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APPROXIMATE CONTINUITY
AND LINEAR APPROXIMATE CONTINUITY

CASPER GOFFMAN

(Communicated by Andrew M. Bruckner)

Abstract. A contrast between approximated continuity and continuity is ob-

tained similar to the classical one for derivatives.

1

One of the foremost achievements in the theory of real functions is the work

of Stepanoff on approximate differentiation of functions of several variables. It

was known early that functions of two variables could have partial derivatives

almost everywhere but be nowhere differentiable. Such an example, absolutely

continuous in the sense of Tonelli, and accordingly having partial derivatives

almost everywhere, was given by Stepanoff [1], which had a total differential

nowhere. Then Stepanoff proved the remarkable fact that if / is a measurable

real function of n variables, then f has an approximate total differential al-

most everywhere if and only if f has approximate partial derivatives almost

everywhere [2].

We note that a similar development holds for continuity and linear continuity,

ordinary and approximate.

We define linear continuity and linear approximate continuity. These notions

are not coordinate invariant but are defined relative to a given system of rectan-

gular coordinates in euclidean «-space. A real function is linearly continuous if

its restriction to each line parallel to a coordinate axis is a continuous function

relative to the line. A similar definition holds for linear approximate continuity.

Let / be a measurable real function of n variables. It is well known that /

is approximately continuous almost everywhere. In §2 we shall note that if /

is measurable it is also linearly approximately continuous almost everywhere.

2

It is known that if S is measurable then the linear density of 5 is 1 in every

coordinate direction at almost every point in S [3]. This implies that if / is

measurable then / is linearly approximately continuous almost everywhere.

Theorem I. If f is measurable then f is approximately continuous almost ev-

erywhere if and only if f is linearly approximately continuous almost everywhere.
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3

In contrast, we show that a function / may be linearly continuous every-

where and be discontinuous on a set of positive measure. Let n = 2. We start

with a model function. Let 5 be a line segment starting at (xo, yo) at an angle

n/4 with the positive x-axis. Let {(xn, yn)} be a sequence on s converging to

(xq , yo) • Construct a linearly continuous function / which is 0 on the horizon-

tal and vertical lines through (xq, yo) and whose value is 1 at each (x„ , y„).

Then / is discontinuous, with oscillation 1, at (xo, yo) ■
Let Q = [0, 1] x [0, 1], and let S C Q, with S = Ax B, where A and

B are Cantor type sets of positive measure. We define a linearly continuous f

which is 0 on S and has oscillation 1 at every point of 5. The construction is

made as follows.
Let /„ , Jm be components of the complements of A and B , respectively.

Let (x„ , ym) be the lower left-hand end point of Inx Jm , and let the linearly

continuous / be 1 on a sequence in /„ x Jm converging to (x„ , ym), n , m =

1,2,.... The function / is linearly continuous but is discontinuous at every

point in S. (The set S is an example of a sectionally zero-dimensional set, a

type of set introduced in [4] in order to extend homeomorphisms in dimension

greater than 2.)

4

We note that, for n = 2, linearly continuous functions are of Baire class 1.

Suppose / is linearly continuous on Q - [0, 1] x [0, 1]. For each m , let

fm(k/m,y) = f(k/m,y)    forfc = 0, 1,... , m, y e [0, 1].

For k/m < x < {k + l)/m, extend fm linearly from {k/m, f(k/m)) to

((k + l)/m, f{{k + l)//w)) • Then each fm is continuous and {fm} converges

uniformly to / in x for every y.
A corollary is that a linearly continuous function cannot be discontinuous

everywhere.

5

We cite the following questions.

(i) In connection with Theorem 1, is it true that every real / which is

linearly approximately continuous almost everywhere is measurable?

(ii) What are the Baire properties of linearly continuous functions for n >

2?
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