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WEAKLY CONTINUOUS FUNCTIONS
ON BANACH SPACES NOT CONTAINING /,

JOAQUIN M. GUTIERREZ

(Communicated by Palle E. T. Jorgensen)

Abstract. Banach spaces not containing lx are characterized in terms of con-

tinuous and holomorphic functions and polynomials which are weakly sequen-

tially continuous and weakly continuous on bounded subsets. An application to

(bounded linear) operators is also given.

Throughout, E and F are Banach spaces. We write E* for the dual of E
and Be for its closed unit ball. K, C, and N denote the real, complex, and

natural numbers, respectively. By Cwk(£', F) we denote the space of all maps

taking weakly convergent sequences in E to convergent ones in F, and by

Cwb(E, F) we denote the space of those maps whose restrictions to bounded

subsets of E are weakly continuous. Clearly, Cwb(£, F) c Cwk(£', F). When

E and F are complex Banach spaces, H(E, F) stands for the space of all

holomorphic maps from E to F .
For each k e N, £P(kE, F) is the space of Ac-homogeneous continuous

polynomials from E to F. We identify ^(^E, F) = F. The space of con-
(k)

tinuous symmetric k-linear mappings from E x • • • x E to F is denoted by

Ls(kE, F). The operator Ls(kE, F) -> &>(kE, F) taking the Ac-linear map A

to the polynomial P defined by P(x) = A(x, ... , x) is an isomorphism of

Banach spaces [14]. If &~(E, F) is a family of continuous maps from E to

F, then we write

9a(E,F)=9-(E,F)^Ca(E,F)

for a = wb or wk. Throughout, if the range space is omitted, it is understood

to be the scalar field K  (= C or R); thus, &>(kE) = 3°{fE, K).
In recent years, many authors have studied such function spaces (see, e.g., [1,

3-6, 9, 11, 13]). The aim of this note is to give refinements of results from [5, 9]

characterizing Banach spaces not containing lx in terms of the aforementioned
spaces.

We say that a (linear bounded) operator T:E -» F is completely continuous
if it takes weakly convergent sequences in E to convergent ones in F. Clearly,
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^wirX'/s, F) is the space of completely continuous operators from E to F.

On the other hand, &\\i,(lE, F) coincides with the space of compact operators

from E to F [6, Proposition 2.5]. We say that A c E is a Rosenthal (or

conditionally weakly compact) subset if each sequence in A admits of a weak

Cauchy subsequence.

The following result, extending a theorem by Rosenthal, is proved in [10].

1. Theorem. Every Rosenthal subset ofi a Banach space is weakly sequentially
dense in its weak closure.

2. Corollary. The space C^(E, F) consists ofi those functions f:E^>F whose
restrictions to Rosenthal subsets ofi E are weakly continuous.

Proof. If / e Cy,k(E, F) and Ac E is a Rosenthal subset, then, by Theorem

1, for every x e A"(E<E'\ there is a sequence (x„) c A converging weakly to

x. Hence, (f(x„)) converges to f(x); so, f(Aa{-E'E")) c f(A), and f\A is
weakly continuous.   □

3. Theorem. Let E be a complex Banach space. The following assertions are
equivalent.

(a) E contains no copy of li.

(b) For every F, Cwk(E, F) = Cwb(£, F).
(c) For every complex F, H^E, F) = H^E, F).
(d) For some complex F, H^E, F) = Hwh(E, F).

(e) //wk(£) = Hwb(E).

Proof,  (a) =*■ (b)  Since, in a space not containing lx, bounded subsets are
Rosenthal, it is enough to apply Corollary 2.

(b) => (c) => (d) are obvious.

(d) => (e) Suppose there is a function / e //wk(£')\//Wb(£'). Choose y e F
with Hy|| = 1, and let j:R -y F be given by j(X) = Xy. Then j o fi e

H^(E, F)\Hwb(E, F).
(e) => (a) Suppose there is a closed subspace M c E and an isomorphism

S:M —y li, and let T: lx —► cn be the natural inclusion. By standard arguments,

T can be factored through Loo[0, 1] and so extended to an operator U:E^

Co- Since every operator from Loo[0, 1] to cq is weakly compact, and Loo[0, 1]

has the Dunford-Pettis property, U is completely continuous. If (e„) denotes

the unit vector basis of lx , write 4>n — 2en o U . Clearly, the sequence (</>„) c E*

is a(E*, £')-null. Define a function fi:E^>C by

oo

fi(x) = J2(<Pn(x))n      (xeE).
n=\

Then / is well defined and holomorphic [14, 5.5].
We now prove that / 0 Cwb(.E). Indeed, otherwise we would have that

g := fi°S~X e CWb(/i). If qn denotes the nth coordinate mapping on lx, then

4>n o S~x(y) = 2enoUo S'x(y) = 2en ° T(y) = 2qn(y)       (yelx);

so, for y eh,
oo oo

g(y) = foS'x(y) = Y,(<t>noS-x(y))" = £(2<7„(y0)".
«=1 n=X
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We now show that g fails to be weakly continuous on the 2-ball. This follows

an idea of Professor R. M. Aron which simplifies the author's original proof.

Take {£', ... , £*} c /«,, with & = $)« , (1 < j < k). We can find an
increasing sequence («,) c N such that, for each j (1 < j < k), the sequence

(£ii)i is convergent; therefore, there is an integer r such that, for p > q > r,

l«,-#J<i      (l <;<*).

For y = e„p - e„r e lx , with p > r, we have

W = 2,

\Si(y)\ = \$Jnp-Zi\<i      (i<j<k),

and
g(y) = 2n? + 2n'(-i)n'>2.

Finally, we show that / € Cwk(£'). Indeed, let L be a weakly compact

subset of E. Then U(L) is compact in cn. Set e > 0 and Ac e N with

2~k < e . Since the sequence (e„) is weak-star null, it converges to 0 uniformly

on compact subsets of cn ; hence, there exists meN  (m > k) such that

|<?„ o C(x)| < 5       (xeL; n>m)

and so
\<pn(x)\n <2~"       (xeL;  n> m).

Let fN(x) = £*=,(</>„(*))" for each N e N; it is clear that fN e Cwb(£). If
N > M > m , we have, for every xeL,

N oc

\fN(x) - fM(x)\ <   £   \Mx)\"<   £   2~" = 2~M < 2~k < e.
n=M+X n=M+X

Therefore (//v)~=1 C Cwb(£') is a Cauchy sequence in the topology of uni-

form convergence on weakly compact subsets of E . Now Cwk(is) is the com-

pletion of Cwb(£) in this topology [9, Proposition 2], so (//v)/v=i converges to

/, and we conclude that / € Cwk(£').    □

The equivalence (a) o (b) was proved in [9].

4.   Theorem. The following assertions are equivalent.

(a) E contains no copy of lx.
(b) For every F and keN, ^v(kE, F) = ^h(kE, F).

(c) There exists F such that, for every k e N, &>„k(kE, F) = ^bifE, F).
(d) For some F and some keN  (k>2), 3°^(kE, F) = ^b(kE, F).

(e) For some ac e N  (k>2), ^wk(kE) = 3°^(kE).

Proof,  (a) =*• (b) by Theorem 3 (a) =*> (b).
(b) =*► (c) => (d) are obvious.

(d) => (e) as in Theorem 3.
(e) =*■ (a) Suppose M c E is a closed subspace and S:M^lx an iso-

morphism. Let T:lx -» li be the natural inclusion. Since T is absolutely

summing [12, Theorem 2.b.6], we can apply the Grothendieck-Pietsch domina-

tion theorem [8, p. 60]. Then there exists a regular Borel probability measure

p defined on a compact space such that  T factors through L°°(p).   By the
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injectivity of L°°(p), T extends to an operator V:E -* l2 which is com-

pletely continuous by the Dunford-Pettis property of L°°(p). For x e E,

write V(x) = (Vn(x))™=1 e l2 . For each integer Ac > 2, define Pk: E -» K by

oo

n=\

Pk is the product of the maps

E —y l2 —y lk —y K,

where / is the natural inclusion and W the Ac-homogeneous polynomial given

by
00

W(Z) = £(&)*   for £ = (£„) 6/*.
n=X

Hence,  Pk e 3P(fE).   Moreover, since   V  is completely continuous,  Pk €
&^{kE) •

Let us now see that Pk £ ^b^iT); otherwise we would have Rk := Pk°S~x e

■^wb(fcA) • If qn is the A?th coordinate map on lx, we have

00 00

Rk(y) = Pk°S~x(y) = J2(VnoS-x(y))k = 5>„(y))fc      (y e h).
n=X n=X

The continuous symmetric ac-linear map Ak associated to Rk is given by

00

Ak(yx, ...,yk) = \YJiniy\).Qniyk)     {yx, ■■■ ,yk e/i).
n=X

Let Ck:lx -> Ls(k~xlx) be the operator defined by

Ck(x)(yi, ... , yk-x) = Ak(x, yx, ... ,yk_x)       (x,yx,... ,yk_x eh).

Then, if (e„) is the unit vector basis in lx , we have, for n ^ m ,

\\Ck(en) - Ck(em)\\ > \Ck(en)(en^-)\ e„) - Ck(em)(eH »7», en)\

= \Ak(e„, ik\, e„) - Ak(em , en , ^T.1', e„)\ = 1;

therefore, Ck is not compact.  Applying [5, Theorem 2.9], we conclude that

The same argument would give another proof of Theorem 3 on holomorphic

functions. Nevertheless, we present both since the one of Theorem 3 only

needs basic tools from Banach space theory and gives a concrete example of a

holomorphic function that could be useful in other applications.

The equivalence (a) o (b) is proved in [5, Proposition 2.12 and following

comment]. As far as we know, (c), (d), and (e) are new.

Assertions (d) and (e) of the last theorem show a different behaviour of

polynomials and operators. Odell proved (see [15, p. 377]) that E contains

no copy of lx if and only if every completely continuous operator on E is

compact. Theorem 4, however, is no longer true for Ac = 1 in (e), since for

every E, ^0wk(1£') = ^°WT)(XE) = E*. Even if F were restricted in (d) to be

infinite dimensional, the theorem would fail for Ac = 1 . Indeed, it is known [7,
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Proposition 3.7] that E contains no complemented copy of /i if and only if

there exists an infinite-dimensional F such that every completely continuous

operator from E to F is compact.

Finally, we give a corollary on operators. We say that an operator T.E-+E*

is symmetric if it verifies

(y, Tx) = (x, Ty)       (x,yeE).

The symmetric operators are studied in [2, §8] in relation to spectral properties

of algebras of analytic functions and Arens regularity. It is an open problem

whether the fact that every symmetric operator from E to E* is weakly com-

pact implies that every operator from E to E* is weakly compact too. Here

we give an answer to a similar question.

5.   Corollary. The following assertions are equivalent.

(a) E contains no copy of lx .
(b) Every completely continuous operator on E is compact.

(c) Every completely continuous operator from E to E* is compact.
(d) Every symmetric completely continuous operator from E to E* is com-

pact.

Proof,  (a) => (b) is included in (a) => (b) of Theorem 4.

(b) => (c) => (d) are obvious.

(d) => (a) Suppose E contains an isomorphic copy of /i . As in the proof of

Theorem 4, we can find a completely continuous operator V: E ->l2 extending

the inclusion T:lx -> l2. For every x € E we write V(x) = (Vn(x))™=x e l2

and define the 2-homogeneous polynomial P: E -> K by

oo

P(x) = Y^(Vn{x))2.
n=X

Let C:E —y E* he the associated operator given by

oo

(y, C(x)) = Y,Vn(x)Vn(y)       (x, y € E).
n=\

Since P £ ^swb(2£'), C is not compact [5, Theorem 2.9]. Obviously, C is

symmetric, and if (xm)^L, c E is a weakly null sequence, then

||C(xm)||= snp{\(y, C(xm))\:y e BE)

= sup{\(V(xm),V(y))\:yeBE}<\\V(xm)\\-\\V\\.

Since V is completely continuous, so is C.   □

The equivalence (a) ■& (h) is Odell's theorem [15, p. 377].
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