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ON SETS NONMEASURABLE
WITH RESPECT TO INVARIANT MEASURES

SLAWOMIR solecki

(Communicated by Andrew M. Bruckner)

Abstract. A group G acts on a set X , and p. is a G-invariant measure on

X . Under certain assumptions on the action of G and on p (e.g., G acts

freely and is uncountable, and p. is u-finite), we prove that each set of posi-

tive //-measure contains a subset nonmeasurable with respect to any invariant

extensions of p.. We study the case of ergodic measures in greater detail.

1. Introduction

The nonmeasurability of the classical Vitali's example of a Lebesgue nonmea-

surable set on the real line relies first of all on the invariance of the Lebesgue

measure. One can successfully and without any changes apply this construction

to a finite invariant measure on an abstract infinite group. This indicates that

a problem of finding a nonmeasurable set for an invariant measure may be of

a different nature than the general measure problem (the problem of finding a

nonmeasurable set for any, not necessarily invariant, diffused measure, i.e., dis-

proving the existence of real-valued measurable cardinals); however, Zakrzewski

in [9] and, earlier in the Abelian case, Pelc (see [7, Theorem 2.5]) constructed a

universal diffused semifinite invariant measure on any group of cardinality not

less than the first real-valued measurable cardinal. Nevertheless one may still

hope that some purely measure-theoretic properties of the Lebesgue measure on

the real line can be found, so for each invariant measure enjoying them there

exists a nonmeasurable set. Obviously these conditions have to be stronger than

semifiniteness.

In this direction Harazisvili in [6] and independently Erdos and Mauldin in

[4] proved that for any tr-finite invariant measure on an uncountable group there

exists a nonmeasurable set. Harazisvili observed that any set of positive measure

contains such a nonmeasurable set. Their arguments are still connected with the

general measure problem as they use Ulam's theorem that cox is not real-valued

measurable. Ryll-Nardzewski and Telgarsky in [8] found a nice refinement of

this result also using Ulam's method. Pelc in [7, p. 15] asked about a gener-

alization of Harazisvili's and Erdos and Mauldin's theorem: "Given a cr-finite
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invariant measure m on a group G, does every set of positive measure contain

a subset nonmeasurable with respect to any invariant extension of m ?" This

question is motivated by the fact that Vitali's example is nonmeasurable with

respect to any invariant extension of the Lebesgue measure. Pelc [7, Propo-

sition 2.3(')] answered the question in the affirmative if m is an invariant

extension of a regular tr-finite Haar measure on a topological group. Previ-

ously, Harazisvili had noticed it for m an invariant extension of the Lebesgue

measure.

In the present paper we give an affirmative answer to Pelc's question in full

generality. Our proof being free of Ulam's method shows that the nonexistence

of universal measures on small cardinals has little to do with the nonexistence

of universal er-finite invariant measures on groups. We extract also two other

properties of the Lebesgue measure on the Az-dimensional Euclidean space under

which the above question has an affirmative answer: if Lx has a dense subset

of cardinality less than the cardinality of the group or if the measure is ergodic

and nonatomic. In fact, we give sufficient and necessary conditions for ergodic

measures ensuring that the answer is affirmative.

The author thanks Piotr Zakrzewski for helpful remarks.

2. Conventions

Throughout the paper we assume that we are given a set X and a group G

acting on X. We write HY = {hx:x eY, h 6 H} for H c G, Y c X and
hY = {h}Y for AzeG, Y cX.

A measure p defined on a er-algebra of subsets of X (called the a-algebra

of //-measurable sets) is said to be invariant if hY is //-measurable for im-

measurable Y and h e G and p(hY) = p(Y). Where confusion cannot occur

we say measurable rather than //-measurable. Writing p(A) we implicitly as-

sume that A is //-measurable. For any A c X let p*(A) - sup{p(B):B is

//-measurable and B c A} and p*(A) = inf{p(B):B is //-measurable and

B D A} . If A is a //-measurable set, by p\A we denote the restriction of p to

the family of all measurable sets included in A . The action of G is p-free if

p*({x e X: hx = x}) = 0 for any aj e G\{e} (e = the identity of G). Notice

that the action of any subgroup of the group of all isometries of a Euclidean

space is p-free for any invariant extension of the Lebesgue measure.

Our convention is similar to that assumed in [6] and a little more general

than that normally assumed when one considers a group with a left-invariant

measure on it (as in Pelc's question). What we assume seems to be more natural

when one thinks of some groups of isometries acting on R" and, on the other

hand, it encompasses the case when the measure on a group is left invariant

only with respect to some subgroup as, e.g., in [7, Theorem 2.2].

A measure p is called an invariant extension of p if /7 is an invariant

measure, each //-measurable set is //"-measurable, and p(Y) = ji(Y) for any p-

measurable set Y c X. An invariant extension Ji of p is localizable if for any

//-measurable set Y C X with Ji(Y) > 0, there is a //-measurable set Yx c X

such that p(Yx) < oo and Ji(Y n Yx) > 0. We see that if a measure // has

a localizable extension, then p is semifinite, i.e., each set of positive measure

contains a set of positive and finite measure. Measures of this kind are called

semiregular in [7, 9]. Let us notice that a measure is semifinite if and only if it is
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a localizable extension of itself. A measure // on X is o-finite if X = (J~ , X„
where A^ are //-measurable with p(X„) < oo. It is clear that each extension

of a CT-finite measure is localizable. An invariant measure // is called ergodic

if for any two measurable sets A, B c X with p(A) > 0 and //(F) > 0 there

is an aj e G such that p(A n /z5) > 0.
Let p be an invariant measure on X. A set A is called infinitely covered

by H c G if H is countably infinite and there is a //-measurable set B of

finite measure such that each element of A belongs to infinitely many sets from

{hB:h e H}, i.e., A c (\™=x[}n>mhnB if H = {h„:n e N}, hn ± hm for
n ^ m . We say that a set is infinitely covered if it is infinitely covered by some

countably infinite H c G. A set V c X is called a Vitali set of a subgroup

H of C7 if V n //{.*} has exactly one element for any Jtel. Such sets are

sometimes called //-selectors.

All measures considered in this paper are assumed to attain at least one

positive value. We call a measure nontrivial if it attains at least one positive

and finite value.
\A\ denotes the cardinality of A . AAB denotes the symmetric difference

of A and B , i.e., AAB = (A\B) U (B\A). N stands for the set of positive

integers.

3. Small measures

Throughout this section we assume that the action of G is p-free for an

invariant measure //.

Lemma 3.1. Assume the action ofi G is p-free. Let A be infinitely covered by

H. If V is a Vitali set of a subgroup of G containing H, then Jit(V n A) — 0

for any invariant extension Ji of p.

Proof. Let H — {h„:n e N} with hn ^ hm for n ^ m. Denote by //'
the group containing H of which V is a Vitali set. Let B be a set of finite

//-measure such that A c (Xn=x{Jn>mhriB, and let A' be any //-measurable

set contained in V f\ A. Put V„ = A' n hnB. Then \J7=xK[vn c B. If
hmh~xv 6 Vm for some v € V„ and ra ^ az , then, in fact, hmh~xv = w

since distinct elements of K belong to different orbits of //'. Thus aj ~' F„ n

hmxVm c {x £ X:hmh~xx — x}. Since the action of G is p-free, we have

p*(h~x V„ n aj"1 Vm) = 0; therefore, we obtain

OO CO

oo > p(B) > ^//-(az-1 V„) = 5>(K„).
«=1 n=l

Then

oo / oo \ / oo \

o = umynvn)>fi(n U F« ^M'nfl U A»*)=nA'). □
n=m \m=l ">w      / \ m=X n>m J

Lemma 3.2. Let A contain a set ofi positive p-measure infinitely covered by H.

Then there exists a Vitali set V for the group generated by H such that Af)V

is nonmeasurable with respect to any invariant extension of p.

Proof. Let A' he a subset of A infinitely covered by H with p(A') > 0. Let
//' be the subgroup generated by H, and let E be the family of all orbits of
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H' intersecting A'. Let V° be a set contained in A', selecting one element

from each member of S. One can easily extend V° to a Vitali set V.

Assume that there is p , which is an invariant extension of // and for which

A n V is measurable. Then Ar\VnA'=Vf)A'=V° is //-measurable, too.
Since A' c H'V° and //' is countable, we have p(V°) > 0, which contradicts

Lemma 3.1.   □

Lemma 3.3. Assume G is uncountable. Let p be a-finite and let p(A) > 0.

Then A contains an infinitely covered set of positive measure.

Proof. Since p is cr-finite, A contains a measurable set A' of positive and

finite measure. Let X = [Jjtli Xk where the Xk are measurable with p(Xk) <

oo, and let

Gk = {heG:p(hXknA')>0}.

If all the Gk 's are countable, pick h e G\ \Jkx'=x Gk . Then

(CO \ CO

[JhXknA'\ <YMhXknA') = 0,
k=x /      fc=i

which is a contradiction. Thus for some Ac e N the set Gk is uncountable. We

can find e > 0 such that p(hXk r\A')>s for infinitely many aj , say for hn ,

aj e N  (hn ^ hm if aj ̂  ra). Then

H I A' n f| |J hnXk\ = mf//1 A' n |J /z„xJ > e > 0.   n
\ m=X n>m ) \ n>m J

For an uncountable G a special case (X = G) of the following theorem

gives the answer to the question of Pelc mentioned in the introduction. In the

case when G is countable the answer is straightforward; namely, each invariant

measure on G is equal to the counting measure up to a multiplicative constant

restricted to an invariant cr-algebra. Each such measure can be extended in the

obvious way to a measure defined on the cr-algebra of all subsets of G, so the

answer is negative; but if we take into account only diffused measures, as in

[7], then the answer is in the affirmative because there are no such invariant

measures on G.

Theorem 3.1. Let p be o-finite and invariant, and let G be uncountable and

act p-freely. Then each set of positive measure contains a subset nonmeasurable

with respect to any invariant extension of p.

Proof. This is an immediate consequence of Lemmas 3.3 and 3.2.    D

For a measure ra on X we denote by Lx(m) the space of equivalence

classes of summable (with respect to ra) functions on X with the usual norm

ll/H i = Jx |/| dm . This norm induces a metric, so L'(ra) may be considered

a metric space. The following lemma, useful in proving Theorem 3.2, does not

use the invariance of ra .

Lemma 3.4. Let Aj, i e I, be a family of measurable sets with a < m(Af) < oc

fior some a > 0 indexed (perhaps with repetitions) by a set I. Let Lx(m) have

a dense subset of cardinality less than \I\. Then for any e > 0 there exists an

infinite set {/„: aj e N} c / such that m(f)^Lx Ain) > a - e.
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Proof. Let /, c Lx(m) he the characteristic function of Aj, i e I. Since

Lx(m) is a metric space possessing a dense subset of cardinality less than |/|,

each discrete subset of L'(ra) has cardinality less than |/| (see [3, Theorem

4.1.15, p. 318]). Thus, again because L'(ra) is metric, there is a sequence

Xi„, ai e N, with in ^ im for aj ^ ra, which converges in Lx(m) to some

function /. Since we can choose a subsequence of Xi„ which converges to /

pointwise and also since m(Aln) = ||/,-J|i tend to ||/||i, we can assume that

/ is a characteristic function of a measurable set A with m(A) > a . Choose

a subsequence Xu > nh ^ «/t2 f°r ^i ¥" k2, such that ||/- Xi„ 111 < e/2k.

Then m(A\Aj„k) < e/2k , whence /w^fl^i^) < e; thus /nfe^) >
a-e.   n

The cr-finiteness of ra is implied, at least when ra is semifinite, by the

separability of L'(ra). The following theorem shows that the countability as-

sumption in the second case may be relaxed.

Theorem 3.2. Let m be an invariant measure on X. Suppose Lx(m) has a

dense subset of cardinality less than \G\. Let p be an invariant localizable

extension of ra. Assume that G acts p-freely. Then each set of positive p-
measure contains a subset nonmeasurable with respect to any invariant extension

of p.
Proof. Let A he such that p(A) > 0. Find B with oo > m(B) = a and
p(A n B) > 0. Let p(A n B) > 2e > 0, and consider the family gB , g e G.
By Lemma 3.4 we can find a set {gn: n e N} c G with g„ ^ gm for az ̂  ra

such that m(f)™=l gnB) > a - e. Put aj„ = gx~l g„ . Then, for each n e N,

V{B n PC, h„B) >a-e; thus,

pUnf] \JhnB\ >//((^nF)\(F\flAZ„Fj)
\ m=Xn>m J \ \       n=X J J

>p(ACiB)- L(F)-//fFnf|Az„FJ j

> 2e - (a - (a - e)) — e > 0.

We obtain the conclusion of the theorem by Lemma 3.2.   □

Since each semifinite measure is a localizable extension of itself, we have the

following corollary.

Corollary 3.1. Let p be invariant and semifinite, and assume that G acts p-

fireely. Suppose Lx(p) has a dense subset ofi cardinality less than \G\. Then

each set of positive measure contains a subset nonmeasurable with respect to any

invariant extension of p.

4. Ergodic measures

In the proof of the next theorem we will need some lemmas, the first of which

is due to Pelc [7, Lemma 3.5] and the second to Bierlein [2, Satz 2B]. For a

simple proof of Bierlein's result see [1, Corollary 2].

Lemma 4.2 (Pelc). Let a group H act on a set A, and let // be a finite H-

invariant measure on A. Assume A = U"=) Aj and p*(A, n Aj) = 0 if i ^ j.
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Assume further that fior each heH and each i < n there is j < n with hA, =

Aj. Then there exists an H-invariant extension ofi p fior which Ax, ... , An are

measurable.

Lemma 4.2 (Bierlein). Let {Ac. i e N} be a countable partition of A . Let p

be a finite measure on A . Then there exists an extension of p for which Ai,

i e N, are measurable.

Lemma 4.3. Let ra be an invariant ergodic measure. Let A be measurable,

and let B be measurable of positive measure. Then there exists a countable set

K c G such that
m(A) = m(AHKB)

and

ra [ h'B n I ̂ \    [J    hB ] I > 0  for any h' e K.
\ \       h€K\{h'}        J J

Proof. We choose recursively ajq , a being an ordinal, until the condition

m (haB n (a\\J hyB)) > 0

cannot be fulfilled. Let a = sup{a < cox:ha is defined}. If a < cox , then

m(A\(ja<-haB) = 0 because ra is ergodic, and we get the conclusion putting

K — {ha:ha < a}. If a = cox then for sufficiently large y < cox we have

m(A) = m(A n \Ja<y haB) = oo and K = {ha: a < y} is as required.   D

Lemma 4.4. Let A be a p-measurable subset of X such that p(hAAA) — 0 or

p(hA rxA) = 0 fior all h e G. Let H = {h e G:p(hAAA) = 0}, and let px
be an H-invariant extension ofi p\A to a a-algebra ofi subsets ofi A . Then there
exists an invariant extension p2 of p such that p2\A = px .

Proof. Any element of the invariant cr-algebra generated by the cr-algebra

of //-measurable sets and the a-algebra of px-measurable sets is of the form

\JheKhAh Ufi for some countable K c G with aiiAiJ1 £ H for aji ^ h2,

hx, h2 e K, where B is //-measurable and Ah c A are px-measurable. Since

U/,g/c hAn c U/te/c hA> we can assume that B n fl/je/c hAh = 0 . Moreover, if

hxh^x 0 H, we have p(hxA nh2A) = 0. This allows us to put

p2({JhAhUB\ =Y ^Ah) + H(B).
\h€K )       h&K

It is not difficult to check that p2 has the desired properties.   D

In order to formulate the next theorem we have to introduce some new no-

tions. Q c X is called an atom of a measure m if m(Q) > 0 and m(A) = 0

or m(A) = ra(Q) for any ra-measurable set A c Q. A measure is called atomic

if it has an atom and nonatomic if it is not atomic. Now we define a notion
which will allow us to divide the class of all atomic invariant ergodic measures

into two subclasses. For an invariant measure ra and an ra-measurable set Q

we put

[Q] = {h e G:m(hCiAQ) = 0}.

It is easy to see that [Q.] is a subgroup of G.
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In the following two observations by #(A) we mean the cardinality of A if

A is finite and oo if A is infinite.

Observation 4.1. Let m be invariant and ergodic, and let fii, Q2 be two atoms

of ra. Then [fii] and [Cl2] are conjugate, thus, in particular, #([f2i]) =

#([fi2]).

Proof. By ergodicity there is aj e G with ra(/zQi n^) > 0, which means

m(hClx n fi2) = ra(Qi) = ra(fi2) as ra is invariant and fii, fi2 are atoms.

Now it is easy to check that h[Clx]h~x = [fi2].   □

The above observation indicates that there are basically two types of ergodic

atomic measures. We call an ergodic atomic measure a measure of type 1 or of

type 2 depending on whether [fi] is finite or infinite for any (or equivalently

some) atom fi. Ergodic measures of type 1 will turn out to be exceptional from

our point of view (see Theorem 3). In the next observation we look closer at

their nature showing that nontrivial measures of type 1 and counting measures

behave in a very similar manner.

Observation 4.2. Let ra be a nontrivial ergodic measure of type 1. Then there

exists a positive constant a e R such that m(A) = a#({Aj e G: m(hQ\A) = 0})

for any atom fi and any m-measurable set A .

Proof. Let fi be any atom. Since ra is nontrivial and ergodic, ra(fi) < 00.

Put H = [fi]. Then H is finite. Put a = ra(fi)/#(/7). By Observation
1 and its proof a does not depend on fi. Take any ra-measurable set A.

We prove that m(A) = a#({/z e G:m(hCl\A) = 0}). This is obvious when

m(A) = 0, and when m(A) = 00 it follows immediately from Lemma 4.3 since

ra(fi) < 00. Assume 0 < m(A) < oc. Applying Lemma 4.3 to A and fi and

taking into account that fi is an atom, we obtain a finite set K c G such that

m(AAKil) = 0 and ra(Aj'fi n \JheK\{h'} hQ) = ° for any h' e K. This implies

that hxH n h2H = 0 for hx, h2 e K with aji ^ aj2 , and, since fi is an atom,

m(hCl\A) = 0 if and only if aj g aj'// for some h' e K . We finally get

m(A) = ra ( (J Ajfi j =Y m(hil) = m(Q)#(K) = a#(H)#(K)
\h€K        J       heK

= Y #(hH) = a*dh e G- m(hO\A) = 0}).   □

Since, as is well known (see, e.g., [5, Exercise 59.4, p. 261]), Haar mea-

sures on locally compact groups are ergodic, the following theorem provides an

abstract version of theorems with topological assumptions (see, e.g., [7, Propo-

sition 2.3]).

Theorem 4.1. Let ra be an invariant ergodic measure. Let p be its localizable

extension. Assume that the action of G is p-free. Then each set of positive p-

measure contains a subset nonmeasurable with respect to any invariant extension

of p if and only if m is nonatomic or atomic of type 2.

Moreover, if ra is of type 1 then for each set D c X with p*(D) < oc there
exists an invariant extension of p for which D is measurable.

Proof. First we prove the implication from the right to the left. We have two

cases.
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Case 1. m is nonatomic. Let A he such that p(A) > 0. We can find C with

ra(C) < oo and p(A n C) > 0. By nonatomicity using the standard argument

we find Bk such that 0 < m(Bk) < l/2fc . By Lemma 4.3 there are sets Kk c G

such that m(C\\Jh€K hBk) = 0. Since m(C) > 0, lim^^ \Kk\ = oo. Thus

K = U£!i Kk is infinite. Let K = {hn: n e K} with hn ^ hm for n ^ m . Let

fi = UfcLi 5fc ■ We haye m(B) <oo. Notice that

// |C\ I J az„F) < inf/z( C\ I J az„^ | < inf m/2k = 0
\ v^ j        k€N      \ ^ I        k€N
\       n>m / \       n>m /

for each meN. Thus we obtain

n[Anf\ |J Kb\ >//UnCnf| |J az„f )
\ m=Xn>m ) \ m=X n>m )

=  inf p I Af)Cn I I az„F I
meN      \ I

\ n>m /

> p(A n C) - sup p [ C\ |J az„F J =p(Ar\C)>0,
m€N      \       n>m J

and we are done by Lemma 3.2.
Case 2. m is atomic of type 2. Let fi be an atom of ra. Then [fi] is

infinite. Let {aj„:aj e N} c [fi] with h„ ^ hm for aj ^ ra. Let A he p-

measurable with p(A) > 0. Find an ra-measurable set B with p(A n B) > 0

and m(B) < oo. By the ergodicity of ra, using Lemma 4.3 we can find a

countable set K c G with ra(F n /V/fi) = m(B) = p(B) > 0. Thus there is

aj e G with p(A n Ajfi) > 0. We have

// (Ajfi n f| |J hhnYi j = // (fi n f| [J Az„fi J = //(fi).
\ m=Xn>m / \ m=Xn>m /

Thus p(A n f1m=i Un>m AiAj„fi) > 0, and we get the conclusion by Lemma 3.2.

It is clear that the "moreover part" of the theorem is just a stronger form of

the implication from the left to the right; thus, we will be done if we prove this

part of the theorem only. Assume that ra is atomic of type 1. Let H = [fi]

for an atom fi. Then// is finite. Let fi = C\n€H Azfi. Then ra(fi\fi) = 0 and

Ajfi = fi for aj 6 H and ra(/zfi n fi) = 0 for aj e G\H. Now we consider

the group H as acting on fi. Let V he a Vitali set of H with respect to

this action. Since H acts //-freely, p*(hxV n h2V) - 0 for aj( ^ aj2 . Let

{Ai, ... ,An} = {hV:he //} with p*(At n Aj) = 0 for i^j. Consider //|fi.
Then the conditions_of Lemma 4.1 are fulfilled and we obtain an //-invariant

extension px of //|fi for which hV, aj e H, are measurable. By Lemma 4.4

we obtain an invariant measure p2 with //2|fi = px which extends //. Denote

by // the measure completion of p2. Obviously, // is an invariant extension

of p for which V is measurable.

Let A he a set of finite //-measure containing D. Since p is a localizable

extension of ra, an easy argument shows that there is an ra-measurable set

A' of cr-finite measure with p(A\A') — 0. Lemma 4.3 implies that there is

a countable set K c G with m(A'\KYl) = 0.  Thus Ji(D\KHV) = 0.   Put
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K' = KH. It is enough by Lemma 4.4 to extend Ji\V to a measure px on

V for which h~xD n V, h e K', are measurable. (Here the group {h e

G:p(hVAV) — 0} is trivial; thus, we do not have to worry about any invariant

properties of px.) Let K' = {h„: n e N} , and let D^ = f]k(-N \Jn>k h~xD n V .
Then

F>coC f| \Jh~lAnv.
k£N n>k

Notice that if h~lh2 e H and hx ^ h2 then p*(hxV n aj2F) = 0 and if

hx~lh2 £// then hxVnh2V c hxQ.nh2Q. and ra(Aj1finAJ2fi) = 0; whence, in

any case JL(hx V n h2V) = 0 if hx ̂  h2 . Therefore,

CO

Y J"(^ n hn V) < Ji(A) < 00.
n=X

Thus, as //(F) < oo, we have

JM f| [jh;lAnv) <infNYnh;lAnV) = mfNYmnhnV) = 0.
\k€N n>k I n>k n>k

Thus //(.Dco) = 0. Moreover, each point in F\F)oo belongs to finitely many sets

in {h~xDC\ V: n e N} ; whence, the partition {A„:n e N} of VXD^ generated

by this family is countable. Hence each cr-algebra containing {An:n e N} and

all //-measurable sets also contain {h~xD n V: n e N} . By Lemma 4.2 there

is an extension px of JL\V for which A„ , n e N; whence, also h~xD n V,

n e N, are measurable,   n

It is clear that each nontrivial invariant ergodic measure is semifinite. Thus

we obtain the following corollary.

Corollary 4.1. Let p be a nontrivial nonatomic invariant ergodic measure for

which the action of G is p-free. Then each set of positive measure contains a

subset nonmeasurable with respect to any invariant extension of p.
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