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PROJECTIVELY FLAT SURFACES IN A3

FABIO PODESTA

(Communicated by Jonathan M. Rosenberg)

Abstract. We consider a nondegenerate immersion /: M2 —> A3 of an ori-

entable 2-dimensional manifold M2 together with the Blaschke connection V

induced on M2; this work is aimed at studying locally convex surfaces whose

Blaschke connection is projectively flat, reducing the problem of their classifi-

cation to a system of PDE's. In particular we can prove the existence of locally

convex projectively flat surfaces which are not locally symmetric.

1. Preliminaries and projective flatness

We consider a nondegenerate immersion /: M2 —* A3 of a 2-dimensional

orientable surface M2 into the 3-dimensional affine space A3; it is well known

that there is a transversal vector field £,, unique up to sign and called affine

normal, which induces the Blaschke connection V according to the equations

Dx(fY) = fit(\7xY) + h(X, Y)i,        Dxi = -MSX)

where D denotes the standard flat connection in A3, and X and Y are vector

fields on M2. We recall here the fundamental structure equations, referring to

[1] for a more detailed exposition:

R(X, Y)Z = h(Y, Z)SX - h(X, Z)SY,

(Vxh)(Y,Z) = (VYh)(X,Z),

(VXS)Y = (VYS)X,

h(SX, Y) = h(X,SY).

We shall now write down the condition of projective flatness in terms of the

affine invariants of M2. An affinely connected manifold of dimension 2 is

projectively flat if and only if the covariant derivative of its Ricci tensor is a

totally symmetric (0,3)-tensor. Now the Ricci tensor is given by

Ric(X, Y) = h(X, Y)trS - h(SX , Y),

hence

(VzRic)(*, Y) = (x?zh)(X, Y)trS + Z(trS)h(X, Y)

_ -(Vzh)(SX,Y)-h((VzS)X,Y).
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So V is projectively flat if and only if

Z(trS)h(X, Y) - (Vzh)(SX, Y) = X(trS)h(Z , Y) - (Vxh)(SZ , Y)

where we have used Codazzi and Ricci equations. Now, since

(Vxh)(Y,Z) = -2h(KxY,Z),

we get

X(trS)h(Z , Y) - Z(trS)h(X, Y) = 2[h(KzSX, Y) - h(KxSZ , Y)];

hence since h is nondegenerate,

X(trS)Z - Z(trS)X = 2[KZSX - KXSZ]

or equivalently

(1.1) X(trS) = -2tr(KxS).

2. The strongly convex case

We shall now suppose that the quadratic form h is positive definite ev-

erywhere. First of all note that affine spheres are projectively flat, as follows

immediately from equation (1.1), when S — X Id. So we shall suppose that M2

is not an affine sphere.

Since S is symmetric with respect to h and ai is positive definite, we can

diagonalize S; so we can find local vector fields ex, e2 such that

h(ei, ej) = Sjj   and   S(e,-) = A,e,

for some C°° functions Xx ̂  X2. Now we shall write

Ve,<?2 = rei + se2 ,        Ve2ex = pex + qe2

for some C°°-functions p, q, r, s.

Now if we write down the Codazzi equation for S1, we find immediately

that

q(Xx -X2) = ex(X2),        r(Xx -X2) =-e2(Xx).

Moreover, from the flatness condition (1.1) we get

ex(Xx +X2)e2-e2(Xx + X2)ex =2(XX -X2)Keie2.

Now since {ex, e2} is an orthonormal basis for h, we have

h(Keie2, e2) = h(Veie2, e2),        h(Ke,e2, ex) = h(Veiex, ex)

so that
= ei(Ai+A2) ^2(^1+^2)

2(XX-X2)'        P        2(XX-X2)-

Summing up we have

(7U Ve,€2~    Xx-X2€l+ 2(XX-X2)€2>

[-} e2(Xl+X2) ex(X2)
Ve^-     2(XX-X2)e] + Xx-X2ei-
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So if we put tp — i log \Xx - X2\, we get

[e\,e2]= -e2(<f))ex +ex(tf>)e2,

and we can choose local coordinates (x, y) so that

|- = e~*e.,        f = e~*e2.
dx dy

Thus we can write

(22) V       — _^^iA 1      dX2 d
('> d/dxdy        Xx-X2dydx     Xx-X2dxdy'

Now we put

Veiex =aex+ iBe2,        Ve2e2 = yex + Se2,

and using the apolarity condition we get

a = h(Veiex ,ex) = -h(Veie2, e2),

d = h(Ve2e2,e2) = -h(Ve2ex, ex).

Using the first Codazzi equation we get

B = h(Veiex, e2) = -h(Vete2,ex) + 2h(Ve2ex, ex)

and

y = h(Ve2e2 ,ex) = 2h(Ve,e2, e2) - h(Veiex, e2).

Summing up we get

1(XX - X2)        xx - x2

or equivalently

(24) v    —      J_^±A      i    ^^2 a
1    ' d/dxdx       Xx-X2dxdx    Xx-X2dydy'

and

(2-5) V^2 - AW!* + 2(A,-A2)e2'

or equivalently

(2.6) Va/9y—= -Va/9x—.

Now the last integrability conditions are given by the Gauss equation, which

can be expressed as

R (d_    d_\  d_     _     X2      d_

\dx' dy) dx        \XX-X2\dy

and

R(fL   JL\fL      _A_  JL
[dx'dyjdy     \XX-X2\dx'

These two equations can be rewritten as a system of partial differential equations

in the unknowns Xx, X2; supposing Xx > X2, they are as follows:

(2 7) dAi dX2 _ dXx dX2

[ ' ' dx dy ~ dy dx '
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d2X2     d2X2 2      \(dX2\2     (dX2\2]_

d%     d2Xx 2      \(dXx\2     (dXx\2]

(2-9) dx2 + dy2      Xx-X2[{dx)   +{dy)\-A[-

Remark. A direct computation shows that at each point of the open subset U

where Xx ̂  X2, we have

(2.10) TrA(VS) = 0,

and since (2.10) holds also on the interior part of the complement of U, we get

that (2.10) holds everywhere by continuity. Hence if M2 is supposed to be an

ovaloid, by the same argument used in [2, Theorem 1] we conclude that M2 is

a quadric.

3. NONLOCALLY SYMMETRIC EXAMPLES

The main problem in classifying at least locally projectively flat affine

surfaces consists in integrating equations (2.7)-(2.9).

In this section we shall indicate how to get locally convex projectively flat

surfaces which are not locally symmetric (w.r.t. the Blaschke connection). In

order to do this, we shall first write down the condition VR = 0 using our

notation. We shall consider the open subset U of M2 where Xx ̂  X2.

First of all we note that the condition of projective flatness implies (see

[3]) that the covariant derivative of the curvature tensor (VwR)(X, Y)Z is

symmetric in the arguments Z, W. Moreover, using equations (2.1), (2.3),

and (2.5) we get

(Ve<R)(ex, e2)e2 = —-r(ex(XxX2)ex + e2(XxX2)e2),
A\ - A2

(VexR)(ex, e2)ex =-r(e2(XxX2)ex - ex(XxX2)e2),
Ax - A2

and since (VeiR)(ex, e2)ex = ~CVe2R)(ex, e2)e2, we conclude that

VR = 0 <=> XXX2 - constant.

Moreover, by taking traces of the equations above in order to get the expression

for the covariant derivative VRic, we have the following.

Proposition 3.1. For a projectively flat locally convex affine surface the following
conditions are equivalent:

(1) VRic = 0.

(2) VR = 0.
(3) det S = const.

From this last proposition it follows that every such surface with det S - 0

is locally symmetric; if this is the case, we look for solutions (Xx, X2) with

A2 = 0,        Xx>0.

Hence equations (2.7)-(2.9) are reduced to
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d2logX     (dlogX\2     d2logX     (dlogX\2 _

[     ' dx2        \   dx   J   +    dy2        \   dy   )

where we have put X = Xx. We note, moreover, that under the substitution

p = -l/X, equation (4.1) reduces to

(12) dx~2 + W2 = -*■

Hence the system of PDE's governing the immersion / is

.        1 dp .        „        - 1 dp .        „        -        1 dp .
Jxx-pdxJx~,J4,   }yy--jffcJ*-K>   Jxy-pdy~Jx'

Sx = yjx, Sy = 0.

In order to give just an example of a surface arising this way, we note that

p = -cosy, with y e (-n/2, n/2), is a solution of (3.2). So if we fix initial

conditions j(0, 0) = 0 e A3, jx(0, 0) = '(1, 0, 0), fy(0, 0) = '(0, 1, 0), and
£(0, 0) = '(0, 0, 1), we find the immersion

f(x, y) = '(senxcosy, y, 1 -cosxcosy).

We note that after a minor coordinate change the surface is part of x\ + x\ =

(COSX3)2, which is a rotation surface generated by the cosine. If we use the

solution p = - cosx, with x 6 (-n/2, n/2), we get a translation surface which

can be represented as

f(x,y) = '(x,y, {2y2 + g(x))

where g(x) = \(2x2 + 2xsen(2x) + cos(2x) - 1); it would be nice to have a

complete classification of all locally convex translation surfaces which are locally

symmetric.

If det S = k ^ 0, then it is easy to see that the integrability conditions are

reduced to

.... d2X     d2X        2X     \(dX\2     fdX\2]      .

(3J) dir2 + d2-y-X^k[{dx)   +{d-y)\="

where X = Xx, X2 — k/Xx, and X2 > k.

In order to get examples which are not locally symmetric, we have to find

solutions of the system (2.7)-(2.9) for which the product XXX2 is not constant.

Proposition 3.2. There exist locally convex projectively flat surfaces which are not

locally symmetric

Prooj. Just to simplify notation, we consider solutions of the system (2.7)-(2.9)

with dXj/dx — 0 so that each A, is a function of the variable y only. Then the

integrability conditions are reduced to the system (the prime symbol ' denotes

differentiation with respect to the variable y)

X'{ + T^(X'2)2 = -X2
v M — a2
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which can be rewritten as a system of partial differential equations of the first

order by putting fi = A., f2 = X\, /3 = X2, and fi = X'2:

' j'\ = ji»

/2, = 7^T(/2)2 + /i,
Jx- Ji

fi = U >
2

A = —f—t(A) - h-
*■        J\- Ji

If we now choose initial values /j(0) = 1, f2(0) = a, /3(0) = 0, j<±(0) = 1 with
any real number a, by the Cauchy theorem we get locally a solution (Xx, X2),

Xi > X2, whose product is not constant since (XxX2)'(0) — fi(0)fn(0) = 1 / 0.   D

Remark. When the second fundamental form h is not definite but the shape

operator is still diagonalizable, we can choose local vector fields ex,e2 with

h(ex,ex) = 1, h(e2, e2) = -1, h(ex,e2) = 0, S(ex) = Xxex,S(e2) = X2e2 and

again we can find local coordinates (x, y) with d/dx = e~^ex, d/dy = e~^e2

using the same notation as in §2. Then the integrability conditions are only

slightly modified, namely,

dXx dX2      dXx dX2

~dx~dy= "dy'dx'

dx2      dy2     Xx-X2 [\dx J      \dy)\ 2'

a2Ai_r32AI      J2_   \(dXx\2     (dXx\2]

dy2      dx2 + Xx-X2 [{dx)      \dy)\ ~M'

and Propositions 3.1 and 3.2 are still valid in the hyperbolic case.
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