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WEAKLY CONTINUOUS FUNCTIONS
ON BANACH SPACES NOT CONTAINING /,

JOAQUIN M. GUTIERREZ

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Banach spaces not containing /, are characterized in terms of con-
tinuous and holomorphic functions and polynomials which are weakly sequen-
tially continuous and weakly continuous on bounded subsets. An application to
(bounded linear) operators is also given.

Throughout, E and F are Banach spaces. We write E* for the dual of E
and Bg for its closed unit ball. R, C, and N denote the real, complex, and
natural numbers, respectively. By C,(E, F) we denote the space of all maps
taking weakly convergent sequences in E to convergent ones in F, and by
Cwo(E, F) we denote the space of those maps whose restrictions to bounded
subsets of E are weakly continuous. Clearly, Cyp(E, F) C Cy(E, F). When
E and F are complex Banach spaces, H(E, F) stands for the space of all
holomorphic maps from E to F.

For each k € N, P(KE, F) is the space of k-homogeneous continuous
polynomials from E to F. We identify #(°E, F) = F. The space of con-

. . . . k .
tinuous symmetric k-linear mappings from E x ® x E to F is denoted by

Ly(*E, F). The operator Ly(XE, F) — #(XE, F) taking the k-linear map A
to the polynomial P defined by P(x) = A(x,..., x) is an isomorphism of
Banach spaces [14]. If F (E, F) is a family of continuous maps from E to
F , then we write

FoE, F)=F(E, F)NCu(E, F)

for a = wb or wk. Throughout, if the range space is omitted, it is understood
to be the scalar field K (= C or R); thus, #(*E) = #(*E, K).

In recent years, many authors have studied such function spaces (see, e.g., [1,
3-6, 9, 11, 13]). The aim of this note is to give refinements of results from [5, 9]
characterizing Banach spaces not containing /; in terms of the aforementioned
spaces.

We say that a (linear bounded) operator T:E — F is completely continuous
if it takes weakly convergent sequences in E to convergent ones in F . Clearly,
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Zx(\E, F) is the space of completely continuous operators from E to F.
On the other hand, %,,(1E, F) coincides with the space of compact operators
from E to F [6, Proposition 2.5]. We say that 4 C E is a Rosenthal (or
conditionally weakly compact) subset if each sequence in 4 admits of a weak
Cauchy subsequence.

The following result, extending a theorem by Rosenthal, is proved in [10].

1. Theorem. Every Rosenthal subset of a Banach space is weakly sequentially
dense in its weak closure.

2. Corollary. The space Cyy(E, F) consists of those functions f:E — F whose
restrictions to Rosenthal subsets of E are weakly continuous.

Proof. If f € Cox(E, F) and A4 C E is a Rosenthal subset, then, by Theorem
1, for every x € A°E-E") | there is a sequence (x,) C 4 converging weakly to
x. Hence, (f(xn)) converges to f(x); so, f(A°E-ED) c f(A4), and f|, is
weakly continuous. 0O

3. Theorem. Let E be a complex Banach space. The following assertions are
equivalent.

(a) E contains no copy of [, .

(b) Forevery F, Cy(E, F) = Cuw(E, F).

(c) For every complex F, Hy(E, F) = Hy(E, F).
(d) For some complex F, Hy(E, F) = Hy(E, F).
(e) Hu(E)= Hy(E).

Proof. (a) = (b) Since, in a space not containing /,, bounded subsets are
Rosenthal, it is enough to apply Corollary 2.

(b) = (c) = (d) are obvious.

(d) = (e) Suppose there is a function f € Hu(E)\Hyp(E). Choose y € F
with [|y]l = 1, and let j:R — F be given by j(A) = Ay. Then jo f €
Hwk(E9 F)\Hwb(E’ F) .

(e) = (a) Suppose there is a closed subspace M C E and an isomorphism
S:M — I, and let T:/; — ¢y be the natural inclusion. By standard arguments,
T can be factored through L,[0, 1] and so extended to an operator U: E —
Co . Since every operator from L.[0, 1] to ¢ is weakly compact, and L,[0, 1]
has the Dunford-Pettis property, U is completely continuous. If (e,) denotes
the unit vector basis of /; , write ¢, = 2e,0U . Clearly, the sequence (¢,) C E*
is o(E*, E)-null. Define a function f:E — C by

oo

f) =Y (@alx)"  (x€E).

n=1

Then f is well defined and holomorphic [14, 5.5].
We now prove that f ¢ Cup(E). Indeed, otherwise we would have that
g:=foS"l e Cyp(l)). If g, denotes the nth coordinate mapping on /; , then

PnoSTH(y) =2e,0 U087 (y) =2e,0T(y) =2q,(y) (vebh);
so, for y € /;,

o0

gW)=foST' (1) =) (dnoST' W) =D (2gn(y))".

n=1 n=1




WEAKLY CONTINUOUS FUNCTIONS ON BANACH SPACES 149

We now show that g fails to be weakly continuous on the 2-ball. This follows
an idea of Professor R. M. Aron which simplifies the author’s original proof.
Take {&!,...,&} C Iy, with & = (&), (1 < j < k). We can find an
increasing sequence (n;) C N such that, for each j (1 < j < k), the sequence
(fi,) ; is convergent; therefore, there is an integer r such that, for p > g > r,

&, =& <1 (1<j<h).
For y = ey, — e, €1y, with p > r, we have
vl =2,
ol=1&,-&1<1 (1<j<k),
and
gly) = 2 4 2 (—=1)" > 2.

Finally, we show that f € C,(E). Indeed, let L be a weakly compact

subset of E. Then U(L) is compact in ¢o. Set ¢ > 0 andk € N with

2-k < ¢. Since the sequence (e,) is weak-star null, it converges to 0 uniformly
on compact subsets of cg; hence, there exists m € N (m > k) such that

leno UX)| <3 (x€L; n>m)

and so
lpn(x)|" <27  (x€L; n>m).

Let fy(x) = an=1(¢,,(x))” for each N € N; it is clear that fy € Cyp(E). If
N > M > m, we have, for every x € L,

N oo
Inx) = < S Idax)n < Y 2 =2"M <27 K <

n=M+1 n=M+1

Therefore (fn)%-, C Cwb(E) is a Cauchy sequence in the topology of uni-
form convergence on weakly compact subsets of E. Now Cyx(E) is the com-
pletion of Cyy(E) in this topology [9, Proposition 2], so (fn)%., converges to
f, and we conclude that f € Cy(E). O

The equivalence (a) < (b) was proved in [9].
4. Theorem. The following assertions are equivalent.

(a) E contains no copy of I, .

(b) Forevery F and k € N, Py (XE, F) = Puw(XE, F).

(c) There exists F such that, for every k € N, Py (XE, F) = P (KE, F).
(d) For some F and some k €N (k >2), P (KE, F) = Pw(E, F).
(e) Forsome k€N (k>2), Pu(*E) = Pw(¥E).

Proof. (a) = (b) by Theorem 3 (a) = (b).

(b) = (c) = (d) are obvious.

(d) = (e) as in Theorem 3.

(e) = (a) Suppose M C E is a closed subspace and S:M — [, an iso-
morphism. Let T:/; — [/, be the natural inclusion. Since T is absolutely
summing [12, Theorem 2.b.6], we can apply the Grothendieck-Pietsch domina-
tion theorem [8, p. 60]. Then there exists a regular Borel probability measure
u defined on a compact space such that 7 factors through L*(u). By the
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injectivity of L>(u), T extends to an operator V:E — [, which is com-
pletely continuous by the Dunford-Pettis property of L>(u). For x € E,
write V(x) = (Va(x))2, € l,. For each integer k > 2, define P: E — K by

Py is the product of the maps
ELLLL Bk,

where I is the natural inclusion and W the k-homogeneous polynomial given
by

W) =D (&) for& = (&) € k.
n=1
Hence, P, € P(KE). Moreover, since V is completely continuous, P, €
Pu(E).
Let us now see that P, ¢ Poy(XE) ; otherwise we would have Ry := PoS~! €
Puw(kly). If g, is the nth coordinate map on /; , we have

Re(p)=PcoST' () =D (Vo ST =Y (@) (veh).

n=1 n=1

The continuous symmetric k-linear map A4, associated to Rj is given by

Let Ci:ly — Lg(*~'1;) be the operator defined by

CeX)W1s oo s Vi) = Ak, 15 oo Vkm1) (X, V1, en s Yim1 € D).
Then, if (e,) is the unit vector basis in /; , we have, for n # m,

|Ck(en) — Ci(em)|l = |Ck(en)(en ’(Igj})’ en) — Cr(em)(en a(lf-_-]), en)|
= |Ai(en ,(k), en) — Ax(em, en, (,fj'l)’ en)l =1;

therefore, C; is not compact. Applying [5, Theorem 2.9], we conclude that
R, & Pw(kl). O

The same argument would give another proof of Theorem 3 on holomorphic
functions. Nevertheless, we present both since the one of Theorem 3 only
needs basic tools from Banach space theory and gives a concrete example of a
holomorphic function that could be useful in other applications.

The equivalence (a) < (b) is proved in [5, Proposition 2.12 and following
comment]. As far as we know, (c), (d), and (e) are new.

Assertions (d) and (e) of the last theorem show a different behaviour of
polynomials and operators. Odell proved (see [15, p. 377]) that E contains
no copy of /; if and only if every completely continuous operator on E is
compact. Theorem 4, however, is no longer true for kK = 1 in (e), since for
every E, Zuw('E) = Pyw('E) = E*. Even if F were restricted in (d) to be
infinite dimensional, the theorem would fail for k£ = 1. Indeed, it is known [7,
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Proposition 3.7] that E contains no complemented copy of /; if and only if
there exists an infinite-dimensional F such that every completely continuous
operator from E to F is compact.

Finally, we give a corollary on operators. We say that an operator 7: E — E*
is symmetric if it verifies

(v, Tx)=(x,Ty) (x,y€E).

The symmetric operators are studied in [2, §8] in relation to spectral properties
of algebras of analytic functions and Arens regularity. It is an open problem
whether the fact that every symmetric operator from E to E* is weakly com-
pact implies that every operator from E to E* is weakly compact too. Here
we give an answer to a similar question.

5. Corollary. The following assertions are equivalent.

(a) E contains no copy of [, .

(b) Every completely continuous operator on E is compact.

(c) Every completely continuous operator from E to E* is compact.

(d) Every symmetric completely continuous operator from E to E* is com-
pact.

Proof. (a) = (b) is included in (a) = (b) of Theorem 4.

(b) = (c) = (d) are obvious.

(d) = (a) Suppose E contains an isomorphic copy of /; . As in the proof of
Theorem 4, we can find a completely continuous operator V:E — [, extending
the inclusion T:/; — [,. For every x € E we write V(x) = (Va(x))2, €
and define the 2-homogeneous polynomial P:E — K by

(<]

P(x) =Y (Va(x))%

n=1

Let C: E — E* be the associated operator given by

¥, CxX) =D Va(X)Va(y)  (x,y€E).

n=1

Since P ¢ % (2E), C is not compact [5, Theorem 2.9]. Obviously, C is
symmetric, and if (x,,)$_, C E is a weakly null sequence, then

IC(xm)ll = sup{|(y , C(xm))|:y € Be}
= sup{|(V(xm), V(¥)I:y € Be} < [V (xm)ll - [IV]|-

Since V is completely continuous, sois C. 0O

The equivalence (a) < (b) is Odell’s theorem [15, p. 377].
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