closed geodesic of length £ on a hyperbolic surface

S having at least one self-intersection. There exists a decreasing function B =

B(£), depending only on £ and tending to zero so that if I and J are any

two embedded compact segments in fi having disjoint interiors and common

endpoints, then either

£(I)>B   or   £(J)>B.

Proof. Set S - H2/C7 and label the common endpoints z and w . Observe

that / and J cannot meet smoothly at both z and w , since that would force

the geodesic co to be simple. Also, if / and J meet smoothly at one point

and not the other then I \J J is a loop in co and hence by Lemma 3.2 either

1(1) > A/2 or £(J) > A/2 . Thus set B to be A/2 in this case.
From now on assume that the intersections at z and w are not smooth.

Then in H2 , there exists a triple of distinct geodesies (Lx , L2, Ly) each one the
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axis of a hyperbolic element in G representing fi (these elements are conjugate

in G) satisfying:

(1) Lx r\L2 = zx is a lift of z .
(2) L2 n L3 = wx  is a lift of w with the line segment from  zx  to W\

covering J.

(3) There exists a point w2 e Lx so that the line segment from zx to w2

covers /.

(4) There exists g e G taking L3 to Li with g(wx) = w2.

Now if L, n L3 = 0 , then we have

l(J) = d(zx ,wx)>s> 2c(£),

where 5 is the orthogonal distance from L2 to L3 and the last inequality

follows from the stable neighborhood theorem.

Next if Lx n L3 ^ 0, let x be this intersection point. There are two cases

to consider.
The first case is if the distances d(x, zx) and d(x, wx) are both less than or

equal to A/A, where A is the constant in Lemma 3.2. Since the segment from

x to g(x) forms a loop in fi by Lemma 3.2, we have

A < d(x, g(x)) <d(x, zx) + d(zx, g(wx)) + d(g(wx), g(x))

<A/A + A/A + d(zx,g(wx)).

Hence, we can conclude that £(I) > A/2.
The other case to consider is that either the distance d(x, zx) > A/A or

d(x, wx) > A/A. First, observe that Theorem 11.6.8 of [Bea] says that there is

a positive lower bound to the angle of intersection at x between Lx and L3;

moreover, this lower angle bound only depends on £ , the length of fi . Now in
either case, using the appropriate hyperbolic sine rule coupled with our lower

angle bound yields a lower bound D = D(£) for either 1(1) or £(J).

To finish the proof, set B = min(/t/2, 2c(£), D) and note that B is decreas-

ing since A(£), c(£), and D(£) are decreasing functions of £ .   O

Proof oj Corollary 1.2. Suppose co has crossing number Ac . Cut co into n

segments each of length B(£)/2 except possibly for one segment whose length

is smaller than B(£)/2 . In any event,

If Ac < aj , then applying inequality (3.4) we get that

(3.5) £>(^jB(£).

Next suppose k > n . Then there must be a segment containing k/n cross-

ings. Since, by Lemma 3.3, each crossing in this segment contributes at least

B(£)/2, we have
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Using inequality (3.4) and solving the above inequality for £ we have

Finally, let xk and yk be the unique fixed points of the right-hand sides of

(3.5) and (3.6), respectively. Setting Mk = min(xj., yk), it is easy to see that

this sequence is increasing and tends to infinity with ac .   □

4. The proofs of Proposition 1.3 and Corollary 1.4

The space Jf of all hyperbolic metrics (structures) on a sphere with three

holes can be parametrized by three nonnegative real numbers which describe

the lengths of the three ordered boundary geodesies (see Abikoff [A] for the

particulars). If co is a free homotopy class of a closed curve on a hyperbolic

surface S, we will denote the length of the geodesic in the free homotopy class

of co with respect to the ^-metric by £s(co). We will say that a pair of pants

is e-thin if the lengths of all three of its boundary geodesies are at most £ . We

first need the following lemma about e-thin pants.

Lemma 4.1. Let co be a closed curve on a sphere with three holes. Then the

geodesic length function £p(co) is a continuous function of Jf and, furthermore,

given e > 0 there is a constant B(e, co), depending only on e and the free

homotopy class ofi co, so that

£P(co) <B(e, co)

jor all e-thin pairs ojpants P.

Prooj. Let yx, y2, and y3 be the boundary curves on a sphere with three holes.

The space of hyperbolic structures Jf (note that we include punctures) can be

parametrized by

■* = {(*\, h, h) e R\ u {0}\£(yx) = ix, t(y2) = h, HVi) = h).

It is well known that the geodesic length function £p(co) is a continuous
function on Jt . The set of e-thin pairs of pants form the subset

TE = {(£x,£2,£3)eRlu{0}\£x,£2,£3<s}.

Te  is clearly compact in Jt, and hence lp(to)  has an upper bound as de-

sired.   □

Proof oj Proposition 1.3. Suppose S is a closed surface. Bers [Ber] showed that

there exists a constant depending only on the genus, so that any surface of genus

g has a pants decomposition where the lengths of all the boundary geodesies of

the pairs of pants are bounded by this constant. We call this constant the Bers

constant and denote it by Lg .

Using the Bers constant, it is elementary to see that there is an upper bound on

sk(S), depending only on the genus of the surface; namely, for each hyperbolic

surface there is an embedded Lg-thin pair of pants. Pick a free homotopy

class co having Ac-fold intersection number in a sphere with three holes and

observe that its length on an Lg-fhin pair of pants, by Lemma 4.1, is bounded

by a constant depending only on Lg and, hence, only on the genus of the

surface.   □
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Proof of Corollary 1.4. Suppose ys is the shortest closed geodesic with inter-

section number at least ac on the hyperbolic surface S of genus g. We have

seen, by Proposition 1.3, that there is an upper bound Nk(g) so that

(*) tsiVs) < Nk(g).

Now, we also know from Corollary 1.2 that the length of ys gets arbitrarily

large with its self-intersection number. Putting this fact together with inequality

(*) tells us that there is an upper bound, which only depends on ac and g, to

the number of self-intersections of ys . In fact, the number

n(k,g) = inf{je^:MJ>Nk(g)]

serves as an upper bound, where the Mj's are the constants in Corollary 1.2.   □
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