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LOCALLY FINITE-DIMENSIONAL SETS OF OPERATORS

LEONYA LIVSHITS

(Communicated by Palle E. T. Jorgensen)

Abstract. For any pair of Banach spaces V and W a "global" description is

given for the sets S of operators in B(V, W) satisfying the "local" condition

that the linear span of the set {T(x)\T € S} is finite-dimensional for every x

in V.

Introduction

Definition 1. A collection F of linear operators from a vector space V to a

vector space W is said to be locally finite-dimensional whenever the linear span

of the set Fx = {T(x)\T e F} is finite-dimensional for every x in V .

F is locally finite-dimensional exactly when span(/7) is locally finite-dimen-

sional because span(/rx) = (span(F))x . (We write span(,S) for the linear span

of a set S.)
If G c F and F is locally finite-dimensional then G is also locally finite-

dimensional.
If V and W are Banach spaces, we write B(V,W) for the space of all

linear operators from V to W that are bounded with respect to the usual

norms on V and W.

For each subset ft of B(V, W) we write ftfm.rank for the subset of ft con-

sisting of those operators that are of finite rank.

Probably the most famous example of a "global" characterisation for sets of

operators satisfying a given "local" property is that due to Kaplansky [1], which

states that locally algebraic bounded operators on Banach spaces are algebraic.

(Recently Larson [2] extended this result to the multivariate case.) A reductive

algebra problem is possibly the best-known example of an open problem of the

same kind.

In this note we present a "global" characterisation of locally finite-dimensional

sets of bounded operators between two Banach spaces. This question arose

naturally in the author's Ph.D. thesis [3] when continuity properties of Schur

multiplication maps with respect to various topologies were considered.

Results

Lemma 2. Let F = {Rn\n eN) be a sequence ofi finite rank operators from a

Banach space V to a Banach space W. Then F is locally finite-dimensional
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precisely when span(|J„eNRange(/?„)) is finite-dimensional; that is, precisely

when there exists a finite-dimensional subspace of W containing all the ranges

of operators in F .

Proof. The implication in one direction is obvious since Fx is a subset of

Un6NRange(/?„). For the converse, suppose F is locally finite-dimensional,

but span(|J„eNRange(/?„)) is infinite-dimensional. Then there is an infinite

subsequence G = {C7„|a? e N} of F such that Range(Gi) C Range(G[) +

Range(C72) C Range(Gi) + Range(C/2) + Range(Cr3) £ • • • (Sums here are vector

space sums.) Denote Range(Ci)+Range(G2)-l-hRange(G>) by Mk . Suppose

that there is an element x of V such that for every ac , Gk+X(x) is not in

Mk {Gk+x(x) e Range(6>+i) c Mk+X). Then {Gj(x)\j > 2} is a linearly
independent set because span({C77-(x)|2 < j < k}) c Mk for every Ac, while

Gk+i(x) is not in Mk . Thus span({C;(x)|2 < j < Ac}) is infinite-dimensional,

which is in contradiction with the assumptions. Therefore no such x exists. So

the intersection of the sets Gklx(Mk) is empty (here the superscript c stands for

the set theoretic complement and the superscript -1 stands for the preimage

under the given map). Now e>v = C\kenG~klx(Mk) = C\keN(Gklx^Mk))c =

(UfceN^fc+V^t))0' an<* therefore we can conclude that U*eN^;t+i(-^fc) = ^ •

Yet each Gk^(Mk) is a preimage of a finite-dimensional subspace of W under

a continuous map and, consequently, must be a closed subspace of V . By Baire

Category Theorem there exists an integer Acn such that Cr^A/^) = V; that

is, there exists an integer aco such that Range(C^+1) c M^. This is clearly

in contradiction with the choice of the Gk 's and the construction of the Mk 's

and so the proof is complete.   □

The following theorem clearly follows.

Theorem 3. A set F of finite rank operators from a Banach space V to a Banach

space W is locally finite-dimensional if and only if span(U/{6/r Range(/?)) is

finite dimensional.

Definition 4. We say that a subalgebra A of B(V, V) is strongly generated by

operators of finite rank if the strong closure of Ai\n rank is equal to A . If V is

a Hilbert space then for any algebra A strongly generated by operators of finite

rank, the weak closure of ^fin.rank is also equal to A .

Corollary 5. Let A be a subalgebra of B(V, V) strongly generated by opera-

tors of finite rank. Then A has an infinite-dimensional cyclic invariant linear

manifold (subspace) if and only if for each finite-dimensional subspace N of W

there exists x in V and an operator T in A such that T(x) is not in N;

that is, if and only if fior every finite-dimensional subspace N of W, A is not a

subalgebra of {S e B(V, V)\Range(S) c N}.

Proof. A subalgebra of B(V, W) has no infinite-dimensional cyclic invariant

linear manifolds exactly when it is locally finite-dimensional. If A has this

property then so does the algebra ^fin.rank . Consequently, by Theorem 3 there

exists a finite-dimensional subspace N of W such that N contains the ranges

of all operators in ^fin.rank • Then N must contain the ranges of all operators in

A since ^4fin.rank is strongly dense in A and N is closed. This completes the
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proof of the implication in one direction. The implication in the other direction

is clear.   □

Theorem 6 (Larson [2]). Let V and W be Banach spaces, and let G be a linear

submanifold ofi B(V, W). If the dimension of G is at most countably infinite

and if G^^^ = {0}, then there exists a separating vector for G in V.

Theorem 7. A subset S of B(V ,W) is locally finite-dimensional if and only

if there exist a finite-dimensional subspace L of B(V, W) (containing no op-

erators of finite rank) and a finite-dimensional subspace N of W such that

S is contained in the vector space sum L + {T e B(V, H/)|Range(r) c N}.

Moreover, N can always be taken equal to span(U7-€5|.nrankRange(7')). If V

and W are Hilbert spaces, then L can always be taken to be a subspace of

{T e B(V, W)\Range(T) c A/x}.

Proof. Without loss of generality we may assume that S is a linear manifold.

We assume the linear dimension of S to be infinite because if S is finite-

dimensional the result follows trivially.

Use span([JreSi.]]ra[ikRange(r)) as N. Note that N is then finite-dimensional

by Theorem 3 since .Shrank is locally finite-dimensional (being a subset of S).

Let L be any vector space complement of Shrank in S; that is, L(+)Sfin.rank =

S, where (+) indicates the disjoint vector space sum. (Note that such L can

always be constructed via an extension of a basis of Sfin.rank to a basis of S,

since there are no imposed topological requirements.) L contains no operators

of finite rank. Suppose L is infinite-dimensional. Pick any countably infinite-

dimensional linear submanifold D of L, and observe that D does not have

a separating vector in V since D is locally finite-dimensional (Dx is finite-

dimensional for every x in V; yet if xo is a separating vector for D then the

dimensions of D and DXo must be the same). Therefore by Theorem 6, D (and

thus L) must contain a nonzero operator of finite rank. This is a contradiction

to the construction of L. Thus L is finite-dimensional. The proof of this

part of the theorem is completed by observing that from the definition of N,

Sfm.rank is contained in {T e B(V, W)\Range(T) C N} .
In the case where V and W are both Hilbert spaces, pick any basis {Ex, E2,

2?3, ... , Et} of L, and observe that there are operators Qx, 0,2, Qi, ■■■ , Qt

in B( V, W) with ranges lying in N, such that the ranges of Ex + Qx , E2 + Q2,

and Ei + Qt, , ... , Et + Qt are all in N1-. Let L he the linear span of

{Ei+Qi, E2 + Q2, E3 + Q),... ,E, + Q,} within B(V, W). Note that L
is a finite-dimensional subspace of B(V, W) containing only operators whose

ranges lie in N1. Also L(+){T e B(V, ir)|Range(r) c N} = L(+){T e

B(V, W)\Range(T) c N}. Taking L instead of L provides us with the re-

quired result.   □

Corollary 8. Ifa linear submanifold S of B(V, W) is locally finite-dimensional,

then Shrank nas finite codimension in S.

Corollary 9. Let A be a norm closed subalgebra of B(V, V). If A does not have

any infinite-dimensional cyclic invariant subspaces, then the linear codimension

Q/"^fln.rank   W!  A   is finite.

The property of being locally finite-dimensional is defined in purely algebraic

terms, yet the theorems above contain assumptions about the topology of the
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underlying spaces. It is natural to ask whether the same results hold with no

topological assumptions (and therefore with different proofs). The answer to

this question is (surprisingly enough) negative as the following example, pro-

posed by Hadwin, demonstrates.

Example 10. Let V be any infinite-dimensional complex vector space, and let

E be a basis of V. Let S be the manifold of all linear transformations on

V having the elements of E as eigenvectors. Then S is locally finite di-

mensional, but there does not exist a finite-dimensional subspace M of the

space L(V) of all linear transformations on V and a finite-dimensional sub-

space N of V, such that S C M + L(V, N) (here we write L(V, N) for

{T e L(V)\Range(T) c N}).

Proof. S is locally finite-dimensional because every vector in V is a linear

combination of finitely many basis vectors in E, and consequently the span of

these same basis elements contains all the images of the given vector under the

linear transformations in S.

To complete the proof one can use Corollary 8 and demonstrate that the space

of all finitely nonzero sequences of complex numbers has infinite codimension

in the space of all infinite sequences of complex numbers. Alternatively, let TV

be any finite-dimensional subspace of V . Form quotient vector space V/N,

and note that E+N is a spanning set for V/N. Thus there exists a subset F of

E such that F + N is the basis of V/N. Since N has infinite codimension in

V, we conclude that F is infinite. Therefore the space of operators in S that

vanish on the complement of F in E is infinite-dimensional. It follows that the

dimension of the quotient space S/(SnL(V, N)) is infinite, and consequently

there does not exist a finite-dimensional subspace M such that S is contained

in the vector space sum M + L(V, N). Since N was chosen arbitrarily, the

proof is complete.    □

In conclusion we observe that even though the property of being locally finite-

dimensional is preserved under taking spacially induced Banach space isomor-

phisms, it is not preserved in general under taking (even isometric) Banach space

isomorphisms. Indeed, let H be a separable Hilbert space with a fixed basis

{et\i e N}, and let Si stand for the algebra {T e B(H)\ex spans Range(T)}

while S2 stands for {T e B(H)\ex spans Range(T')}, where T' is the op-

erator in B(H) defined by (T'(ej), ej) = (T(ej), et), for all i and j. The
map *F on B(H), defined by *¥(T) = T', is an isometric Banach space iso-

morphism which maps Sx to S2. Sx is clearly locally finite-dimensional, but

S2 is not, since for every vector x in H there is an element T of S2 such

that T(ex) = x.   D

Added in proof

The author would like to note that if V and W are any Banach spaces

then L in Theorem 7 can always be taken to be a subspace of the space {T e
B(V, W)\ Range (T) is a subspace of a closed complement of N in W}.
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