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LINEAR TRANSFORMATIONS PRESERVING POTENT MATRICES

MATEJ BRESAR AND PETER SEMRL

(Communicated by Maurice Auslander)

Abstract. Linear transformations of Mn , the algebra of nx n matrices over

C , which preserve the set of all potent matrices, are characterized.

Let M„ be the algebra of aj x aj matrices over a field. A number of authors

have characterized linear transformations 8 on M„ which preserve some sub-

sets T of Mn (i.e., d(Y) C T). Let us list some examples of such subsets: the

case when Y is the set of all singular matrices was considered by Dieudonne

[3]; Y = {A e Mn\rankA < 1} by Jacob [7] and Marcus and Moyls [9]; r
is a linear group by Dixon [4]; and Y is the set of all nilpotent matrices by

Botta, Pierce, and Watkins [1]. In a recent paper [2], motivated by a problem

of characterizing local automorphisms and local derivations of some operator

algebras (see, e.g., [8]), the present authors considered the case when Y is the

set of all projections in M„ . In this paper, we consider a more general situ-

ation; namely, we deal with linear transformations preserving potent matrices

(recall that a matrix A is said to be potent if Ar = A for some integer r > 2).

The set of all potent matrices will be denoted by 7Z. For any integer r > 2 we

define nr = {A e M„\Ar = A} . By A1 and tr(,4) we denote the transpose and

the trace of A , respectively. The aim of this paper is to prove the following

Theorem. Let M„ be the algebra ofi n x n matrices over the complex field C,

and let 6^0 be a linear transformation on Mn . The following conditions are
equivalent.

(i) d(n) Cn.

(ii)  There exists an integer r>2 such that 0(nr) c nr.

(iii) 6 is either ofi the form

d(A) = cUAU~l    or   6(A) = cUA'U-x,

where U € Mn is an invertible matrix and c e C is a root of unity.

Proof. It is clear that (iii) implies (i) and (ii). We shall prove the converse

implications.
First, assume that 6(nr) c nr for some r > 2, and let us show that (iii)

holds.   Let P, Q e Mn be orthogonal projections (i.e., P2 = P, Q2 = Q,
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and PQ = QP = 0). Let Xx, X2, ... , Xr-X be (r - l)-roots of unity, and note
that P + XjQ £ nr, i = 1,2, ... , r — 1. By the assumption it follows that
6(P + XjQ)r = d(P + XjQ); that is,

(A + XjB)r = A + XjB,

where A = 6(P) and B = 8(Q). As Ar = A and Br = B (namely, P and Q

belong to nr), this relation can be written in the form

XiCi+X]C2 + --- + Xr-xCr-X =0,        /= 1,2.r- 1,

where
Ci = A'-XB + Ar~2BA + ■■■ + ABAr~2 + BAr~x,

C2 = Ar~2B2 + Ar~3BAB + ■■■ + B2Ar~2 ,

Cr-X = ABr~x + BABr~2 + ■■■ + Br~2AB + Br~xA.

Since the A,-'s are nonzero and mutually different, it follows that Cx - C2 -

■■■ = Cr-1=0; thus, in particular,

Ar~xB + Ar~2BA + ■■■ + ABA'-2 + BAr~x = 0.

Multiply this relation first from the left by A and then from the right by A .
Comparing the two relations so obtained and using Ar = A , we get that A and
B commute. Hence Ar~xB = 0 and, therefore, AB = A'B = 0.

Thus, we proved the following: If P and Q are orthogonal projections then

e(P)6(Q) = d(Q)6(P) = 0. Now pick a selfadjoint matrix 5. There exist mu-

tually orthogonal projections Px, P2, ... , Pn and real numbers tx,t2, ... ,tn

such that 5 = £JL,/</»/. Since e(Pl)6(Pj) = d(Pj)d(Pj) = 0, / / j, and
9(Pi)r = 6(Pi), it follows that

e(sr) = Yjtrld(p,) = B(sy.
7=1

Set K = 6(1). In the relation d(Sr) = d(S)r, replace S by S + tl, where t is
a real number. Then we get

6(Sr) + rtd(Sr~x) + ■■■ + (r(r - l)/2)tr~2d(S2) + rtr~xd(S) + trK

= e((s + tiy) = (6(S) + tKy

= e(sy + t(0(sy-lK + d(sy-2K6(S) + ■■■ + K6(sy-[)

+ ■■■ + tr~2(d(S)2Kr-2 + d(S)K6(S)Kr-3 + ■■■ + Kr~26(S)2)

+ f-x(d(S)Kr-x + K6(S)Kr~2 + ■■■ + Kr~xd(S)) + trKr.

Comparing the coefficients at f~' , we obtain

rd(S) = 6(S)Kr~x + K0(S)Kr~2 + ■■■ + Kr~x6(S).

Multiplying this relation first from the left by K and then from the right by K
and using Kr = K , it follows that 6(S)K = K6(S). Consequently, comparing

the coefficients at f~2, we arrive at

d(S2) = Kr~29(S)2,
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where S is an arbitrary selfadjoint matrix. Define a transformation tp on M„

by
<p(A) = Kr~29(A).

For a selfadjoint S G M„ we then have

cp(S2) = Kr~29(S2) = K2r~*9(S)2,

and, since 8(S) commutes with K,

cp(S)2 = (Kr-26(S))2 = K2r-46(S)2.

Thus tp(S2) = <p(S)2 . Replacing S by S + T, where S and T are selfadjoint,

we then get
<p(ST+TS) = <p(S)tp(T) + tp(T)tp(S).

Since every X c Mn can be written in the form X - Sx + iS2 with Si, S2

selfadjoint, it follows that

cp(XY + YX) = cp(X)cp(Y) + cp(Y)cp(X)

holds for all X, Y G M„ ; thus, cp is a Jordan homomorphism. We claim

that either cp is nonsingular or tp = 0. Indeed, Ker tp is a Jordan ideal (i.e.,

Ker tp is a linear subspace such that A G Ker 9) implies /LY + .JM G Ker cp for

every X G Af„), but then Ker^ = M„ or Kerp = {0} (cf. [6, Theorem 1.1]).
Suppose cp = 0. Then we have 0 = cp(I) = Kr~2d(I) - Kr~x and, therefore,

K = Kr = 0. We showed that for any projection P we have 6(P)6(I - P) = 0,

S0i\=0 gives 0(F)2 = 0, and thus 0(F) = d(P)r = 0. Since every matrix

can be written as a linear combination of projections, it follows that 9 = 0,

contrary to the assumption. Thus cp ̂  0, so tp is nonsingular; but then tp is

either an automorphism or an antiautomorphism [6, Theorem 3.1]. It is well

known that in the first case it is of the form cp(A) = UAU~X for some invertible

U in M„ , and in the second case, tp(A) = UA'U~X .

Recall that <p(A) = Kr~29(A). As cp is nonsingular, 9 must be nonsingular,

too. We proved that K commutes with 9(S) for every selfadjoint matrix S;

this clearly yields that K commutes with 9(A) for any A G Mn . Since 9 is
nonsingular, it follows that K = cl for some c e C. Using Kr = K and K ± 0

we get cr~x = 1 ; hence, 9(A) = ctp(A). The proof of the assertion that (ii)

implies (iii) is thereby completed.

Now we come to the central part of the proof; namely, we shall prove that

(i) implies (iii). Let us first point out two simple observations which will be

used repeatedly. A matrix A is potent if and only if A is diagonable and its

eigenvalues are either roots of unity or 0. Therefore, every upper triangular

matrix with mutually different roots of unity on the diagonal is potent.

We divide the proof into eight steps.

Step 1. If N G M„ is nilpotent then 9(N) is nilpotent.

Proof of Step 1. There exists an invertible S e M„ such that SNS~X is strictly

upper triangular. Let R be a diagonal matrix with mutually different roots of

unity on a diagonal. Then R + aSNS~x is a potent matrix for any a g C.

Therefore, the same is true for matrices Rx+aN, a e C, where R1 = S~xRS;

that is, for any a e C there exists an integer nn > 2 such that

(9(Rx) + a9(N))"" = 9(Rx) + a9(N).
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Clearly, there exists an integer «o > 2 such that

(9(RX) + a9(N))n° = 9(RX) + a9(N)

holds for infinitely many a, but then this must be fulfilled for every a G C;

thus, we have

9(N)"<>=   lim (a-x9(Rx) + 9(N))"°
\a\—»oo

=   lim (a-'">9(Rx) + a-no+x9(N)) = 0.
\a\—*oc

Step 2. There exists ceC such that tr(9(A)) = ctr(A).

Proof ofi Step 2. It is easy to see that the linear span of all nilpotent matrices is

the space sl„ of matrices with trace zero (namely, denoting by E, j the matrix

whose only nonzero entry is 1 in a position (i, j), we see that the nilpotent

matrices Etj and Eu+Ejj-Eji-Ejj for i^ j span sl„). In view of Step l,we

then have 0(sl„) Q sl„ . Since for any A e Mn the matrix A-(tr(A)/n)I belongs

to sl„ , it follows that tr(0(,4 - (tr(A)/n)I)) = 0; that is, tr(0(^)) = ctr(A),
where c = tr(9(I))/n .

Step 3.  9(1) ̂ 0.

Proof of Step 3. Suppose 9(1) = 0. Let P he a projection. Since I — P and

/ - 2F are both potents, it follows that -9(P) = 9(1 - P) and -20(F) =
9(1 - 2P) are potents too; but, then 0(F) = 0. Since the linear span of all

projections is Mn , it follows, contrary to the assumption, that 0 = 0.

Step 4. If A G Tr and A £ 0, then 9(A) # 0.

Proof of Step 4. Since A e n , we have A = R(2Z'i=i hEu)R~x , where 1 < Ac <
aj , A,'s are roots of unity, and R is an invertible matrix. Suppose that 8(A) =

0. Obviously, for any i £ {1,2, ... , k} the matrices A - R(XiEu)R~x and
A - 2R(XiEu)R~x are potents, and, therefore, -0(R(A/F,,)i?_1) and
-29(R(XiEu)R-x) are potents as well; but, then 0(JR(A,F„)R-1) = 0. Thus,

we proved that 0(RF,,i?-1) = 0 for every i e {1, 2, ... , k} .
Now pick j G {Ac + 1,...,«}. The matrices R(EXX + EXj)R'x and

R(En + Eji)R~x are projections, so it follows that 8(R(EXX + EXj)R~x) =

8(REijR~x) and 8(REjXR-x) are potents; however, as REXjR-x and REjXR'x

arenilpotents, 8(REXjR~x) and 6(REjXR~x) are nilpotents too (Step 1). Thus,

d(REijR~x) = 8(REjiR-x) = 0. Since R(Exx-EXj+EjX-Ejj)R-x is nilpotent,

we have that

8(R(EU - EXJ + EJX - Ejj)R-x) = -8(REnR-x)

is nilpotent; however, 8(REjjR'x) is also a potent since REjjR~x is a potent;

hence, 8(REjjR~x) = 0. Thus we proved that 8(REuR-x) = 0 for every

i e {1, 2, ... , n} , which clearly contradicts the assertion of Step 3.

Step 5. If N is a nilpotent and N ^ 0, then 8(N) / 0.

Proof of Step 5. It can be easily shown that there exists a nilpotent matrix M

such that M + N is a nonzero potent (for instance, if N = Ex2 + E2y + ■■■ +

Eiy._Xji, then these conditions are satisfied by M = E^x ; a general case then
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follows by using a Jordan form of N). Thus 6(M + N) is a nonzero potent

by Step 4; hence, 8(N) cannot be zero, for otherwise it would follow that

8(M + N) = 8(M) is a nilpotent (Step 1).

Step 6. Let Q be the algebra of upper triangular matrices. There exists an

invertible matrix T such that 0(Q) C TYlT~x .

Proof of Step 6. Let Qo be the algebra of strictly upper triangular matrices. Qo

is the space of nilpotents and its dimension is n(n - l)/2; by Steps 1 and 5,

the same is true for 0(Qn). Therefore, by a result of Gerstenhaber [5] there

exists an invertible T G Mn such that 0(Qn) = TQ,0T~X . The assertion will be

proved by showing that 0 maps diagonal matrices into the space FQF_1;thus,

we must show that T~X8(A)T is an upper triangular matrix for any diagonal

matrix A . It suffices to consider the case when A is potent and its entries are

mutually different (namely, the set of such matrices spans the space of diagonal

matrices). For any iV e i)0 we have A + N e n. Hence 8(A) + 8(N) G
n, so T~X8(A)T + T~X8(N)T G n. Since N is an arbitrary matrix in Qo

and 0(QO) = FQoF"1 , it follows that T~X8(A)T + Q0 c n . Using standard

arguments one shows that this implies that the matrix T~X8(A)T is upper

triangular.

Step 1.  8(1) = cl, and c is a root of unity.

Proof of Step 7. Define a: M„ -> Mn by a (A) = T~X6(A)T. Obviously, a
preserves potents, and, by the previous step, er(Q) C Q.

Pick integers i, j, 1 < /, j < n, i ^ j. Since Eu , Ejj, F„ + Ejj,
and Eu - Ejj are potent and upper triangular matrices, the same is true for the

matrices Aj = o(Ea), Aj = ct(Ejj) , Aj + Aj, and Aj-Aj. Thus, their diagonal
entries are either roots of unity or zero. This clearly yields that A, and Aj
cannot simultaneously have nonzero entries in positions (ac , Ac), 1 < k < n .

However, since the Afs are nonzero potents, each of them has at least one

nonzero entry on a diagonal; thus, it has exactly one. By Step 2 it follows that

this entry equals c for any i. Thus, we proved that for any i e {1,2, ..., n]
there exists an integer ac(a') g {1, 2,... , n) and a matrix A/, g Qo such that

o(Ejj) = cEktj),£(,) + Nj. Note also that ac(a') ̂ k(j) if i ■£ j. Hence,

o(I) = a \\J2E") = I>£*(0.k<0 + NA = cI + N>
\i=l        / 1=1

where N g Qo . Since o(I) is potent, it follows easily that N = 0 and c is a

root of unity. Finally, note that a (I) = cl implies 0(7) = cl.

Define a mapping xp: M„ -» Mn by x//(A) = c~x8(A). As we have proved

that (ii) implies (iii), the proof of the theorem will be complete by showing that

xp(n2) c n2. Thus, our last step is

Step 8.   xp preserves projections.

Proof of Step 8. By Step 7, xp(I) = / and xp preserves potents. Pick a projection

F, and let us show that xp(P) is a projection. Since y/(P) is a potent, it suffices

to show that an arbitrary eigenvalue X of xp(P) is either 1 orO. Since F, I-P,

and I - 2P are potents, xp(P), I - xp(P), and / - 2xp(P) are potents too, so
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it follows that each of the numbers X, 1 - X, and 1 — 2A is either a root of

unity or zero. The only two possibilities are that X is either 1 or 0. The proof

is thus complete.
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