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Abstract. We examine the relationship between the complexity of the word

problem for a presentation and the complexity of the problem of determining

the length of a shortest word equivalent to a given word. Our main result is

that the length of the element represented by a word in a free solvable group

can be determined in polynomial time.

Let £P = (X\R) be a group presentation. Let F be free on X, let N be the

normal closure of R in F, and let G — F/N be the group presented by £P . A

word over AT is a finite string of symbols x and x_1 (x e X). The length of

a word w is the length of w regarded as a string. Clearly, each word over X

represents a unique element of G. The length of an element g e G is defined

to be the number of symbols in any shortest word representing g.

Let W be the Cayley graph of G with respect to the presentation 3° ; that

is, £? is the graph with vertex set G and (directed) edge set E = G x X, where

the edge e = (g, x) goes from g to gx . We call g the initial vertex of e,

denoted i(e), and gx its terminal vertex, denoted r(e). The generator x is

called the label of e. The length of a group element g is then the distance

(under the graph metric) from 1 to g in W .

The Word Problem W(&>) for a presentation 3° asks for an algorithm which

decides, given any word w over X, whether w represents the identity of G,

and its Length Problem SfiJP} asks for an algorithm which determines, given

such a word w , what the length of the corresponding group element is.

It is clear that W = W(&>) is solvable if and only if S? = &{&>) is; if
Sf is solvable, then W is, as well, since the identity is the only element of

length 0. In fact, W is no more complex than J?. On the other hand, if

W is solvable, then so is £?; given a word w, one can construct, one after

another, the spheres of the Cayley graph of G. Each time a new element e

is constructed, one can solve W for e~lw . Since, in general, the number of

elements of a given length in a group is an exponential function of the length,

this solution of S? may be exponentially more complex than the solution of

W.
In fact, the following (metabelian) example of Parry [4] shows that it is pos-

sible for a presentation to have a word problem which is solvable in polynomial

time and a length problem which is yf ^-complete.

Received by the editors January 20, 1992.

1991 Mathematics Subject Classification. Primary 20F10.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

27



28 C. DROMS, J. LEWIN, AND H. SERVATIUS

Example. Let G be the wreath product Z2 \ (Z x Z), given by the standard

infinite presentation

(t,a,b\[a,b]= I, t2 = 1,  txty = tytx for each x, y e gp{a, b}).

Each element of G can be expressed in the form

tyHn---ty*x,

where x e gp{a, b} and yx, ... , yn are distinct elements of gp{a, b}, and

this expression is unique up to the order of the conjugating elements y,. Now it

is clear that any word of length n in a, b , and t can be rewritten in this form

in at most 0(n2) steps by commuting all the a's and b 's to the right of all the

/ 's. Since two such words represent the same element of G if and only if the

respective lists of conjugating elements are permutations of one another and the

values of " x " are the same, the word problem is solvable in time 0(n2).

On the other hand, the length problem for G can be reduced to the Euclidean

Traveling Salesman Problem in the integer lattice in the plane, the Cayley graph

of the group (a, b\[a, b] = 1). An element

tyHyi---ty"x

can be represented by a path in the integer lattice which starts at 1, stops at

each vertex y, to "light a lamp", and then proceeds to x [4].   (It is for this

reason that this group has been called a "Lamplighter Group" by J. Cannon.)

Finding a shortest word representing an element of the form

fl\ (Vi ... tym

is thus equivalent to finding a shortest circuit in the integer lattice in the plane
which begins at the origin and passes through each of the vertices corresponding

to the y,, a problem which is known to be jV ^-complete [3].    □

However, if a group has polynomial growth with respect to the given gen-

erators and if the word problem can be solved in polynomial time, then the

length problem is solvable in polynomial time, as well. Suppose that the num-

ber of elements of length n is 0{nk) for some positive integer k . Then having

constructed the (n - l)-sphere of &, one can construct the ^-sphere in time

0(n2kw(n)), where w(n) is the time needed to solve the word problem for two

words of length <n. Given a "standard" word Wg of length n-\ representing

each element g e G of length n- 1 , form the words Wga and Wga~l for each

generator a. Each of the 0{nk) new words must be compared to the 0{nk)

standard words of length n - 1 and n - 2 , as well as to each of the other new

words, resulting in 0(n2k) solutions of the word problem for words of length

< n . Hence, the «-ball of ^ can be constructed in polynomial time, and since

the word problem is solvable in polynomial time, so is the length problem.

In certain cases—free groups, for example—the length problem can be solved

in polynomial time even though the group grows exponentially. In fact, this is

true of any hyperbolic group with exponential growth, since in this case there

is a quadratic algorithm for computing geodesic representatives (see [2]).

The purpose of this note is to prove
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Theorem 1. Let 9° — {X\R) be a presentation with F free on X and N the

normal closure of R. If the length of the element of G — F/N represented by a

word w of length n can be determined in time 0(t(n)), then the length of the

element of G{ = F/N' represented by w can be determined in time 0(n2t{n)).

For example, if the word problem for F/N can be solved in polynomial time

and F/N is infinite, then F/N' has exponential growth, but its length problem

can be solved in polynomial time. Similarly, if N^ denotes the A:th derived

group of N, then the groups F/N^ (k > 2) all have exponential growth and

polynomial length problem. In particular, the word problem for the free abelian

group F/F' has a word problem solvable in linear time, so we have

Corollary 1. If F is freely generated by the finite set X, and if F^ denotes the

kth derived group of F, then the length of the element of F/F^ represented

by a word over X of length n can be determined in time 0(n2k~l).

Let W be the Cayley graph of F/N. Then the fundamental group of W is
naturally isomorphic to N—the label of any edge path in W can be interpreted

as an element of F , and the path is closed precisely when this element belongs

to N. Thus, the abelianized group N/N' is the first homology of &, so a path

P in ^ represents an element of N' if and only if it is homologically trivial.

Given a word w over X, let w denote the element of G = F/N represented

by it; and let Pw denote the edge-path in & beginning at the vertex 1 and

labeled w. Note that w is the ending vertex of Pw. We will define two

functions ew:E —> Z and vw: V —> Z, respectively the "edge numbering" and

the "vertex numbering" associated to the path Pw .

For each edge (g, x) e E = Gx I, we set ew(g, x) equal to the net

number of times the edge (g, x) is traversed by Pw—each traversal from g

to gx counting +1 and each traversal from gx to g counting -1. Since

W is a one-dimensional complex, Pw represents the trivial homology class in

Hi (W) if and only if ew is identically 0.
Given two words w and u, a straightforward computation shows that, for

any edge (g, x) of W ,

(1) ewu-t{g, x) = ew(g, x) - eu{fm~xg, x).

For each vertex g e V = G, define vw{g) equal to the net number of

"entrances into" the vertex g of W along the path Pw ; that is,

Me?) =     J2    £"'(e) ~    H   £'"(e)-
g=z(e) g=i(e)

(Note in particular that vw is completely determined by ew.)

It is clear that if w is any word, then vw satisfies "Kirchhoff's Law", that

is, either uw is identically 0 (if w = 1), or ^,,,(1) = -1, vw{w) = +1, and

vw{h) = 0 for each other element h e G (if w ^ 1).

Lemma 1. Two words w and u over X represent the same element of G\ —

F/N' if and only if the functions ew and eu are identically equal.

Proof. If w and u are equivalent mod N', then w = u and ewu-i = 0. Thus,

by (1), ew = eu.



30 C. DROMS, J. LEWIN, AND H. SERVATIUS

Conversely, if ew = eu , then w = u, since the edge paths Pw and Pu must

end at the same point. Therefore, ewu-\ = 0, by (1), so Pwu-\ represents

0 e Hx (W). That is to say, w = u (mod N').   □

Let n:E —> Z be an arbitrary integer-valued function on the edge set E of

W . Then we can define a function n: G —* Z by setting

n(g) =  ^Z n(e) - Y, n^~
g=x(e) g=i(e)

We will say that the function n is geometric if YletE \n(e)\ < °° an(* the
associated function n on G satisfies KirchhofPs Law. If n is geometric and

n is zero, we will say n is closed, otherwise n is open.

It is clear that if w is any word over X, then ew is geometric, e~^ = uw ,

and ew is closed if and only if w = 1 . Conversely, given an arbitrary edge

numbering n: E —> Z, we shall see that there is a word w over X with ew = n

if and only if n is geometric and that the corresponding edge path Pw is closed

if and only if n is closed. Any word w with ew — n will be said to realize n

(and we remark that w is not unique).

Given n:E —> Z, let supp(«) denote the subgraph of W consisting of all

edges e with n(e) ^ 0, together with their end points, and let supp+(«) denote

the graph supp(n) U {1}.

Lemma 2. Let n be a geometric numbering on W with supp(«) connected.

(1) If n is closed, then, for each v e supp(n), there is a loop in & based

at v which traverses each edge e exactly n(e) times.

(2) If n is open, then 1 e supp(«), and there is a path in *£ beginning at

1 which traverses each edge e exactly n(e) times.

In particular, no edge is traversed in both directions by such a path.

Proof. The proof of the lemma is essentially the same as the proof that any

connected graph in which the vertex degrees are all even possesses an Euler

circuit.   □

Note that the length of any such path is Yle&E \n(e)\.

Let n be a geometric (closed or open) numbering on E. Let Si, s2, ... , sr

be the connected components of supp+(«), where Si is the component con-

taining 1. It is clear that if n is open, then the unique vertex v with n(v) = +1

lies in s\ .

For each i, j < r, let djj = djj be the distance in §? from s, to Sj, and let

Pij be a path in W from s, to Sj of length djj, where, for convenience, we

take Pji to be the inverse of p,-7. Let v,j be the initial point of p,j so that the

terminal point of p,j is Vjj. (See Figure 1.)

Let Kr be a complete undirected graph with vertices k\,... ,kr in 1-1 cor-

respondence with the Si, and assign the weight d,j to the edge joining k, and

kj . Let T(n) be a minimal-weight spanning tree for Kr, and let W(n) be the

sum of the weights of the edges of T(n)—note that, while T(n) is not uniquely

determined by n, W(n) is. It is clear that any path in f which realizes n

must have length at least Yl,e€E\n(e)\ + 2W(n). Any such path having this

length will be called a minimal realization of n .

Lemma 3. If n:E —► Z is geometric, then there is a minimal realization of n

beginning at the vertex 1 in &.
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• kj

\ &]
5j     v—\

• >   fc,-

Si

Figure 1

Proof. The proof is by induction on r, the number of components of supp+(«).

If r = 1, the result follows from Lemma 2.

If r > 1, choose a pendent vertex kj of 7(/i) such that 1 & Sj, and let

ki be the vertex of T(n) to which /c, is adjacent. Define new integer-valued

functions «' and n" on £ as follows:

n'{e) = in{e)   *e*s»

{ 0        otherwise;

|«(,)    if. 6,,,

I 0        otherwise.

It is clear that n' and n" are geometric, n" is closed, supp(«") = Sj, and

supp+(«') has r - 1 components. Furthermore, W(n') = W(n) - djj. Thus,

there is a minimal realization p' of n' beginning at 1, whose length is

^2\n'(e)\ + 2(W(n)-du).
e€E

The vertex «y lies on the path p'. To get a path which realizes n , follow p'
until Vjj , follow pij to Vjj e Sj , follow a minimal realization of n" beginning

and ending at Vjt (which exists by Lemma 2, since n" is closed), follow p~j[

back to V/j, and then proceed along p'. Clearly, the length of this path is

Y,e€E \n(e)\ + 2W(n), so it is a minimal realization of n .   □

Theorem 2. Let w be a word over X. Then the length of the element of G\ =

F/N' spelled " w " is £,e£ \ew(e)\ + 2W(ew).

The ALGORITHM

In this section we will prove Theorem 1, which we restate here for conve-

nience.

Theorem 1. Let 3° = (X\R) be a presentation with F free on X and N the

normal closure of R. If the length of the element of G = F/N represented by a

word w of length n can be determined in time 0(t(n)), then the length of the

element of Gi = F/N' represented by w can be determined in time 0(n2t(n)).

Proof. Let & denote the Cayley graph of G corresponding to the presentation

& . We will describe an algorithm to solve the length problem for G\ .
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Let w be a word over X of length n and let p be the path at 1 labeled w.

For i = 1, 2, ... , n , let Wj be the z'th letter of w and let w' be the i-prefix

of w ; that is, w' = WiW2■ ■ ■ wt. Let v{, v2, ... , vk be the vertices visited

by p . (Note that k will, in general, be < n , since p may visit a single vertex

more than once.)

In the first part of the algorithm, we will scan w from left to right and

construct two matrices: D, whose ij-entry will be the distance in W from

the vertex «/ to the vertex Vj, and S, whose ij-entry is the net number of

traversals of the edge from vt to Vj (0 if vt and Vj are not adjacent.) Note

that D is symmetric and that, for i ^ j, the ij- and j /-entries of S are

additive inverses.

Suppose that we have read the prefix w'~l and that the matrices S and

D have been constructed for the word w'~x. Let 1 = v\, v2, ... , vi be the

vertices visited by the path at 1 labeled w'~i in W, and let v be the end vertex

of the path at 1 labeled w'. At the ith step, we read w, and

(1) solve W for &  I times to see if the current vertex v is new;

(2) if v is new, set vi+i = v , add row / + 1 and column / + 1 to D, and

compute the entries in the new row and column by repeatedly solving the length

problem for &;
(3) if v is new, add row / + 1 and column / + 1 to S, and set their entries

toO;
(4) add or subtract 1 to the appropriate entries in S to reflect the fact that

the edge from Vj to v has been traversed ± 1 times more.

Note that for each of the n iterations, the first two steps require at most
0(nt(n)) steps each, the third requires at most O(n), and the fourth a constant
number of steps. Thus, the first part of the algorithm can be accomplished in

time at most 0(n2t(n)).

In the second part of the algorithm, we
(1) identify the connected components of the graph with incidence matrix

M obtained by setting each nonzero entry of S to 1;

(2) compute the distances in £f between these connected components, by

examining D;

(3) identify a minimal spanning tree for the complete graph whose edge

weights are the numbers computed in the previous step.

Here, each step requires at most 0(n2) steps (see, e.g., [1]). Thus, the whole

algorithm requires time at most 0(n2t(n)).   □

Corollary 1 now follows from the fact that the length problem can be solved

for F/F' = F/FW in time 0(n).
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