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EVERY ATTRACTOR OF A FLOW ON A MANIFOLD

HAS THE SHAPE OF A FINITE POLYHEDRON

BERND GUNTHER AND JACK SEGAL

(Communicated by James E. West)

Abstract. It is shown that the class of compacta which can occur as attractors

of continuous flows on topological manifolds coincides with the class of finite

dimensional compacta having the shape of a finite polyhedron.

1. The shape of attractors

Let X be a locally compact, separable Hausdorff space. By a flow we mean a

continuous group action by the reals on X, Ixl^I. The image of (x, t) e

Ixl under the operation is denoted x'; by definition we have xs+l - (xs)'

and jc° = x . For A c X and Mciwe write AM := {xl | x e A, t e M}. A

subset A of X is said to be positively invariant if Al°'°°l C A, it is invariant

if A' = A for every / e R. We emphasize that the dynamical systems under

consideration are continuous, i.e., indexed by R; if R is replaced by the integers

Z in the definition above we speak of a cascade. We will see that cascades behave

entirely different in the situations we have in mind.

An attractor in a flow is a nonempty, invariant, compact subset A C X,

which admits a neighborhood U in X, such that for each neighborhood V

of A in X there is a real number t > 0 with U1' • °°( C V. This definition is

equivalent to the ones given in [1, p. 199; 11, p. 8]. A neighborhood U with
the property above will be called a domain oj attraction for A .

For cascades as well as for flows it is hitherto unknown which type of home-

omorphism an attractor can have. The present paper solves this problem for

flows. Our main result, Corollary 4, may be viewed as an extension of the

classical Poincare-Bendixson Theorem [7, p. 248].

Theorem 1. (a) lj A is an attractor oj a flow on X, then A has a compact

neighborhood U such that U\A is homeomorphic to dU x [0, oo[ with dU

mapped onto d U x {0} .
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(b) We suppose A is a compact subset oj X, jor which there exist a com-

pact neighborhood U and a homeomorphism h : U \ A & dU x [0, oo[ with

h(dU) = dU x {0}, such that h~x : dC x [0, oo[-» U satisfies the local Lips-
chitz condition (L). Then A is an attractor of a suitable flow on X.

We consider a suitable  metric d  on  the compact
metrizable space U.    Then for each point (yo, to) e
dU x [0, oo[  there exist a  neighborhood  V0  ofi yo

(L) in  dU,   a  neighborhood  W0  of to   in   [0, oo[,   and
a number K(y0, to) > 0 such that the inequality

d(h~x(y,s),h-x(y,t)) < K(y0,t0) • \s - t\ holds
whenever y e Vq and s, t e W0.

Proof, (a) Let V be a compact domain of attraction for A. We may assume that

V is positively invariant, because we can replace it by {x e V \ xl0'°°[ c V}.

Then A is an isolated invariant set with V as the isolating neighborhood [10,

p. 380]. By [10, Theorem 5.2] there is a Lyapunov function <& : V —> E,
i.e., a continuous map with <J> = 0 on A and O(jc') < O(jc) for all x e

V\A and />0. Since x' approaches A for t —> +00, O(x') must decrease

towards 0, so that <f> > 0 on V with A = O_1(0). We choose a number

0 < a < min{<I)(x) | x e dV}, and for each x e V \ A we set f(x) equal

to the unique number with <5>(x~^x)) = a. Such a number always exists,

because the set x1-00'01 cannot be entirely contained in the domain of attraction

V. To show that / : V \ A —> R is continuous we consider e > 0 and get

0(x£_/(x)) < a < tt>(x~e~f{x)). There is a neighorhood W of x in V\A with

tp(y£-fM) < a < 0(y"£"/(x)) for all y e W, and this implies -s - f(x) <

-f(y) < e ~ fix) for yeW.
We set

(1) U := {x e V I <D(x) < a}.

Then U is a compact, positively invariant neighborhood of A with dU -

0~'(a); furthermore, we have f > 0 on U \ A. Hence we can define h :

U \ A —> dU x [0, oo[ by h(x) :— (x~f(x), f(x)). aj is a homeomorphism

with h~x(y, t) =y'.

To prove the converse we need the following lemmata:

Lemma 1. There is a flow p : [0, oo[ x R —> [0, oc[ oaj [0, oc[ satisfying the

jollowing properties:

(a) 0 is a restpoint.

(b) lim,_+00 p(x, t) = 00 uniformly on each interval of the form [n, oc[

with n > 0.

(c) Ve>0, a/>0 3p >0Vx> B, I e R : \t\ < n => \p(x, t) - x\ < e .

Lemma 2. The homeomorphism h in Theorem 1 (b) can be altered such that the

Lipschitz condition (L) is satisfied globally, i.e., with V0 = dU, W0 = [0, oc[
and K(y0, t0) actually independent ofi y0 and t0 .

Assuming the validity of Lemmata 1 and 2 we are now going to prove part (b)

of Theorem 1. Let U he a compact neighborhood of A in X and h : U \A a

dU x [0, oo[ a homeomorphism with the properties of Lemma 2, and let p bc
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a flow on [0, oo[ satisfying the conditions of Lemma 1. Now we define a flow

IxR^I as follows:

t ._ jx for x e X \ U or x e A,

[aj-1^, p(s, /))    for x e U\A with (y, s) = h(x).

We have to show that our flow is continuous at each point (x, t) e X x M. This

is clear for x e U° \ A or x e X \ U. It is continuous on d U , because in this

case we have 5 = 0, so that our flow is stationary on d U. The case x e A

remains. Let d be a metric on X. We consider e > 0 and set n :- \t\ + I.

Let P > 0 be a number with \p(s, u) - s\ < e/2K for 5 > /? and \u\ < n;

it exists by condition (c) in Lemma 1. We set V equal to the intersection of

the e/2-ball around x with the complement of h~x(dU x [0, /?]). V is a

neighborhood of x, and we claim that for each z e V and \u\ < n we have

d(x, z") < e, thus proving continuity of our flow. For z = h~x(y, s) with

y e dU and s > p we get d(z, zu) = d(h~x(y, s), h~x(y, p(s, u))) < e/2

and hence d(x, z") < d(x, z) + d(z, z") < e .

Finally condition (b) of Lemma 1 implies that A is an attractor of our flow

with U \h~x(dU x [0, n]) as domain of attraction, where n is any strictly

positive number.

Proof oj Lemma 1. We consider the homeomorphism h : [0, co[w [0, oo[,

h(x) — ln(l + ln(l -(- x)). It has the property

(2) \h(y)-h(x)\< ln^     forx,y>e.

Our flow p on [0, oo[ is defined by p(x, t) :- h(h~l(x) • e'). Condition (2)
translates to:

(3) \p(x,t)-x\< ln(l + ^

for ln_v > max(l, 1 — t), y = h~x(x). p satisfies all requirements.   □

Proof ofi Lemma 2. Since dU is compact, we can immediately take Vq — OU

and K(yo, to) independent of y-o, and using a suitable partition of unity on

[0, oo[ we can furthermore assume that K(to) depends continuously on to.

Then we define homeomorphisms <p~x : [0, oc[« [0, oo[ and g~x : dU x

[0,oo[aU\A by

(4) tp-x(t):= f K(s)ds,
Jo

(5) g-x(y,t):=h^(y,tp(t)).

We claim d(g~x(y, t), g~x(y, s)) < 2(1 - s) for all y e 0U and s < t. For

a proof we take a subdivision s = to < t\ < •■• < t„ = t of [s, t] such

that Ji := [tp(ti-i), tp(ti)] is contained in W(tp(t,)) and K(z) > \K(tp(t,)) for

z e J,, i'=l,... , aj . We get

(6) t,-t,.x=  T      K(z)dz>\-K(tp(t,))-(tp(ti)-tp(ti-X))
•M'.-i)
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and hence

(7) d(g~\y, t^x),g'x(y, f)) < K(tp(ti)) ■ (cp(U) - ?(*,_,)) < 2(t, - *,_,).

We conclude: d(g-x(y, s), g~x(y, t)) < Y,Lx d(g~\y,?,-.), g~\y, U)) <
2(t-s).   D

Now we will use shape theory to draw conclusions from Theorem 1. A con-

tinuous map fi : X —> Y is a shape equivalence, if for each map tp : X —> P

into an ANR-space there is xp : Y —> P with xp j ~ tp , and if any two such maps

xp are homotopic. Here an ANR-space is a metrizable space P, such that any

map /': A —> P defined on a closed subset A of a metrizable space X has an

extension over a neighborhood of A in X. One particularly interesting prop-

erty of shape equivalences / : X —> Y is that the induced homomorphism of

Cech cohomology groups H*(f) : H*(Y) —► H*(X) is always an isomorphism.

A space X has the shape of a polyhedron P if there exists a shape equivalence

/: X —» P. We refer to [8] as a general reference for shape theory.

By a manifold we mean a topological manifold in the sense of [13, Chapter

6, §2]. Every manifold is a separable metrizable space, and by [4, Chapter IV,

Proposition 8.12] it is an ANR.

Corollary 1. Every attractor A oj a flow on a manijold X has the shape oj a

finite polyhedron. A has only finitely many components. If in addition X is

connected, then X \A has only finitely many components.

Proof. Let U be a neighorhood of A with the properties from Theorem 1 (a)

and set V := U \ h~x(dU x [0, 1[). Clearly V is a compact neighborhood of

A in X and V is a retract of the interior of U; hence, since manifolds are

ANR-spaces, V is a compact ANR. By a conjecture of Borsuk, proved by West

[14] V has the homotopy type of a finite polyhedron P. (See [8, Appendix 1,
§2.2, Theorem 7] for a discussion of the conjecture and further references.)

We want to show that the inclusion map A <-» V is a shape equivalence.' The

sets V„ :— U \ h~x(dU x [0, aj[) form a fundamental system of neighborhoods

of A in X, and each V„ is a strong deformation retract of K. A retraction

q„ : V —> Vn can be defined by gnh~x(x, t) := h~x(x, aj) for / < aj and g„ = id

on Vn, and a homotopy Dn : id ~ gn relative Vn by D„(h~x(x, t), s) :=

h~x(x, sn + (1 - s)t) for t < n and D„(x, s) = x on V„ . Now we suppose a

map tp : A —> P into an ANR-space is given. For some aj there is an extension

tp' : Vn —> P of cp over V„, and xp := cp'g„ : V —► P is an extension of cp

over the entire set V. If two maps xp, xp' ; V —> P into an ANR-space and a

homotopy ® : xp\A ~ xp!A are given, then this leads to a map AxIliVxi—> P

equal to 4> on A x / and equal to ^, y/' respectively on V x /. This map

being defined on a closed subset of the metrizable space V xl can be extended

over a neighborhood and thus provides us with a homotopy <&' : ^^ ~ xpL on

a suitable Vn . Then

{xpD„(x, 3s) for 5 < 5 ,

V(gn(x),3s-1)   fori<5<§,

xp'Dn(x, 3- 35)      fors>§

'In fact it is a cylinder base embedding in the sense of Mrozik [9, p. 167].
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is a homotopy connecting xp and xp' on V, and A <-* V is shown to be a

shape equivalence.

Since the number of components is shape invariant (they are counted by

0-dimensional Cech cohomology), A and P have the same number of compo-
nents. If X is a connected manifold of dimension aj , then by the Alexander

duality theorem [13, Chapter 6, §2, Theorem 17] the singular homology group

Hx (X, X \ A; Z2) with coefficients in Z2 is isomorphic to the Cech cohomol-

ogy group H"~X(A; Z2), and since A has the shape of a finite polyhedron it is

finitely generated. From the exact homology sequence of the pair (X, X \ A)

we see that Ho(X \ A; Z2) is an extension of a quotient of Hx (X, X \ A; Z2)

by a subgroup of Ho(X; Z2) « Z2 and hence it is finitely generated too, i.e.,

X \ A has finitely many components.   □

Corollary 1 shows that although attractors may be complicated spaces they

cannot be too irregular. Let us take a look at some

Examples. 1. The Warsaw circle (i.e., the graph of the function x >-> sin l/x

for 0 < x < l/n including the limit segment on the ordinate axis and an arc

joining the endpoint of this segment to (l/n, 0)) is an attractor of a flow on

R2, as mentioned by Hastings [6, Example 3.3]. Despite its bad local properties

the Warsaw circle has the shape of an ordinary circle.

2. The Hawaiian earring (i.e., the union of a sequence of circles An =

{(x, y) e R2 | x2 + (y - l/n)2 = 1/aj2} of decreasing diameter converging

to a common point on their boundary) cannot be an attractor of a flow on a

manifold, because its first Cech cohomology group is not finitely generated and

hence it does not have the shape of a finite polyhedron.

3. The solenoid (i.e., the inverse limit of a sequence of circles and bonding

maps of degree two) cannot be an attractor of a flow on a manifold for the same

reason as in Example 2. But it is well known that it is an attractor of a cascade

on a 3-dimensional manifold: In [12, §4] there is described an embedding

aj : D2 x Sx >—» D2 x Sx of the 3-dimensional solid torus into itself such that

the inverse sequence consisting of solid tori as terms and h as bonding maps

has the solenoid as the inverse limit. We observe that imh is contained in

the interior of the torus. Hence, if X is the limit of the direct sequence with

solid tori as terms and Aj as bonding maps, then X is covered by open tori

and consequently it is a 3-dimensional manifold, aj induces an embedding

g : X >-» X into itself, which is surjective and hence a homeomorphism. The

generated cascade on X has the solenoid as an attractor.

For any self-map /: X —► X of a space X we denote by T(j) its mapping

torus, i.e., the space obtained from X x / by identifying the points (x, 0) and

(fix), I).

Corollary 2. We suppose that A is an attractor oj a cascade p : X x Z —> X

on a manifold X and denote by j : X « X the generating homeomorphism

j(x) :- p(x, 1). Tai^ai T(j\A) has the shape oj a finite polyhedron.2

We observe that Corollary 2 puts restrictions on the homeomorphism gener-

ating a cascade with prescribed attractor A : It can be stationary on A only if

2This interesting observation was contributed by the referee.
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Ax Sx has the shape of a finite polyhedron. There exist compacta A such that

A x Sx , but not A itself has the shape of a finite polyhedron [8, Chapter II,

§9.5, Example 2 and Remark 6].

Prooj. We consider the manifold Y :— T(j) and the flow on Y defined by

[x, s]' := [f"(x) , s - t + n] for aj - 1 < / - 5 < aj . T(fiA) is an attractor of

this flow and hence it must have the shape of a finite polyhedron.   □

In the case of Example 3 fiA is the shift map [ 12, Lemma 29] of the solenoid

A. Let tp : Sx —> Sx be a map of degree 2. Then T(fiA) has the shape of
T(tp). The latter is a CW-complex consisting of a wedge of two circles a and

b and a 2-cell attached by the loop aba~xb~2.

Corollary 3. A compact subset ojthe plane is an attractor oj a suitable flow on

the plane ijand only ijit has the shape oj a finite union oj finite wedges ofi circles

or, equivalently, if and only if its Cech cohomology groups are finitely generated.

For the proof we need the following lemma:

Lemma 3. An open, connected subset U ofi the plane with trivial first homology

group is diffeomorphic to a disc.

Prooj. It suffices to show that U is simply connected; then the Riemann map-

ping theorem applies. Let co : Sx —► U be a loop in U . We may suppose that co

is piecewise linear and then we can decompose it in finitely many simple parts,

so that to itself may be assumed to be simple. If V is the bounded component

of R2 \ co(Sx), then the Jordan-Schoenflies theorem [15, p. 94, Theorem 5.9]

ensures the existence of a homeomorphism V U co(Sx) « D2 onto the closed

unit disc D2 mapping V onto its interior. Since co is null homologous in

U, the set V u co(Sx) must be entirely in U; but then to is evidently null

homotopic.   □

Prooj oj Corollary 3. If A is an attractor of a flow on the plane, then by Corol-

lary 1 it has the shape of a finite polyhedron and by [8, p. 201, Theorem 5 and

p. 203, Remark 2] each of its finitely many components has the shape of a finite

wedge of circles.

If A is of such shape, then its Cech cohomology groups are finitely generated.

Now let us assume that the Cech cohomology groups of A are finitely gen-

erated; we want to construct a neighborhood U satisfying the assumptions

of Theorem 1(b). The cohomology group in dimension 0 tells us particu-

larly that A has only finitely many components, so that we may assume A

to be connected. We add an infinite point to the plane turning it into S2 .

As in the proof of Corollary 1, observing that HX(A;Z) is finitely generated

we see that S2 \ A has only finitely many components. The Alexander Dual-

ity Theorem [13, Chapter 6, §2, Theorem 17] implies that the homomorphism

H2(S2; Z) -» H2(S2, S2 \ A; Z) induced by the inclusion map is isomorphic to

H°(S2; Z) -» H°(A; Z) and hence to the identity map of Z. From the exact

homology sequence

H2(S2) « H2(S2 ,S2\A)^HX (S2 \A)^HX (S2) = 0
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we conclude Hx (S2 \A) — 0. Of course every component of S2 \ A must have

trivial first homology too, and now Lemma 3 tells us that each such component

is diffeomorphic to a disc. Taking a smaller open disc out of it we arrive at a

neighborhood U of A of the required form. The local Lipschitz condition (L)

is a consequence of continuous differentiability.   □

In higher dimensions the situation is much more complicated. We do not

know if the homeomorphism type of a compactum in R" , n > 2 , is sufficient

to give a characterization similar to Corollary 3; we have to add embedding con-

ditions. The key to the problem is Chapman's finite-dimensional complement

theorem [3]:

Theorem (Chapman). We consider two compact subsets X, Y cR" in standard

position with n>2 + 2 max(dim X, dim Y). If X and Y are shape equivalent,

then there exists a PL-isomorphism R" \ X « R" \ Y that can be extended to a

homeomorphism Rn/X « R"/ Y.

Chapman's paper does not contain the theorem in this formulation, but it

comes out of his proof. The homeomorphism of W/X and Rn/Y was first

explicitly observed by Geoghegan and Summerhill [5]. Standard position is

defined in [3, Definition 3.1]. We observe that any subpolyhedron of R" is in

standard position.

Theorem 2. Any finite-dimensional compactum X oj finite polyhedral shape can

be embedded in Rn for suitable n in such a way that there is a flow on R"

having X as an attractor.

Corollary 4. A finite-dimensional compactum can be an attractor of a continuous

flow on a manifold if and only if it has the shape of a finite polyhedron.

Proof. To start let us assume that Y is a finite subpolyhedron of some R" , and

let us consider a triangulation of R" such that Y actually corresponds to a full

subcomplex. By xpp : Rn —> / we denote the barycentric coordinate function

with respect to a vertex p , and by K we denote the set of vertices of Y . We

set

(8) tp := ]T xpp : R" - /.

Then Y = fz>_1(0), hence V := ^_1 [0, ^1 lS a closed neighborhood of Y

with dV = cp~x(j). F is contained in the star of Y with respect to our

triangulation, which is necessarily locally finite; therefore, V is compact. We

define a homeomorphism # = (t}x, t32) : V \ Y « dV x [0, cxd[ by

PZK   Y p€K Y

(10) rJ2:=--2.
<P

Its inverse is given by

(11) »-VO:=£T#^ + £2^M3>)/>,
p%k pete
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and since this is continuously differentiable with respect to /, it satisfies the

Lipschitz condition (L).

Now we suppose that X is a finite-dimensional compactum, which is shape

equivalent to Y. By [3, Proposition 3.4] X can be embedded in some R" ,

such that it has standard position, and we may furthermore assume aj > 2 +

2 max(dim X, dim Y). By Chapman's theorem there is a PL-homeomorphism

g : R" \ X « R" \ Y extending to a homeomorphism Rn/X « Rn/Y. Then

U:=Rn\ g~x(R" \V) is a compact neighborhood of X, because U/X &V/Y

is a compact neighborhood of the basepoint in R"/X . g maps dU onto dV .

Since g is piecewise linear, it is Lipschitz continuous; therefore, the composed

homeomorphism h := (g~x x id)$g : U \X k dU x[0, oo[ satisfies condition

(L). Now Theorem 1 (b) provides us with a flow on R" having X as an attractor.

Corollary 4 follows from Theorem 2 and Corollary 1.   □

Remark. The flow constructed in the above proof is always stationary on the

attractor. This it not surprising: An arbitrary flow can be altered to achieve

this form by slowing down the motion on the complement of the attractor. The

reader should observe:

(1) There exist compacta A of trivial shape, such that every path compo-

nent of A consists of a single point, for instance, the pseudoarc [2]. Such a

compactum can be an attractor, but every flow on A is necessarily stationary.

(2) The situation is different for cascades: If a cascade p : X x Z —> X on

a manifold X has a solenoid A as attractor, then it follows form Corollary 2

that p cannot be stationary on A .

Problems. (1) Is it possible to charactarize those compacta A that can be at-

tractors of flows on manifolds such that A contains a dense orbit?

(2) Is it possible to characterize attractors of cascades?

Added in proof

After the authors finished their work on this paper they learned of the ex-

istence of the article On the structure ofi attracting compacta by S. A. Bogatyj

and V. I. Gutsu in Differentsial'nye Uravneniya 25 (1989), 907-909 (Russian),
which contains part of the results presented here.
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