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POTENTIAL SPACE ESTIMATES
FOR GREEN POTENTIALS IN CONVEX DOMAINS

STEPHEN J. FROMM

(Communicated by Barbara L. Keyfitz)

Abstract. Weak type (1,1) bounds are demonstrated for the operators

/- jvxVxG(x,y)f{y)dy   and   /-» j VxVyG(x, y)f(y)dy,

where G is the Green operator for the Dirichlet problem for the Poisson equa-

tion on a bounded convex domain in K" . These results are used to investigate

smoothing properties of the Green operator in potential spaces. An application

is given to the restriction of the potential space to the boundary of the domain.

0. Introduction

Let del" be a bounded convex domain. Consider the boundary value

problem

f Au = f   infl,

U l"|»n=0.

(The boundary condition on u is taken to mean that u e W0l'p(Q) for some

p, 1 < p < oo; see Corollary 1.) By the Dirichlet principle, given / e L2_X(Q.)

there exists a unique u e W0l,2(Sl) satisfying (1), and the map j ^ u is a

Hilbert space isomorphism from Li,(Q) onto W0l,2(Q.) (see [Ada] for the

definitions of these function spaces). We can then define Green's function

G(x, y) (the fundamental solution of (1)) to be the distribution kernel of the

map f >-> u. Define

Gf(x) =   f G(x,y)j(y)dy.
Jq

Let | • | denote Lebesgue measure on R" and let V and V2 denote the first

and second gradient operators, respectively. Denote the diameter of Q. by d.

The main result of this paper is
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Theorem. Let j e Lx (il), where il CRn is bounded and convex. Then jor all

k>0,

(2) \{x e il : |V2(C7/)(x)| > A}| < ^1||/||L,(Q),

(3) jxeQ: J VxVyG{x, y)j(y)dy >/}  < £^l||/||t,(n).

The weak-type estimate (2) is an unpublished result due to Dahlberg, Ver-

chota, and Wolff. It is a straightforward consequence of the analogous L2 result

(Lemma 1, due to Kadlec) and pointwise estimates of the gradients of G(x, y).

(Adolfsson has recently found a similar Hardy space result; see [Adol].)

The weak-type estimate (3) is new. Its proof also relies on its L2 analogue

(Lemma 2, essentially the Dirichlet principle) and estimates of gradients of

G(x, y) but is substantively different from the proof of (2). (Whereas the

standard Calderon-Zygmund-Hormander bound (10) for singular kernels is the

main step in the proof of (2), the analogous inequality for (3) fails for the planar

domain constructed in §5.) Interpolation of (2), (3), and the L2 results gives

the estimates stated as Corollary 1. These estimates have a further application

to the restriction of Lp+l/ (il) to dil when il is convex (see §4).

For s eR and 1 < p < oo , let LP(il) be the (Bessel) potential space in il,

with norm || • \\SyP . LP(il) coincides with the usual Sobolev space Ws'p(il)

when s eZ and is defined for 5 e R by the complex interpolation method (see

[Ada]).

Corollary 1. Ij He Rn is bounded and convex, and if fe LP(il), then there is

a unique u e W0x'p(il) n LP+2(il) satisfying Au — fi, and

(4) \\u\\s+2,P < C(d,s,p,n)\\f\\SyP

for -I < s < 0 and 1 < p < -^ (defining g = oc) and fior s = 0, p = 2.

Below, il C R" will be a bounded convex domain unless noted otherwise. C

will denote a constant whose value may change between lines and within a line.

C may depend on n but not on d, s, or p unless so indicated, and C may

depend on il only in that it may depend on d. Lp(il), LP(il), and so on will

denote the obvious function spaces for vector- and tensor-valued functions.

Note il is a Lipschitz domain but generally not a C1 domain.

1. Proof of (2)

First we state the analogous L2 result. It follows from an integration by

parts and the positivity of the second fundamental form of dil (see [G] for

details).

Lemma 1.   ||V2(G/)||i2(n) < ||/||L2(n).

We now state some pointwise estimates on G(x, y). Define

c5(x) = dist(x, Oil).
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Proposition 1. Ij il is convex (but not necessarily bounded), then

(5) \G(x, y)\ < CS(y)\x - y\x~" ,

(6) \VxG(x,y)\<CS(y)\x-y\-",

(7) \\7xG(x,y)\<C\x-y\x-n,

(8) \VxVyG(x,y)\<C\x-y\-n,

(9) |V2VyG(x, y)\ < C\x - y\~" l[mm(\x - y\, 8(x))].

For n > 3, (5)-(8) can be found in [GW]; (9) follows easily from (8) by the
techniques used there. When n = 2, only minor modifications need to be made

in the proofs.
Consider now the operator / >-> V2(G/), which by Lemma 1 is bounded

from L2(Q) to L2(il). It may be extended to an operator K on functions on

R" with kernel K(x, y) = V2xG(x,y) for x and y e il and K(x,y) = 0 if
x or y £ il. To prove the weak-type estimate above it suffices to show the

Hormander condition

(10) / \K(x,y)-K(x,y0)\dx < C
J\x-y0\>5r

for \y - yo\ < r (and C depending on neither yo e R" nor r > 0).

First assume yo e il and consider only those x in {x e il: |x - yo\ > 5r}

satisfying |x - yo\ < \S(yo) ■ (This also constrains the choice of r.) Then

|V2C7(x,y)-V2t7(x,y0)|

<\y-yo\ sup {|V/V2G(x,/)|:/ = Aj; + (l-A));o}.
0<A<1

Since |x -y'\ < \8(x) and |x -vtj| < ||x - y'\, (9) gives

\Vy,V2C7(x, y')\ < C\x - y'\-"-x < C\x - yol-""1-

The left-hand side of (10) (with domain of integration further restricted as

above) is bounded by

cf r\x-yo\-"-ldx < C,
J\x-y0\>5r

completing this case.

Now consider the remaining cases: (a) yo $ il, and (b) yo e il,

\x - yo\ > j^(yo), which may be rewritten together as |x - yo\ > j dist(>>o, ilc)

(where c denotes set complement in R" ). Since |x-j>o| > 5r and |y — jvol < r,

|jc — y| > \dist(y ,£lc). Therefore for \y - y0\ < r the integral in x of

\K(x, y) - K(x, yo)\ over {|x - y0\ > max(5r,^dist(yo,Hc))} is bounded

by the integral of ^(x,^)! over {|x - yo\ > jdist^o, Hc)} plus that of

lA^x, y)\ over {|x - y\ > \ dist(y, ilc)}. Each of these is bounded by

(11) sup/ \V2xG(x,y)\dx
yetl Jx£Q ,\x-y\>d(y)/4

since K(x, y) — 0 for x or y $ il. To complete the proof it suffices to show

the finiteness of (11).
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Take tp e C0°°(l+) with <p(t) = 0 for t < { or t > A, and <p(t) = 1 for

1 < t < 2. Put (j)j(x) = <p(\x - y\/[2Jd(y)]). Then by the Cauchy-Schwarz
inequality,

/ |V2C(x, y)\ dx < Y  f \Vx[4>j(x)G(x, y)]\ dx
Jx€n,\x-y\>d(y)/4 j=-2Jil

oo ,   . s   1/2

< C Y [2^(^)]"/2 (J IV2 [^(x)C7(x, y)]\2 dx)     .

Since (pj(x)G(x, y) vanishes when x e dil, (pj(-)G(-, y) = G[A(4)j(-)G(-, y))].
We may apply Lemma 1 to obtain

/ |V2[0;(x)fJ(x,y)]|2c7x< / |A[</>;(x)cJ(x,);)]|2</x.
Jn Jq

Note \Ax[(l>j(x)G(x, y)]\2 < 2{G(x, >^)2|A^(x)|2 + 4|VxC(x, y)|2|V^(x)|2},
\A<t>j\ < C[V8(y)]~2, and |V^| < C[V8(y)]-x. (5) implies that, for x e
supp(A^), G(x,y) < CS(y)\x - y\x~" < Cd(y)[2Jd(y)]x~n ; similarly, (6)

implies that for x 6 supp(V^), \VxG(x,y)\ < C5(y)[V5(y)]-n . We find
that

/ \V2x[<pj(x)G(x,y)]\2dx < C2-2J[Vd(y)]-".
Jq

So
r qo

/ |V2C7(x,>')|<ix<C V 2-^<C,
Jx€Q,\x-y\>Sxy)/4 J=_2

finishing the proof of (2).

Remark. Let a(y) be supported in a ball B = B(yo, r) c R" , with ||a||z.°c(ln) <

jgr and Ja(y)dy = 0. Then

/  \Ka(x)\dx<   f \Ka(x)\dx
Jw JB(y0, 5r)

+ f ( [ \K(x,y)-K(x,yo)\dx]\a(y)\dy.
JB \J\x-y0\>5r J

The first term on the right-hand side is bounded by using the Cauchy-Schwarz

inequality and Lemma 1; the second term is bounded using (10). We find that

(12) f\Ka(x)\dx<C;

this is the main result of [Adol]. Note that in [Adol] the property J ady = 0

is not needed when dist(5, ilc) < C diam(i?). This is true here as well because

of the finiteness of (11). Note also that in [Adol], (12) is proved in the case of

il convex, unbounded, and lying above a Lipschitz graph of Lipschitz constant

M; the constant in [Adol] corresponding to the right-hand side of (12) depends

on M. When applied to the case of bounded il, this gives atomic and W

estimates with constants depending on the eccentricity of the domain, which is

not the case here.
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2. Proof of (3)

As before, we begin with the analogous L2 result.

Lemma 2.   || /„ V*VyG(x, y)fly)dy\\ma.dx) < C(d)\\f\\L2{a).

Prooj. Since G(x, y) vanishes as y tends to dil, we may write

/ VxVyG(x,y)j(y)dy = -Vx f G(x, y)Vyj(y)dy = -VG(V/)(x).
Jn Jq

By the Dirichlet principle,

l|vc7(v/)||L2(fi) < \\Giyf)h,2 < C(d)\\vfU,2.

The lemma follows, since ||V/||_i,2 < H/llz^n)-

Now fix k > 0. Let K(x, y) = WxVyG(x, y) if x, y e il, and K(x ,y) = 0
otherwise; denote the operator corresponding to this kernel by K also.

Extend / to an element of L'(R") by putting / = 0 outside of il. By

the Calderon-Zygmund decomposition (see [St]), there are cubes Qj, j e N,

with disjoint interiors such that \j(x)\ < X a.e. in (Uf QjY , T,? \Qj\ <

fll/lli'(*")' anc* \f\Qj - ^' wnere (•••)c2j denotes the mean of the given

function over Qj. It is not necessary that Qj C il for all j, although since

supp/cQwe may assume Qjilil^ 0 for all j . Denote by Q* the dilation

of Qj about its center yj by a factor of 10.

Now segregate the cubes: write N = Nx U N2 , where j e Nx if diam(Qj) <

dist(Q,, Hc), and ;' e N2 if diam(Qj) > dist(Qj, ilc); j e N2 includes the

case Qj \%il.
The idea of the proof is as follows. As usual, given a cube Qj consider only

those x not in Q*. When j = 1 and \x - yfi < C8(y}), \VyK(x,y)\ <

C\x - y\~"~l for y e Qj, and the proof follows the usual method of showing

weak-type bounds for Calderon-Zygmund kernels. In the remaining cases j =

I>\x -yj\>Cd(yj), and j -2, x sees the mass of \j\ at Qj as being close
to dil. These cases are resolved without the use of cancellation by the estimate

\K(x, y)\ < C\x - y\~~n and the result of Sjogren [Sj] that the convolution of

|x|~" with a measure supported in a "small" set in R", like dil, is in weak
Lx(Rn).

Define g a.e. by letting g = j on (Uf Qjf , g = Jq, on Qj for j e Nx ,
and g = 0 on Qj for j e N2. Define bj a.e. for j e N by bj = j - jQj on

Qj if jeNx, bj = fi on Qj if jeN2, and bj = 0 on Q). f = g + £~, bj,
and g and bs are supported in il. Clearly,

|{xgC2:|^/(x)|>a}|

<  (xeQ:|A^(x)|>^}
(13) l l)

+ Y   \xeil\\jQr.   K[Ybj)(x) >-4\ +[)Qj   .
A=i,2   { i \jeN,    J J l

We bound the first and last terms of the right-hand side in the usual manner

(see [St]).   By the lemma,   11^11^,,) < C(d)\\g\\LHa).   In addition,   \g\ <
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CX and ||s||Li(n) < \\fih'(Q). hence

jx € H: \Kg(x)\ > \ JI < ̂  J \Kg(x)\2dx < ̂ l\\g\\lHn) < <M||/||1I(Q).

Also, |UrG;i<10nEriG;l<fll/k.(fl)-
Consider now the summand / = 1 in the third term of (13). Define functions

Xj and Aj by putting Xj{x) = 1 if x e H\Q*j and |x -y7-| < 10<5(ja_,-), and

Xj(x) - 0 otherwise. Let A_,-(x) =1 if x e il and |x - yj\ > 10<5(.y;), and
Aj(x) = 0 otherwise. Fix j and suppose Xj{x) = I for now. Since bj has

mean value 0 when j e Nx, Kbj(x) = J[K(x, y) - K(x, yj)]bj(y) dy . For

yeQj, \K(x,y)-K(x,yj)\ < diam(G,-)supj,,eQ. \Vy.K(x,y')\. Since y' e Q,
and ; e Nx imply |x - y'\ < C5(y'), it follows from (9) that \Vy-K(x, y')\ <

C\x-y'\-"-x < C\x - yfi-"-1. Hence

\Kbj(x)\ < Cdiam(f2,)|x-^r"-1||^||il(^)

when Xj(x) = 1- Since diam(Qj) J,Q.)C \x -yj\~"~[ dx < C,

Y [Xj(x)\Kbj(x)\dx <CY WbjWv < C\\f\\may

By Markov's inequality, \{x:J^JeNl Xj{x)\Kbj(x)\ > |}| < xl|/||z,.(n). To finish
estimating the size of the i = 1 term in (13), it suffices to show that

lx:Y^(x)\Kbj(x)\>^\  <j\\f\\v(ay

Inequality (8) implies \K(x,y)\ < C\x - y\~". When ;' e Nx, Aj(x) = 1,
and y e Qj, \x — y\~n < C\x -Pj\~n, where Pj e dil is chosen satisfying

dist(pj, Qj) = dist(dil, Qj) for j e N (if j e N2,pj is possible in Qj).
Hence

(14)       Aj(x)\Kbj(x)\<cj\x-pJ\-"\bJ(y)\dy = C\x-pJ\-"\\bJ\\V{Q).

Define a measure p with support in dil by

M = Y IIMi'toA, >
j€N,

where 8Pj is the unit point mass at p}. Let r~" he the function z ^ \z\" on

R". Then by (14)

Y Aj(x)\Kbj(x)\ <Cr~n*p,
jeN,

where * is convolution on R" . By a theorem of Sjogren (see [Sj]),

i x : Y *j(x)\Kbj(x)\ > ^ I   < \{x : r~" * p(x) > CX]\

c c c
< ymass(^) = j Y Wbjh'(Q) < jll/llz.>(n)-

jeN,
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(The constant arising from the application of Sjogren's result to dil may be

taken as uniform over all convex il C R" .)

The i = 2 summand of the third term of (13) is treated in the same manner

as Eygjv, Aj(x)\Kbj(x)\, because j e N2, Qjtlil^ 0, x e il\Q*, and y e Qj

imply (with (8)) \K(x,y)\ < C\x - y\~n < C\x-pj\~n. That bj does not
necessarily have vanishing mean value when j e N2 makes no difference.

3. Proof of Corollary 1

Let / G Lp(il). We first show that Gf e Lp+2(il) and that (4) holds for
u = Gj.

Applying the real interpolation method to (2) and Lemma 1 gives

||V2(C/)||o,P < C(p)\\j\\o,p, 1 < p < 2. (5) and Young's inequality show

that ||C/||o,r, < C(d)\\f\\o,p. Similarly, (7) and Young's inequality show that

l|V(Cr/)||o,p'< Cd\\f\\0,p. Hence (4) holds for s = 0 and 1 <p < 2.

Remark. When il is not convex, Corollary 1 may fail for s = 0. For example,

Jerison and Kenig [JK] found a bounded C1 domain il with / g C0do(Q) , yet

V2(C/) i Lx(il).

We now consider (4) for s = -1, 1 < p < oc . Suppose / G Z/,(Q). Note

that there exists an h G Lp(il) with / = divh, and ||b.||i,(n) < C(d)\\f\\-XyP.
Fors = -l we need only show ||C(divh)||liP < C(d, p)\\h\\Lp(Q) > 1 < P < co.

As in the proof of Lemma 2, C(divh)(x) = — JQVvG(x, y) • h(y)dy . It is
therefore enough to show that

f VxVyG(x,y)h(y)dy +    f VyG(x, y)h(y)dy
Jd W(Q;dx) Jn L»{Q;dx)

< C(rf,p)||/l||^(C2)

(where for simplicity of notation we have replaced h by a scalar-valued h ).

Real interpolation, (3), and Lemma 2 imply

(15)       [ VxVyG(x,y)h(y)dy < C(d, p)\\h\\mQ),        Kp<2.
Jn LP(n-dx)

Since VxV^C7(x, y) - VyVxG(y, x), duality shows that (15) holds in the range

1 <p <oc. That || JclVyG(x,y)h(y)dy\\Ll,{Q.dx} < C(d, p)\\h\\Ll,{a;dX) f«r
1 < p < oo follows from (7) and Young's inequality.

Inequality (4) holds for Gf for the other 5 and p indicated in Corollary 1

by complex interpolation.

Because G is bounded from Z/,(Q) to Lp (il), to see that Gf e Wx-"(il),

it is enough to check it for / in the dense subclass L°°(il). For / e L°°(il),

(5) and (7) imply that Gf(x), VGj(x), and S(x)-lGf(x) are bounded, from

which it easily follows that Gf G W0X 'p(il) for any p, 1 < p < oo .

Suppose u e W0l'p(il) and Am = 0. Given xp e C0°°(Q), JuAxpdx =

J Auxpdx - 0. The uniqueness asserted in Corollary 1 follows, since C^°(il)

is dense in W0l>p'(il), A takes W}'"'(il) onto z/,(Q),and Z/',(ft) is the

dual of Wx'p(ii) (where p'~x +p~x = 1 ).

Remark. When il is only Lipschitz and s = -1 , the estimate (4) holds for

some p ^ 2 but not all p, 1 < p < oc (see [JK]). (The case p — 2 is just the

Dirichlet principle.)
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Remark. The theorem and Corollary 1 also hold for il bounded, globally Lips-

chitz, and satisfying a uniform exterior sphere condition. The above proofs are

essentially unchanged. Lemma 1 has been shown in this greater generality by

Adolfsson (see [Ado2]); Lemma 2 relies only on the Dirichlet principle. Propo-

sition 1 is stated in [GW] in this generality (and the case n = 2 still holds);

and for the application of Sjogren's result it suffices that il be globally Lips-

chitz. Here, the constants in (2), (3), and (4) will depend on more geometric

information about il, such as the radius given in the uniform exterior sphere

condition.

4. AN APPLICATION TO RESTRICTION OF SOBOLEV SPACES

If il is only C1 , it can be shown that Corollary 1 fails for p = 2, s = -\ ;

Jerison and Kenig derive this from the failure of L2/2(il) to restrict to L2(dil)

[JK]. If il is convex, we may reverse this logic and show that the restriction

L2/2(C2) - L2(dil) holds. Indeed,

Corollary 2. Ij il is convex and bounded and 1 < p < oo, then the trace oj

Lp+l/p(il) to dil is the same as the trace oj HLp+l/p(il) = {v : Av = 0, v e

Proof Let F e Lp+l/p(il). By Corollary 1, G(AF) e Lp+l/pnW0l<p(il). Hence

C7(AF)|an = 0 in the sense of, e.g., LP (dil), and F\dn = (F - G(AF))\dii.

Remark. When p = 2 and il is Lipschitz, 77L2/2(Q)|9cj = L2(dil) (see [JK]).

Therefore if il is convex, L2,2(r2)|^Q = L2(dil).

5. A COUNTEREXAMPLE

Proposition 2. There is a bounded convex il c R" and an f e C°°(il) such

that Gj tf. LP+2(il) for any p, s with p > ^ , -1 < s < 1, 1 < p < oo.

Without loss of generality take p near -^y. Pick ro << 1. Let il be

the image of {z G C:|z| < ro, Im(z) > 0} under the conformal mapping

0:z h-» -zlogz, where the branch of log is chosen so that Imlogz lies in

(0, n) when z is in the upper half plane, il lies in the upper half plane and

is convex and bounded. Let *P = <I>_' : il -» C and put u = n lm *F, where n

is the restriction to il of a function in C03O(C) which is 1 in a neighborhood

of the origin and is supported very close to the origin (so that u vanishes on

dil). Put / = Au. fi is supported away from the origin and is C°°(r2), and

Gf = u . For (x, y) near the origin, |Vw(x, y)\ = |*r"(to)|, where w = x + iy

and

4"(ttf) = <p'-x(*¥(w)) =-.
K   ' (   K   "        l+log¥(w)

As w -► 0 G dil, 4" -► 0. If Vw G Cn(il) for some a > 0, we must

therefore have |4"(i(;)| = \Vu(x, y)\ < C\w\". But a simple calculation shows

that |»F'| > C|logM|-' as w -> 0, hence Vm £ C"(H) for any a > 0.

This shows that u <£ LP+2(il) for p > £r, -1 < s < 1. For otherwise Vm g

LPS+X(H) C Cs+x-2'p(il) (see [T, Theorem 4.6.1(e)]).

This example is adapted to aa > 3 by adding extra variables and cutting off.
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