SUBSPACES AND GRAPHS

KIN YAN CHUNG

(Communicated by Palle E. T. Jorgensen)

Abstract

Subspaces sufficiently near an arbitrary (fixed) subspace of a Hilbert space are shown to be in one-to-one correspondence with operators defined on the given subspace. Specifically, the nearby subspaces can be regarded as the graphs of these operators. This is applied to explicitly define a C^{∞}-atlas of charts for the set of subspaces.

1. Introduction

Given (real or complex) Hilbert spaces H and K, let $\mathscr{L}(H, K)$ denote the Banach space of (bounded linear) operators $T: H \rightarrow K$; we write $\mathscr{L}(H)$ for $\mathscr{L}(H, H)$. If $T \in \mathscr{L}(H, K)$, let $G(T)$ be the graph of T; thus

$$
G(T)=\{(x, T x) \in H \oplus K: x \in H\}
$$

Throughout, H is assumed to be a Hilbert space and we denote inner products by $\langle\cdot, \cdot\rangle$. (Orthogonal) projection onto a (closed linear) subspace M is denoted P_{M}. By identifying subspaces with projections, we can induce various topologies on the set $\mathscr{C}(H)$ of subspaces of H. Let us metrise $\mathscr{C}(H)$ by referring to the norm topology on $\mathscr{L}(H)$.

The present work concerns the relation of subspaces to a fixed subspace M by taking graphs of operators in $\mathscr{L}\left(M, M^{\perp}\right)$. The identification of H with the Hilbert direct sum $M \oplus M^{\perp}$ allows us to view such graphs as subspaces of H. This problem is studied by Halmos in [2], where only subspaces in "generic position" are considered. We consider the problem more generally, showing that a subspace N is the graph of an operator in $\mathscr{L}\left(M, M^{\perp}\right)$ if and only if $\left\|P_{N}-P_{M}\right\|<1$.

Let $T \in \mathscr{L}\left(M, M^{\perp}\right)$. Then

$$
G(T)=\{S x: x \in M\}=S M
$$

where S is the invertible operator in $\mathscr{L}(H)$ defined by $S x=x+T P_{M} x$. The theory developed by Longstaff [4,5] is applicable here. For our purposes, it is more convenient to think of $G(T)$ as the range of the operator $1+T$ in $\mathscr{L}(M, H)$ defined by $(1+T) x=x+T x$, so we shall write $(1+T) M$ for $G(T)$.

2. The main result

Before proceeding to prove our main result, we need a preparatory lemma.
Lemma 1. Let M be a subspace of H and let $T \in \mathscr{L}\left(M, M^{\perp}\right)$. Put $N=$ $(1+T) M$. Then

$$
\left\|P_{N}-P_{M}\right\|^{2} \leq \frac{\|T\|^{2}}{1+\|T\|^{2}}
$$

Proof. It is easily verified that relative to the Hilbert direct sum $H=M \oplus M^{\perp}$,

$$
N=\{(x, T x): x \in M\}, \quad N^{\perp}=\left\{\left(-T^{*} y, y\right): y \in M^{\perp}\right\} .
$$

Let $(x, y) \in M \oplus M^{\perp}$. Then $P_{N}(x, y)=(u, T u)$ and $P_{N^{\perp}}(x, y)=$ $\left(-T^{*} v, v\right)$ for suitable $u \in M$ and $v \in M^{\perp}$. Since $P_{N}+P_{N^{\perp}}$ is the identity operator, it follows that $u-T^{*} v=x$ and $T u+v=y$. We have

$$
\begin{aligned}
\|(x, y)\|^{2} & =\left\|P_{N}(x, y)\right\|^{2}+\left\|P_{N^{\perp}}(x, y)\right\|^{2}=\|(u, T u)\|^{2}+\left\|\left(-T^{*} v, v\right)\right\|^{2} \\
& =\|u\|^{2}+\|T u\|^{2}+\left\|T^{*} v\right\|^{2}+\|v\|^{2} \leq\left(1+\|T\|^{2}\right)\left(\|u\|^{2}+\|v\|^{2}\right) .
\end{aligned}
$$

Now $\left(P_{N}-P_{M}\right)(x, y)=(u-x, T u)=\left(T^{*} v, T u\right)$, so if $(x, y) \neq 0$, then

$$
\left\|\left(P_{N}-P_{M}\right)(x, y)\right\|^{2}=\left\|T^{*} v\right\|^{2}+\|T u\|^{2}=\|(x, y)\|^{2}-\|u\|^{2}-\|v\|^{2},
$$

whence

$$
\frac{\left\|\left(P_{N}-P_{M}\right)(x, y)\right\|^{2}}{\|(x, y)\|^{2}}=1-\frac{\|u\|^{2}+\|v\|^{2}}{\|(x, y)\|^{2}} \leq 1-\frac{1}{1+\|T\|^{2}}=\frac{\|T\|^{2}}{1+\|T\|^{2}}
$$

Solving for u in the above proof leads to the following matrix representation for P_{N} relative to the decomposition $H=M \oplus M^{\perp}$:

$$
\left[\begin{array}{cc}
\left(1+T^{*} T\right)^{-1} & \left(1+T^{*} T\right)^{-1} T^{*} \\
T\left(1+T^{*} T\right)^{-1} & T\left(1+T^{*} T\right)^{-1} T^{*}
\end{array}\right] .
$$

Note the similarity of this matrix representation to the one given by Halmos in [2, p. 386]. We now classify all subspaces that are graphs of operators in $\mathscr{L}\left(M, M^{\perp}\right)$.

Theorem 1. Let M and N be subspaces of H. The following are equivalent:
(1) $\left\|P_{N}-P_{M}\right\|<1$.
(2) N and M^{\perp} are complementary $\left(N+M^{\perp}=H\right.$ and $\left.N \cap M^{\perp}=\{0\}\right)$.
(3) $\left.P_{M}\right|_{N}$ is injective and $P_{M} N=M$.
(4) $N=(1+T) M$ for some $T \in \mathscr{L}\left(M, M^{\perp}\right) ; T$ is unique and satisfies

$$
\|T\|=\frac{\left\|P_{N}-P_{M}\right\|}{\sqrt{1-\left\|P_{N}-P_{M}\right\|^{2}}}
$$

Proof. (1) implies (2): Suppose $\left\|P_{N}-P_{M}\right\|<1$ and let $x \in M^{\perp} \cap N$; if $x \neq 0$, then $\left\|P_{N}-P_{M}\right\| \geq\left\|\left(P_{N}-P_{M}\right) x\right\| /\|x\|=\|x\| /\|x\|=1$, a contradiction. Thus $N \cap M^{\perp}=\{0\}$.

Now $M \ominus P_{M} N \subseteq N \cap M^{\perp}$ (if $x \in M \ominus P_{M} N$ then $\langle x, y\rangle=\left\langle P_{M} x, y\right\rangle=$ $\left\langle x, P_{M} y\right\rangle=0$ for all $y \in N$), so $P_{M} N$ is dense in M.

If $x \in N$, then $\left(1-P_{M}\right) x=\left(P_{N}-P_{M}\right) x$, so

$$
\|x\|^{2}=\left\|P_{M} x\right\|^{2}+\left\|P_{M^{\perp}} x\right\|^{2} \leq\left\|P_{M} x\right\|^{2}+\left\|P_{N}-P_{M}\right\|^{2}\|x\|^{2},
$$

whence $\left\|P_{M} x\right\| \geq\|x\| \sqrt{1-\left\|P_{N}-P_{M}\right\|^{2}}$. Given a Cauchy sequence $\left\{P_{M} x_{n}\right\}_{n=1}^{\infty}$ in $P_{M} N$ with the $x_{n} \in N$, we see that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in N. Thus $x_{n} \rightarrow x$ for some $x \in N$, and then $P_{M} x_{n} \rightarrow P_{M} x \in P_{M} N$, so $P_{M} N$ is complete and therefore closed. Since $P_{M} N$ is dense in $M, P_{M} N=M$.

If $x \in H$, then $P_{M} x=P_{M} y$ for some $y \in N$ by the preceding result. Hence $x=P_{M} x+P_{M^{\perp}} x=y+P_{M^{\perp}}(x-y) \in N+M^{\perp}$, so $N+M^{\perp}=H$.
(2) implies (3): Suppose $\left.x \in \operatorname{ker} P_{M}\right|_{N}$. Then $x \in N$ and $x \in M^{\perp}$, whence $x=0$. Therefore $\left.P_{M}\right|_{N}$ is injective. Now let $x \in M$. Then $x=y+z$ for suitable $y \in N$ and $z \in M^{\perp}$. We have $x=P_{M} x=P_{M} y \in P_{M} N$, so $P_{M} N=M$.
(3) implies (4): Assuming (3), the Banach Inversion Theorem asserts that $\left.P_{M}\right|_{N}$ is invertible as an operator in $\mathscr{L}(N, M)$. Put $T=P_{M^{\perp}}\left(\left.P_{M}\right|_{N}\right)^{-1} \in$ $\mathscr{L}\left(M, M^{\perp}\right)$. Then

$$
(1+T) M=\left(P_{M}\left(\left.P_{M}\right|_{N}\right)^{-1}+P_{M^{\perp}}\left(\left.P_{M}\right|_{N}\right)^{-1}\right) M=1 N=N
$$

It is clear that T is unique since graphs of different operators in $\mathscr{L}\left(M, M^{\perp}\right)$ are different. To calculate the norm of T, we use the fact that if E is a subset of \mathbf{R} and f is a continuous increasing real-valued function defined on (the closure) \bar{E}, then $\sup f(E)=f(\sup E)$. For our application, $f(\xi)=\xi / \sqrt{1-\xi^{2}}$ and $E=\left\{\left\|\left(P_{N}-P_{M}\right) y\right\| /\|y\|: y \in H \backslash\{0\}\right\}$. Since $\sup E=\left\|P_{N}-P_{M}\right\|$,

$$
\begin{aligned}
\|T\| & =\sup \left\{\frac{\left\|P_{M^{\perp}}\left(\left.P_{M}\right|_{N}\right)^{-1} x\right\|}{\|x\|}: x \in M \backslash\{0\}\right\} \\
& =\sup \left\{\frac{\left\|P_{M^{\perp}} y\right\|}{\left\|P_{M} y\right\|}: y \in N \backslash\{0\}\right\} \\
& =\sup \left\{\frac{\left\|\left(P_{N}-P_{M}\right) y\right\| /\|y\|}{\sqrt{1-\left(\left\|\left(P_{N}-P_{M}\right) y\right\| /\|y\|\right)^{2}}}: y \in N \backslash\{0\}\right\} \\
& \leq \sup \left\{\frac{\left\|\left(P_{N}-P_{M}\right) y\right\| /\|y\|}{\sqrt{1-\left(\left\|\left(P_{N}-P_{M}\right) y\right\| /\|y\|\right)^{2}}}: y \in H \backslash\{0\}\right\} \\
& =\frac{\left\|P_{N}-P_{M}\right\|}{\sqrt{1-\left\|P_{N}-P_{M}\right\|^{2}}} .
\end{aligned}
$$

On the other hand, Lemma 1(2) yields the reverse inequality, so (4) follows.
(4) implies (1): By Lemma 1(2),

$$
\left\|P_{N}-P_{M}\right\| \leq \frac{\|T\|}{\sqrt{1+\|T\|^{2}}}<1
$$

Corollary 1. Let M and N be subspaces of H such that $\left\|P_{N}-P_{M}\right\|<1$. Suppose S is an operator in $\mathscr{L}\left(M, M^{\perp}\right)$ satisfying $(1+S) M \subseteq N$. Then $(1+S) M=N$.
Proof. Let $T \in \mathscr{L}\left(M, M^{\perp}\right)$ satisfy $(1+T) M=N ; T$ exists by Theorem 1. Hence $G(S) \subseteq G(T)$, but this holds if and only if $S=T$.

The condition of Theorem 1(1) should be viewed in terms of the following
Proposition 1. For any subspaces M and N of $H,\left\|P_{N}-P_{M}\right\| \leq 1$.
Proof. Let $U_{M}=2 P_{M}-1$ and $U_{N}=2 P_{N}-1$. It is easily verified that U_{M} and U_{N} are unitary operators (indeed, they are symmetries). Now $P_{N}-P_{M}=$ $\frac{1}{2}\left(U_{N}-U_{M}\right)$, so $\left\|P_{N}-P_{M}\right\|=\frac{1}{2}\left\|U_{N}-U_{M}\right\| \leq \frac{1}{2}\left(\left\|U_{N}\right\|+\left\|U_{M}\right\|\right)=1$.

3. An application

We conclude by defining the structure of a C^{∞}-manifold on $\mathscr{C}(H)$ that is compatible with the metric topology. Given a subspace M, Theorem 1 provides a homeomorphism between subspaces near M and operators in the Banach space $\mathscr{L}\left(M, M^{\perp}\right)$; this will be our chart map. We shall need a preliminary

Lemma 2. Let M be a subspace of H and let $T_{0} \in \mathscr{L}\left(M, M^{\perp}\right)$. Put $N=$ $\left(1+T_{0}\right) M$. Then there is a neighbourhood W of T_{0} such that for each $T \in W$ there exists an operator S in $\mathscr{L}\left(N, N^{\perp}\right)$ satisfying $(1+T) M=(1+S) N$. Specifically, if $\left\|T-T_{0}\right\|<\left\|T_{0}\right\|^{-1}$ and $\left\|P_{(1+T) M}-P_{N}\right\|<1$, then

$$
S=\left.\left(1-T_{0}^{*}\right)\left(1+T T_{0}^{*}\right)^{-1}\left(T-T_{0}\right) P_{M}\right|_{N}
$$

Proof. First put

$$
W=\left\{T \in \mathscr{L}\left(M, M^{\perp}\right):\left\|T-T_{0}\right\|<\left\|T_{0}\right\|^{-1} \text { and }\left\|P_{(1+T) M}-P_{N}\right\|<1\right\}
$$

The matrix representation following Lemma 1 shows that the map $T \mapsto P_{(1+T) M}$ is continuous, whence W is open.

Now $T_{0} T_{0}^{*}$ is a positive operator in $\mathscr{L}\left(M^{\perp}\right)$, so $1+T_{0} T_{0}^{*}$ is invertible. The functional calculus for positive selfadjoint operators yields $\left\|\left(1+T_{0} T_{0}^{*}\right)^{-1}\right\|^{-1}$ ≥ 1.

Suppose $T \in W$. Then $1+T T_{0}^{*} \in \mathscr{L}\left(M^{\perp}\right)$ and

$$
\left\|\left(1+T T_{0}^{*}\right)-\left(1+T_{0} T_{0}^{*}\right)\right\| \leq\left\|T-T_{0}\right\|\left\|T_{0}\right\|<1 \leq\left\|\left(1+T_{0} T_{0}^{*}\right)^{-1}\right\|^{-1}
$$

By a standard result (see, e.g., [1, pp. 584-585]), $1+T T_{0}^{*}$ is invertible.
Consider the Hilbert direct sum $H=M \oplus M^{\perp}$, and put

$$
S=\left.\left(1-T_{0}^{*}\right)\left(1+T T_{0}^{*}\right)^{-1}\left(T-T_{0}\right) P_{M}\right|_{N}
$$

Let $\left(x, T_{0} x\right) \in N$. Then $S\left(x, T_{0} x\right)=\left(-T_{0}^{*} y, y\right)$ where $y=\left(1+T T_{0}^{*}\right)^{-1}$ $\times\left(T-T_{0}\right) x \in M^{\perp}$. Thus $\left(1+T T_{0}^{*}\right) y=\left(T-T_{0}\right) x$ or, equivalently,

$$
T_{0} x+y=T\left(x-T_{0}^{*} y\right)
$$

Therefore,

$$
(1+S)\left(x, T_{0} x\right)=\left(x-T_{0}^{*} y, T_{0} x+y\right)=(z, T z) \in(1+T) M
$$

where $z=x-T_{0}^{*} y$. Hence $(1+S) N \subseteq(1+T) M$, so $(1+S) N=(1+T) M$ by Corollary 1.

For each subspace M of H, let

$$
V_{M}=\left\{K \in \mathscr{C}(H):\left\|P_{K}-P_{M}\right\|<\frac{1}{4}\right\} .
$$

By Theorem $1, N \in V_{M}$ if and only if $N=(1+T) M$ for some $T \in W_{M}$ where

$$
W_{M}=\left\{T \in \mathscr{L}\left(M, M^{\perp}\right):\|T\|<\frac{1}{\sqrt{15}}\right\}
$$

so we can define a map $\phi_{M}: V_{M} \rightarrow W_{M}$ by

$$
\phi_{M}((1+T) M)=T .
$$

Observe that ϕ_{M} is a homeomorphism.
The V_{M} cover $\mathscr{C}(H)$, and $\phi_{M}\left(V_{M} \cap V_{N}\right)$ is open for all subspaces M and N since $V_{M} \cap V_{N}$ is open. Suppose $V_{M} \cap V_{N} \neq \varnothing$. Then

$$
\left\|P_{N}-P_{M}\right\| \leq\left\|P_{N}-P_{K}\right\|+\left\|P_{K}-P_{M}\right\|<\frac{1}{2}
$$

for any $K \in V_{M} \cap V_{N}$. Thus $N=\left(1+T_{0}\right) M$ for some $T_{0} \in \mathscr{L}\left(M, M^{\perp}\right)$ satisfying $\left\|T_{0}\right\|<\frac{1}{\sqrt{3}}$. Let $K \in V_{M} \cap V_{N}$. Then $K=(1+T) M$ for some $T \in \mathscr{L}\left(M, M^{\perp}\right)$ with $\|T\|<\frac{1}{\sqrt{15}}$ and $\left\|P_{(1+T) M}-P_{N}\right\|=\left\|P_{K}-P_{N}\right\|<\frac{1}{4}<1$. Moreover,

$$
\left\|T-T_{0}\right\|<\frac{1}{\sqrt{15}}+\frac{1}{\sqrt{3}}<\sqrt{3}<\left\|T_{0}\right\|^{-1}
$$

so $K=(1+T) M=(1+S) N$ by Lemma 2 , where $S=\left(1-T_{0}^{*}\right)$ $\times\left.\left(1+T T_{0}^{*}\right)^{-1}\left(T-T_{0}\right) P_{M}\right|_{N}$. This holds for all $K \in V_{M} \cap V_{N}$ and hence for all $T \in \phi_{M}\left(V_{M} \cap V_{N}\right)$. Therefore, $\phi_{N} \phi_{M}^{-1}: \phi_{M}\left(V_{M} \cap V_{N}\right) \rightarrow \phi_{N}\left(V_{M} \cap V_{N}\right)$ is given by

$$
\phi_{N} \phi_{M}^{-1}(T)=\left.\left(1-T_{0}^{*}\right)\left(1+T T_{0}^{*}\right)^{-1}\left(T-T_{0}\right) P_{M}\right|_{N},
$$

which is a C^{∞} function. We have just proved
Theorem 2. The metric space $\mathscr{C}(H)$ is a C^{∞}-manifold with the structure defined by the atlas consisting of the charts $\left(V_{M}, \phi_{M}\right)$ for each $M \in \mathscr{C}(H)$.

In fact, $\mathscr{C}(H)$ is a complex analytic manifold, at least in the case where H is a finite-dimensional complex Hilbert space. The above C^{∞}-atlas is fundamental to Noakes's definition of stability of invariant subspaces in [6]: if $A \in \mathscr{L}(H)$ and M is an invariant subspace of A, then the pair (M, A) is stable if there is a C^{1} function $f: V \rightarrow \mathscr{L}\left(M, M^{\perp}\right)$ defined on an (open) neighbourhood V of A such that $f(A)=0$ and $(1+f(B)) M$ is B-invariant for each $B \in V$. The definition of stability simplifies to the requirement that a C^{1} function $g: V \rightarrow \mathscr{C}(H)$ exists such that $g(A)=M$ and $g(B)$ is B-invariant for all $B \in V$; in such a case, it is evident that the pair $(g(B), B)$ is stable for all $B \in V$.

Acknowledgments

The author wishes to thank Dr. Lyle Noakes and Professors Bill Longstaff and Heydar Radjavi for their helpful comments.

References

1. N. Dunford and J. T. Schwartz, Linear operators. I, Interscience, New York, 1957.
2. P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389.
3. S. Lang, Introduction to differentiable manifolds, Interscience, New York, 1962.
4. W. E. Longstaff, A note on transforms of subspaces of Hilbert space, Proc. Amer. Math. Soc. 76 (1979), 268-270.
5. \qquad Subspace maps of operators on Hilbert space, Proc. Amer. Math. Soc. 84 (1982), 195-201.
6. J. Noakes, Invariant subspaces and perturbations, Proc. Amer. Math. Soc. 114 (1992), 365370.
7. M. H. Stone, On unbounded operators in Hilbert space, J. Indian Math. Soc. 15 (1051), 155192.

Department of Mathematics, The University of Western Australia, Nedlands 6009, Australia

Current address: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000

E-mail address: kinyan@math.princeton.edu

