ON φ-EXTENSIONS OF DEVELOPABLE SPACES

T. MIZOKAMI

(Communicated by Franklin D. Tall)

ABSTRACT. We prove that the φ -extension of Moore spaces is a developable space.

1. Introduction

In this paper, all the spaces are T_1 and all mappings are continuous and onto. The letter N denotes the positive integers.

For a class $\mathscr C$ of topological spaces, Klebanov called a space Y the φ -extension of $\mathscr C$ if Y is the image of a product space of members of $\mathscr C$ under a closed mapping $[K_1]$. He proved that a φ -extension of metric spaces is metrizable if it is first countable $[K_1]$, Theorem 6; K_2]. From this result, the following question arises: For what classes $\mathscr C$ does the φ -extension Y of $\mathscr C$ belong to $\mathscr C$ if Y is first countable? The author recently obtained positive results for classes of Lašnev spaces, stratifiable spaces, and paracompact σ -spaces but posed the question for the class of developable spaces [M].

In this paper, the author gives a positive answer to the question when $\mathscr E$ is a class of Moore spaces, that is, regular developable spaces. A *developable space* is a space X with a sequence $\{\mathscr U_n:n\in N\}$ of open covers such that, for each point $p\in X$, $\{St(p,\mathscr U_n):n\in N\}$ is a local base at p in X.

For the sake of brevity, we write $[X_{\alpha}, A, f, Y]$ for the situation that Y is the image of the product space $\prod \{X_{\alpha} : \alpha \in A\}$ under a closed mapping f. For an index set A, the product space $\prod \{X_{\alpha} : \alpha \in A\}$ is briefly denoted by X(A). For a family $\mathscr H$ of subsets of a space X and a point $p \in X$, we write

$$C(p, \mathcal{H}) = \bigcap \{ H \in \mathcal{H} : p \in H \}.$$

2. Main result

To state the main theorem for developable spaces, we need some terminology. Let X be a space. A pair family $\mathscr P$ of X is a family of paired subsets $P=(P_1,P_2)$ of X such that $P_1 \subset P_2$, where P_1 is closed and P_2 is open in X. $\mathscr P$ is called discrete in X if $(\mathscr P)_1 = \{P_1 : P \in \mathscr P\}$ is a discrete family in X, and is called σ -discrete in X similarly. $\mathscr P$ is called a pair network for X if

Received by the editors February 13, 1991 and, in revised form, February 5, 1992.

1991 Mathematics Subject Classification. Primary 54E30.

Key words and phrases. Moore space, φ -extension, closed mapping.

 $p \in O$ with O open in X and $p \in X$ implies $p \in P_1 \subset P_2 \subset O$ for some $P \in \mathcal{P}$. The next lemma is essentially proved in [B].

Lemma 1. For a space X, the following are equivalent:

- (1) X is a developable space.
- (2) There exists a σ -discrete pair network for X.
- (3) There exists a σ -locally finite pair network for X.

For Lemma 2, assume $[X_{\alpha}, A, f, Y]$. For each $\alpha \in A$ let \mathscr{F}_{α} be a locally finite family of nonempty closed subsets of X_{α} , and for each $k \in N$ let Δ_k be the totality of subsets δ of A with $|\delta| = k$. For each $\delta \in \Delta_k$ let

$$Y_{\delta} = \{ y \in Y : H \subset f^{-1}(y) \text{ for some } H \in \mathcal{H}(\delta) \},$$

where

$$\mathcal{H}(\delta) = \prod \{ \mathcal{F}_{\alpha} : \alpha \in \delta \} \times \{ X(A - \delta) \}.$$

Lemma 2. $\bigcup \{Y_{\delta} : \delta \in \Delta_k\}$ is a discrete closed subset of Y.

Proof. Without loss of generality, we can assume $Y_{\delta} \neq \emptyset$ for all $\delta \in \Delta_k$ and $Y_{\delta} \neq Y_{\delta'}$ if $\delta \neq \delta'$, δ , $\delta' \in \Delta_k$. First we show that $\delta \cap \delta' \neq \emptyset$ for each δ , $\delta' \in \Delta_k$. Take points $y \in Y_{\delta}$, $y' \in Y_{\delta'}$ such that $y \neq y'$. By the definition, there exist $H \in \mathcal{H}(\delta)$, $H' \in \mathcal{H}(\delta')$ such that

$$H \subset f^{-1}(y)$$
, $H' \subset f^{-1}(y')$,

where

$$H = \prod \{ F_{\alpha} : \alpha \in \delta \} \times X(A - \delta),$$

$$H' = \prod \{ F'_{\alpha} : \alpha \in \delta' \} \times Y(A - \delta').$$

If $\delta \cap \delta' \neq \emptyset$ were true, then we would have

$$H \cap H' = \prod \{ F_{\alpha} : \alpha \in \delta \} \times \prod \{ F'_{\alpha} : \alpha \in \delta' \} \times X(A - (\delta \cup \delta')) \neq \emptyset,$$

which is a contradiction to $f^{-1}(y) \cap f^{-1}(y') = \emptyset$. Hence we have $\delta \cap \delta' \neq \emptyset$. Since $|\delta| = k$ for each $\delta \in \Delta_k$, we can show inductively that, for some $t_k \in N$, Δ_k can be written as $\Delta_k = \bigcup \{\Delta(i) : i \leq t_k\}$, where $\{\Delta(i)\}$ has the property that, for each $i \leq t_k$ there exists $\delta_i \subset A$ such that for each δ , $\delta' \in \Delta(i)$ with $\delta \neq \delta'$ we have

$$\delta \cap \delta' = \delta_i$$
 and $(\delta - \delta_i) \cap (\delta' - \delta_i) = \emptyset$.

Since obviously each Y_{δ} is a discrete closed subset of Y, we can assume $Y_{\delta} \cap Y_{\delta'} = \emptyset$ if $\delta \neq \delta'$, δ , $\delta' \in \Delta_k$. Let $i \leq t$ be fixed. For each $y \in Y_{\delta}$, $\delta \in \Delta(i)$, we take $H(y) \in \mathcal{H}(\delta)$ such that $H(y) \subset f^{-1}(y)$. H(y) is of the form

$$H(y) = \prod \{ F_{\alpha}(y) : \alpha \in \delta \} \times X(A - \delta),$$

where $F_{\alpha}(y) \in \mathcal{F}_{\alpha}$, $\alpha \in \delta$. If we set

$$T(y) = \prod \{F_{\alpha}(y) : \alpha \in \delta_i\} \times X(A - \delta_i),$$

then we easily have

$$Y_{\delta} \subset f\left(\bigcup\{T(y): y \in Y_{\delta}\}\right)$$
.

From the property of Δ_i and the assumption that $Y_{\delta} \cap Y_{\delta'} = \emptyset$ for δ , $\delta' \in \Delta_i$, $\delta \neq \delta'$, it follows that

$$\left\{\bigcup\{T(y):y\in Y_{\delta}\}:\delta\in\Delta_{i}\right\}$$

is hereditarily closure-preserving in X(A). Therefore, $\{Y_{\delta} : \delta \in \Delta_i\}$ is closure-preserving in Y, and consequently

$$Y(\Delta_i) = \bigcup \{Y_\delta : \delta \in \Delta_i\}$$

is a discrete closed subset of Y. This means that

$$\bigcup \{Y_{\delta} : \delta \in \Delta_k\} = \bigcup \{Y(\Delta_i) : i \le t\}$$

is a discrete closed subset of Y. This completes the proof.

We call a subset Y of a space X a σ -discrete closed subset of X if $Y = \bigcup \{Y_n : n \in N\}$, where each Y_n is a discrete closed subset of X.

Lemma 3. In the situation $[X_{\alpha}, A, f, Y]$, we assume that all X_{α} are Moore spaces and Y is first countable. Then Y is decomposed as $Y = Y_0 \cup Y_1$, where Y_1 is a σ -discrete closed subset of Y and, for each point $y \in Y_0$, $f^{-1}(y)$ is compact in X(A).

Proof. For each $\alpha \in A$, since X_{α} is a σ -space in the sense of [O], X_{α} has a network $\mathscr{F}_{\alpha} = \bigcup \{\mathscr{F}_{\alpha n} : n \in N\}$, where, for each n, $\mathscr{F}_{\alpha n}$ is a locally finite closed cover of X_{α} such that $\mathscr{F}_{\alpha n} \subset \mathscr{F}_{\alpha n+1}$ and any finite intersection of members of $\mathscr{F}_{\alpha n}$ belongs to $\mathscr{F}_{\alpha n}$. Let Δ be the totality of finite subsets of A, and for each $\delta \in \Delta$ with $|\delta| = k$ and each $n \in N$ let

$$\mathscr{H}(\delta, n) = \prod \{\mathscr{F}_{\alpha n} : \alpha \in \delta\} \times \{X(A - \delta)\}\$$

and define a subset $Y(\delta, n)$ of Y by

$$Y(\delta, n) = \{ y \in Y : H \subset f^{-1}(y) \text{ for some } H \in \mathcal{H}(\delta, n) \}.$$

Set

$$Y(k, n) = \bigcup \{Y(\delta, n) : \delta \in \Delta_k\}, \qquad k, n \in N,$$

 $Y_1 = \bigcup \{Y(k, n) : k, n \in N\}, \qquad Y_0 = Y - Y_1,$

where $\Delta_k = \{\delta \in \Delta : |\delta| = k\}$. By Lemma 2, Y_1 is a σ -discrete closed subset of Y. Therefore, it remains to show that, for each $y \in Y_0$, $f^{-1}(y)$ is compact in X(A). Assume that $y \in Y_0$ and $f^{-1}(y)$ is not compact in X(A). Since a Moore space is subparacompact, there exists $\alpha_0 \in A$ such that

(1)
$$p_0(f^{-1}(y))$$
 is not countably compact in X_{α_0} ,

where $p_0: X(A) \to X_{\alpha_0}$ is the projection. We settle the following:

(2)
$$p_0(f^{-1}(y))$$
 is Lindelöf.

Since \mathscr{F}_{α_0} is a network for X_{α_0} , it suffices to show that for each n

$$\mathscr{T}_n(y) = \{ F \in \mathscr{T}_{\alpha_0 n} : F \cap p_0(f^{-1}(y)) \neq \varnothing \}$$

T. MIZOKAMI

is finite. Assume that, for some n, $\mathscr{F}_n(y)$ is infinite. Let $\{O_n(y):n\in N\}$ be a decreasing local base at y in Y. We take $\{F_m:m\in N\}\subset \mathscr{F}_n(y)$, which implies

$$p_0^{-1}(F_m) = H_m \in \mathcal{H}(\{\alpha_0\}, n)$$
 for each $m \in N$.

Observe that, for each m, $n \in N$, $f(H_m) \cap O_n(y)$ is infinite, for otherwise for some k, $m \in N$

$$H_m \cap f^{-1}(O_k(y)) \subset f^{-1}(y)$$
,

which implies that $H \subset f^{-1}(y)$ for some $H \in \mathcal{H}(\delta, t)$, that is, $y \in Y_1$, a contradiction. From this observation, we can take a sequence $\{p_n : n \in N\} \subset X(A)$ such that $p_n \in f^{-1}(O_n(y)) \cap H_n$ and $f(p_n) \neq f(p_m)$ if $n \neq m$. Then $\{p_n\}$ clusters because of the closedness of f. But this is a contradiction to the discreteness of $\{H_m : m \in N\}$. Hence we can conclude (2). By (1), (2), and the regularity of X_{α_0} , we can easily find an increasing sequence $\{U_k : k \in N\}$ of open subsets of X_{α_0} covering $p_0(f^{-1}(y))$ and satisfying

$$p_0(f^{-1}(y)) \cap (U_{k+1} - \overline{U}_k) \neq \emptyset$$

for each k. Set $V_k = p_0^{-1}(U_k)$, $k \in N$. Since we can show that, for each k, $f^{-1}(O_k(y)) \cap (V_{k+1} - \overline{V}_k)$ is infinite in the same way as above, we can take a sequence $\{z_k : k \in N\} \subset X(A)$ such that

$$z_k \in f^{-1}(O_k(y)) \cap (V_{k+1} - \overline{V}_k), \qquad k \in N.$$

Since f is a closed mapping, $\{z_k\}$ has a cluster point z_0 with $z_0 \in f^{-1}(y)$. But this is a contradiction because $z_0 \in V_k$ for some k. This contradiction means that $f^{-1}(y)$ is compact in X(A), completing the proof.

The main theorem. A first countable φ -extension of Moore spaces is a developable space.

Proof. In the situation $[X_{\alpha}, A, f, Y]$, we assume that all X_{α} are Moore spaces and Y is a first countable space. By Lemma 3, we consider two cases as follows: (i) Y is a countable union of discrete closed subsets of Y; and (ii) there exists a point $y \in Y$ such that $f^{-1}(y)$ is compact in X(A). In the first case, using the first countability of Y we can easily see that Y has a σ -discrete pair network. Therefore, by Lemma 1 Y is developable. Thus it remains to show that Y is developable under the case (ii). By $[K_1, Lemma 1]$, without loss of generality we can assume that Y is the image of the product space $X \times X(A)$ under a closed mapping f, where X is a Moore space and all X_{α} are compact metrizable spaces. By Lemma 1, there exists a σ -locally finite pair network $\bigcup \{\mathscr{P}_n : n \in N\}$ for X such that, for each n, $\mathscr{P}_n = \{P_{\lambda} : \lambda \in \Lambda_n\}$ and $(\mathscr{P}_n)_1 = \{P_{\lambda 1} : \lambda \in \Lambda_n\}$ is a locally finite closed cover of X. Without loss of generality, we can assume that $\bigcup \{(\mathscr{P}_n)_1 : n \in N\}$ is closed under any finite intersection. For each $\lambda \in \Lambda = \bigcup \{\Lambda_n : n \in N\}$, we choose a point $x_{\lambda} \in P_{\lambda 1}$ arbitrarily. Since

$$Y(\lambda) = f(\{x_{\lambda}\} \times X(A))$$

is a first countable dyadic space, by [N, Theorem VIII, 11] $Y(\lambda)$ is a compact metrizable space. Let $p_{\lambda} : \{x_{\lambda}\} \times X(A) \to X(A)$ be the projection, and let $g_{\lambda} : X(A) \to f(\{x_{\lambda}\} \times X(A)) \subset Y$ be the mapping such that $f/(\{x_{\lambda}\} \times X(A)) = g_{\lambda} \cdot p_{\lambda}$. Since $Y(\lambda)$ is a compact metrizable space, there exists a countable pair network $\{Q_{\lambda n} = (Q_{\lambda n1}, Q_{\lambda n2}) : n \in N\}$ for $Y(\lambda)$. Without loss of generality,

we can assume that, for each n, there exists a sequence $\{n_i : i \in N\} \subset N$ such that

(3)
$$Q_{\lambda n_{1}1} = Q_{\lambda n_{2}1} = \cdots = Q_{\lambda n_{1}},$$

$$\overline{Q}_{\lambda n_{i+1}2} \subset Q_{\lambda n_{i}2}, \quad i \in N,$$

$$Q_{\lambda n_{1}} = \bigcap \{Q_{\lambda n_{i}2} : i \in N\}.$$

For each $\lambda \in \Lambda$, $m \in N$, let

$$H(\lambda, m)_1 = P_{\lambda 1} \times g_{\lambda}^{-1}(Q_{\lambda m 1}), \qquad H(\lambda, m)_2 = P_{\lambda 2} \times g_{\lambda}^{-1}(Q_{\lambda m 2}).$$

Set

$$\mathcal{H}_1 = \{ H(\lambda, m)_1 : \lambda \in \Lambda \text{ and } m \in N \}$$

and

$$\mathcal{H}_2 = \{H(\lambda, m)_2 : \lambda \in \Lambda \text{ and } m \in N\}.$$

We can easily introduce an equivalence relation \sim on $X \times X(A)$ by the following: For each pair of points p, q of $X \times X(A)$, $p \sim q$ if and only if $p \in C(q, \mathcal{H}_2)$. Let Z[X] be the quotient space obtained from $X \times X(A)$ by \sim with the quotient mapping $t \colon X \times X(A) \to Z[X]$. It is easy to check by (3) that

(4)
$$C(p, \mathcal{H}_1) = C(p, \mathcal{H}_2)$$
 for each point $p \in X \times X(A)$.

We construct a pair family \mathcal{R} of Z[X] as follows:

$$\mathcal{R} = \bigcup \{ \mathcal{R}(n_1, \dots, n_k) : n_1, \dots, n_k \in N, k \in N \},$$

$$\mathcal{R}(n_1, \dots, n_k) = \{ R(\lambda_1, \dots, \lambda_k; n_1, \dots, n_k) : \lambda_1, \dots, \lambda_k \in \Lambda \},$$

$$n_1, \dots, n_k \in N, k \in N,$$

where

$$R(\lambda_1, \ldots, \lambda_k; n_1, \ldots, n_k)$$

$$= (R_1(\lambda_1, \ldots, \lambda_k; n_1, \ldots, n_k), R_2(\lambda_1, \ldots, \lambda_k; n_1, \ldots, n_k))$$

and for each s = 1, 2

$$R_s(\lambda_1,\ldots,\lambda_k; n_1,\ldots,n_k) = t\left(\bigcap \{P_{\lambda_i s} \times g_{\lambda_i}^{-1}(Q_{\lambda_i n_i s}) : i \leq k\}\right),$$
$$\lambda_1,\ldots,\lambda_k \in \Lambda, n_1,\ldots,n_k \in N, k \in N.$$

By (4), each $R_2(\lambda_1, \ldots, \lambda_k; n_1, \ldots, n_k)$ is open in Z[X], i.e., \mathscr{R} is a pair family of Z[X]. It is easily seen that, for each $n_1, \ldots, n_k \in N$, $k \in N$, $\mathscr{R}(n_1, \ldots, n_k)$ is a σ -locally finite pair family in Z[X]. Thus \mathscr{R} is so in Z[X]. To see that \mathscr{R} is a pair network for Z[X], let $[p] \in O$, where $p = (x, y) \in X \times X(A)$ and O is open in Z[X]. Then there exists an open rectangle $U \times V$ of $X \times X(A)$ such that

$$\{x\} \times K_p \subset U \times V \subset t^{-1}(O)$$
.

Since $\bigcup \{\mathscr{P}_n : n \in N\}$ is a pair network for X, there exists $\lambda_1 \in \Lambda$ such that

$$x \in P_{\lambda_1 1} \subset P_{\lambda_1 2} \subset U$$
.

Therefore, for some $m_1 \in N$

(5)
$$C(p, \mathscr{H}_2) \subset H(\lambda_1, m_1)_1 \subset H(\lambda_1, m_1)_2 \subset U \times X(A).$$

T. MIZOKAMI

By virtue of (3) and (4), there exist $m_2, \ldots, m_k \in N$, $\lambda_2, \ldots, \lambda_k \in \Lambda$ such that

(6)
$$C(p, \mathcal{H}) \subset \bigcap \{H(\lambda_i, m_i)_1 : i = 1, 2, \dots, k\}$$
$$\subset \bigcap \{H(\lambda_i, m_i)_2 : i = 2, \dots, k\} \subset X \times V.$$

From both (4) and (6), we have

$$[p] \in R_1(\lambda_1, \ldots, \lambda_k : m_1, \ldots, m_k)$$

$$\subset R_2(\lambda_1, \ldots, \lambda_k : m_1, \ldots, m_k) \subset O.$$

Hence \mathcal{R} is a pair network for Z[X].

We recall Worrell's method in [W] proving that if Y is the image of a developable space under a closed mapping and if each point inverse of Y has a meta-Lindelöf boundary in the domain, then Y is a developable space. Applying essentially this method, we can easily prove that if Y is a first countable image of a developable space under a closed mapping and if each point of Y except a σ -discrete closed subset Y_1 has a compact point inverse, then Y is a developable space. Let $g\colon Z[X]\to Y$ be a mapping such that $f=g\cdot t$. Then obviously g is a closed mapping. By Lemma 3 Y is decomposed as $Y=Y_1\cup Y_0$, where Y_1 is a σ -discrete closed subset of Y and, for each $y\in Y_0$, $f^{-1}(y)$ is compact in X(A). This implies that $g^{-1}(y)$ is compact in Z[X]. Thus, by the above we can conclude that Y is a developable space. This completes the proof.

Remark. By the same argument, we can prove that a first countable φ -extension of σ -spaces, that is, regular spaces having a σ -locally finite closed network in the sense of Okuyama [O], has a σ -locally finite closed network.

REFERENCES

- [B] D. K. Burke, Preservation of certain base axioms under a perfect mapping, Topology Proc. 1 (1976), 269-279.
- [K₁] B. S. Klebanov, On closed and inductively closed images of products of metric spaces, Czechoslovak Math. J. 38 (1988), 381-388.
- [K₂] _____, On the metrization of φ -spaces, Soviet Math. Dokl. 20 (1979), 557–560.
- [M] T. Mizokami, On φ -extensions of Lašnev spaces, Topology Appl. 45 (1992), 13-24.
- [N] J. Nagata, Modern general topology, North-Holland, Amsterdam, 1977.
- [O] A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1967), 236-254.
- [W] J. M. Worrell, Upper semicontinuous decompositions of developable spaces, Proc. Amer. Math. Soc. 16 (1965), 485–490.

JOETSU UNIVERSITY OF EDUCATION, JOETSU, NIIGATA 943, JAPAN