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SUBSPACES AND GRAPHS

KIN YAN CHUNG

(Communicated by Palle E. T. Jorgensen)

Abstract. Subspaces sufficiently near an arbitrary (fixed) subspace of a Hilbert

space are shown to be in one-to-one correspondence with operators defined on

the given subspace. Specifically, the nearby subspaces can be regarded as the

graphs of these operators. This is applied to explicitly define a C°°-atlas of

charts for the set of subspaces.

1. Introduction

Given (real or complex) Hilbert spaces H and K, let J2f(H, K) denote the

Banach space of (bounded linear) operators T : H —» K; we write 2^(H) for

S?(H, H). If T e S?(H, K), let G(T) be the graph of T; thus

G(T) = {(x,Tx)eH®K:xeH}.

Throughout, H is assumed to be a Hilbert space and we denote inner products

by (•,•>■ (Orthogonal) projection onto a (closed linear) subspace M is denoted

Pm • By identifying subspaces with projections, we can induce various topologies

on the set 'tW(H) of subspaces of H. Let us metrise £? (H) by referring to

the norm topology on 5f(H).
The present work concerns the relation of subspaces to a fixed subspace M

by taking graphs of operators in £?(M, M1). The identification of H with
the Hilbert direct sum M © M1- allows us to view such graphs as subspaces of
H. This problem is studied by Halmos in [2], where only subspaces in "generic

position" are considered. We consider the problem more generally, showing

that a subspace N is the graph of an operator in 5f(M, M^) if and only if

\\Pn - Pm\\ < 1 •
Let Te^f(M,M±). Then

G(T) = {Sx:xeM} = SM

where S is the invertible operator in J?(H) defined by Sx = x + TPMx . The

theory developed by Longstaff [4, 5] is applicable here. For our purposes, it

is more convenient to think of G(T) as the range of the operator 1 + T in

&(M, H) defined by (1 + T)x = x + Tx, so we shall write (1 + T)M for

G(T).
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2. The main result

Before proceeding to prove our main result, we need a preparatory lemma.

Lemma 1. Let M be a subspace ofi H and let T e f£(M, M-1). Put N =
(1 + T)M. Then

HP      P  |.2 <    Fli2
\\Pn-Pm\\   ^JTWf'

Proof. It is easily verified that relative to the Hilbert direct sum H = M ® M1-,

N = {(x, Tx):xeM},        NL = {(-T*y ,y) :y e ML}.

Let (x,y) e M © M1-. Then Pn(x, y) - (u,Tu) and PN±(x, y) -

(-T*v, v) for suitable u e M and v e ML . Since Pry + Pn±. is the identity
operator, it follows that u - T*v = x and Tu + v = y . We have

||(x, y)\\2 = H^vC^r, ̂ )||2 + \\PN,(x, y)\\2 = ||(ii, Tu)\\2 + \\(-T*v , v)\\2

= \\u\\2 + ||rM||2 + \\t*v\\2 + \\v\\2 < (i + ||r||2)(||M||2 + hi2).

Now (PN - Pm)(x , y) — (u- x, Tu) = (T*v , Tu), so if (x, y) / 0, then

\\(PN - PM)(x,y)\\2 = \\rv\\2 + \\Tu\\2 = ||(x, y)\\2 - \\u\\2 - \\v\\2,

whence

\\(PN-PM)(x,y)\\2 _       ||u||2 + ||t;||2 1 ||r||2

IK*,)')!!2 Il(*,y)ll2  -      i + ll^ll2    i + FII2'

Solving for u in the above proof leads to the following matrix representation
for PN relative to the decomposition H = M ® M1-:

' (l + T*T)~x       (1 + T*T)~XT*

T(1 + T*T)~X    T(l + T*T)~lT* ]'

Note the similarity of this matrix representation to the one given by Halmos

in [2, p. 386].  We now classify all subspaces that are graphs of operators in
-S^Af, Afx).

Theorem 1. Let M and N be subspaces of H. The following are equivalent:

(1) \\Pn-Pm\\<1.
(2) N and M1 are complementary ( N + M1- = H and N n ML = {0}).

(3) Pm\n is injective and PmN - M.
(4) N = (1 + T)M for some T e2'(M, ML); T is unique and satisfies

nj.,, _       \\Pn - Pm\\

^l-\\PN-PMf

Proof. (1) implies (2): Suppose \\PN - PM\\ < 1 and let x 6 ML n N; if x ^ 0,
then \\PN - PM\\ > \\(PN - />a/)x||/||x|| = ||x||/||x|| = 1, a contradiction. Thus

JVnM^fO}.
Now M e PMN c N n M1 (if x e M e PMN then (x, y) = (PMx, y) =

(x, .Pa/J') = 0 for all y e N), so PmN is dense in M.



SUBSPACES AND GRAPHS 143

If x e N, then (1 - Pm)x = (Pn - Pm)x , so

||x||2 = \\PMx\\2 + \\PM^x\\2 < \\PMx\\2 + \\PN - Pm\\2\\x\\2 ,

whence ||P»/x|| > ||x||v/l - \\Pn - Pm\\2 • Given a Cauchy sequence {/Vx„}£i,
in PMN with the x„ e N, we see that {xn}£ti is a Cauchy sequence in N.

Thus x„ —y x for some x e N, and then PmX„ -* PmX e PmN , so PmN is

complete and therefore closed. Since PmN is dense in M, PmN = M.

If x e H, then PmX = PmY for some y e N by the preceding result. Hence

x = PMx + PM±x = y + PM± (x-y) e N + ML , so N + M1- = H.

(2) implies (3): Suppose x e V.erPM\N ■ Then x e N and x e M1, whence

x = 0. Therefore Pm\n is injective. Now let x e M. Then x = y + z

for suitable y e N and z e ML. We have x = Pmx = PmV € PmN , so
PMN = M.

(3) implies (4): Assuming (3), the Banach Inversion Theorem asserts that

Pm\n is invertible as an operator in 2C(N, M). Put T = Pm±(Pm\n)~1 6

^f(M,M1). Then

(1 + T)M = (Pm(Pm\n)-X + Pm-{Pm\n)-X)M = IN = N.

It is clear that T is unique since graphs of different operators in f£(M, ML)

are different. To calculate the norm of T, we use the fact that if E is a subset

of R and / is a continuous increasing real-valued function defined on (the

closure) E, then sup/(£) = f(s\xpE). For our application, f(£) = £/y/l -£}

and E = {\\(PN - PM)y\\l\\y\\: y e H\ {0}}. Since sup£ = \\PN - PM\\,

||r|| = Sup{l|f^(ylx|l:xE3/\{0}}

\Vi-(\\(PN-PM)y\\/\\y\\)2 XWJ

<suP{  /   ll^-^ll/IWI       -.yeHW})
~     \Vi-(\\(PN-PM)y\\/\\y\\)2 J

||Py ~ PmII

~ Vi-WPn-PmW2'

On the other hand, Lemma 1(2) yields the reverse inequality, so (4) follows.

(4) implies (1): By Lemma 1(2),

\\Pn~Pm\\<    , l|r|1    „ < 1.   □
""  y/l+Wf

Corollary 1. Let M and N be subspaces of H such that \\Pn - Pm\\ < I ■
Suppose S is an operator in S?(M, ML) satisfying (1 + S)M C N. Then

(1+S)M = N.
Proof. Let T e 2C(M, AT1) satisfy (1 + T)M = N; T exists by Theorem 1.
Hence G(S) C G(T), but this holds if and only if S = T.   □
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The condition of Theorem 1(1) should be viewed in terms of the following

Proposition 1. For any subspaces M and N of H, \\Pn - Pm\\ < 1 ■

Proof. Let UM = 2PM - 1 and UN = 2PN - 1. It is easily verified that UM
and Un are unitary operators (indeed, they are symmetries). Now Pn - Pm —

\(UN-UM), so \\Pn-Pm\\ = \\\Un-Um\\<\(\\Un\\ + \\Um\\) = \.   n

3. An application

We conclude by defining the structure of a C°°-manifold on ^ (//) that is

compatible with the metric topology. Given a subspace M, Theorem 1 provides

a homeomorphism between subspaces near M and operators in the Banach

space ^(M, ML); this will be our chart map. We shall need a preliminary

Lemma 2. Let M be a subspace of H and let T0 e £?(M, M1). Put N =
(1 + Tq)M . Then there is a neighbourhood W ofi T0 such that for each T eW
there exists an operator S in 2C(N, N-1) satisfying (I + T)M = (I + S)N.

Specifically, if \\T - T0\\ < IITbll-1 and \\P(\+t)m - Pn\\ < I> then

S = (l- TS)(l + TT0T1(T-T0)Pm\n.

Proof. First put

W = {T e S?(M, M1) : ||T- Toll < ||7o|r' and \\P{X+T)M - PN\\ < !}•

The matrix representation following Lemma 1 shows that the map T h-> P(X+T)m

is continuous, whence W is open.

Now ToTq is a positive operator in S?(ML), so 1 + TqT0* is invertible. The

functional calculus for positive selfadjoint operators yields ||(1 + 7or0*)_l||
> 1-

Suppose T e W. Then 1 + TT* e Sf(M^) and

||(1 + TT0*) - (1 + T0T0*)\\ < ||r- 7b||||7b|| < 1 < ||(1 + Wr'U"1.

By a standard result (see, e.g., [1, pp. 584-585]), 1 + TT0* is invertible.

Consider the Hilbert direct sum H = M © M1-, and put

S = (1 - r0*)(l + TTJ)-X(T- To)Pm\n-

Let (x, T0x) e N. Then S(x, T0x) = (-T*y, y) where y = (1 + TT*)~X

x (T - To)x e M1-. Thus (1 + TT0*)y = (T- T0)x or, equivalently,

T0x+y = T(x-T$y).

Therefore,

(1 +S)(x, T0x) = (x-T0*y, Tox + y) = (z, Tz) e (I + T)M,

where z = x-T*y. Hence (1 + S)N c (1 + T)M, so (1 + S)N = (1 + T)M
by Corollary 1.   D
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For each subspace M of H, let

VM = {Ke %(H):\\PK-PM\\<\}.

By Theorem 1,  N e VM if and only if N = (I + T)M for some  T e WM
where

WM = \tcS?(M, M^) : \\T\\ < -^=| ,

so we can define a map 4>m '■ Vm —* WM by

4>m((1 + T)M) = T.

Observe that tpM is a homeomorphism.

The Vm cover %? (H), and <pm(Vm n VN) is open for all subspaces M and

N since VM n F/v is open. Suppose VM n F/v # 0 . Then

Hfiv - /Vll < ||/V - flf || + \\Pk - /Wll < i

for any K e VM D VN.  Thus N = (1 + T0)M for some T0 e S?(M, M1)

satisfying ||7b|| < -^.  Let A" e VM n VN.  Then A' = (1 + r)M for some

T e S?(M, Mx) with ||r|| < -^ and \\P{i+T)m ~ Pn\\ = \\Pk - PN\\ < L4 < 1 ■

Moreover,

lir-r0||<^L + -L <A/3<||7bir\
V15      vi

so   A"   =   (1 + r)M  =   (1 + S)N  by Lemma 2,  where  S =  (1 - r0*)

x (1 + rTn*)-1^ - r0)PM|iv. This holds for all A" e VM n K/v and hence for all

r e 4>m{Vm n Kjv) . Therefore, c^/v^1 : </>m(^ n Kjy) -+ 0/v(Fw n K/v) is given
by

^^(r) = (i - r0*)(i + tts)-\t-tq)pm\n,

which is a C°° function. We have just proved

Theorem 2. The metric space ^(H) is a C°° -manifold with the structure defined

by the atlas consisting of the charts (VM, (pm) for each M e W(H).

In fact, W(H) is a complex analytic manifold, at least in the case where H is

a finite-dimensional complex Hilbert space. The above C°°-atlas is fundamental

to Noakes's definition of stability of invariant subspaces in [6]: if A e ^f(H)

and M is an invariant subspace of A, then the pair (M, A) is stable if there

is a Cl function / : V —> =Sf(M, Afx) defined on an (open) neighbourhood

V of A such that f(A) = 0 and (1 + f(B))M is 5-invariant for each BeV .
The definition of stability simplifies to the requirement that a C function

g : K —> ̂  (//) exists such that #(.4) = M and g(5) is fi-invariant for all

Be V; in such a case, it is evident that the pair (g(B), B) is stable for all

Be V.
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