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Abstract. We discuss replacing the integrals in continuous spectrum expan-

sions by finite sums, in the special case of the Dirichlet problem for second-

order ordinary differential operators on a half-line. The error is controlled in

the operator norm of B{Y, Z), where Y and Z are natural Hilbert spaces

for the problem.

0. Introduction

Discrete spectrum and continuous spectrum eigenfunction expansions for

selfadjoint operators in a Hilbert space appear to be quite different things al-

together. A great deal of literature is devoted to the rate of convergence of

finite sums in the discrete case, but in the continuous case the use of integral

expansions is necessary; the idea of approximation by finite sums seems lost.

Nonetheless, the idea of approximation by finite sums is the intuitive idea be-

hind Fourier analysis: the approximation of arbitrary waves by standing waves.

This property also seems desirable if the continuous spectrum eigenfunction

expansion is to be calculated approximately on a computer. In this paper we

analyze the extent to which approximation by finite sums can be rescued, in the

special case of a second-order ordinary differential operator in L2[0, oo).

We calculate the size of the difference between a function and its approxima-
tion by finite sums of multiples of (possibly non-L2) eigenfunctions by taking

the norm of this difference in a Hilbert space Z . To be effective in any compu-

tational scheme, the eigenfunctions used in the finite sum expansion should not

depend on the function being approximated in order to get the error to within

the desired accuracy. This means really that the approximation must converge

in operator norm in B(Y, Z), where Y is another Hilbert space. We are then

led to the approximation of an operator in B(Y, Z) by finite sums of multi-

ples of eigenprojections which come in some sense from the original selfadjoint

operator H. In order for this to be possible, the operator being approximated

should be some function of H. Also, before any analysis is possible, the term

"eigenprojection", which must be an element of B(Y, Z), needs to be defined

rigorously.
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In an earlier paper [7], the basic functional analytic theory of this kind of

approximation was studied for a class of operators including most reasonably

well-behaved selfadjoint ordinary and partial differential operators. It is not

hard to see that the question for any bounded continuous function of H reduces

to the study of spectral projections P(A) for H, where A is a Borel subset of

the real numbers. It was shown, under quite general hypotheses where Y and

Z are Hilbert spaces, that the approximation property holds for P(A) if and

only if P(A) is compact in B(Y, Z).
The precise statement of the question we study in this paper is then as follows:

is it true that for every e > 0 there exists a positive integer Ac and points

Xt of A such that WZiyCfjFi, - P(A)f\\z < e\\f\\y for all f e Y, where
Cfyi = /0°° f(x)F}ij(x)dx and where F;H is an eigenfunction in some sense

of a given second-order ordinary differential operator H on a half-line? The

mapping taking / to CfyiFXi is the eigenprojection mentioned above.

Since it is known from [7] that the result is true if and only if P(A) is compact

in B(Y, Z), we ask the question for the optimal spaces Y and Z and expect

the answer to depend on A, since if the injection from Y into Z is compact

it is known to be true for all A. What should the spaces T and Z be?

Z should be the smallest space we can find which contains all the eigenfunc-

tions; Y should be contained in the dual space of Z so that the integrals for

the Fourier coefficients exist. What does it mean for Fx to be an eigenfunction?

If t is a second-order ordinary differential expression on (0, oc), we will

study the Dirichlet problem for t . This means at least that rFx = XFX and

that Fx(0) = 0 and Fx e Z. We must define Z to be the smallest space we

can where there are enough Fx to at least perform the approximation one / at

a time. Fortunately, the general theory of continuous spectrum eigenfunctions

gives us a good candidate for Z . Let x he defined by rcb — -cb" + qtp, and let

q be C°° , bounded below (this condition is relaxed in the body of the paper),

and real valued. Define Z as follows: let co be an arbitrary bounded positive

C°° element of L2[0, oo), and let Z be {F: coF e L2[0, oo)}; let the norm

of Z be given by ||F||Z = ||<uF||2 ■ It is shown in [7] that if j/co e L2[0, oc),

then, for any Borel set A, for every e > 0 there exists a positive integer Ac and

points Xj of A such that

k

Yct,fFx,-P(A)j     <e||//tu||2,
<=i z

where Fx, e Z , tFxi = X/Fxi, FxjO) — 0. This is our candidate for Z . Intui-

tively, Z is a Hilbert space which is close to being Loo[0, oc), since co can be

an arbitrarily large fixed element of L2. (Note, however, that the points A, may

depend upon / in this statement, so the problem is not solved.) What is Y ?

Optimally, we would like to take Y to be {/: j/co e L2[0, oo)}. However,

if we do so, the injection from Y into Z is not compact. This indicates that

the approximation property for this Y depends on A. For what sort of A

would we expect success? Physical grounds lead to the suggestion that it should

work if (and possibly only if) A is bounded. It is shown in [7] that the property

holds if A is bounded, and also for some unbounded A, at least when the

spectrum is not wholly discrete. In this paper, our main result is Theorem 3.5,

which states that the approximation property holds if (1 +x)q e Lx(0, oc) and

JA(l/y/X)dX<oo.
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1. Background

Definition 1.1. Let x be given by xcp = -fi'+qcp for all sufficiently differentiable

tp on (0, co), where q is a C°° function from (0, oo) into R and where

q = q+ + q- , with q+ and <?_ being the positive and negative parts of q;

assume that q~ is the sum of an Lx function and an Lx function.

Lemma 1.2. Under the above hypotheses, the restriction oj x to Cq°(0, oc) is

essentially selfadjoint. Let H be the closure of this restriction. Then, for any fi

in the domain of H, f'eL2[0,oo).

Prooj. This is a very special case of the results of Everitt, Hinton, and Wong

[4].

Definition 1.3. Throughout this paper let a be a fixed bounded positive

C°°(0, co) element of L2[0, oo); let Zw denote {F: coF e L2] and Yw de-

note {tp: cb/co e L2); and let /(A) denote the characteristic function of the

Borel set A. Let [ ,  ] denote the inner product in L2[0, oo).

Definition 1.4. Let A -> P(A) be the spectral measure associated with H; A

ranges over the Borel subsets of R. If e e L2[0, oo), let Se denote the closed

linear span of {P(A)e}, where A ranges over the Borel subsets of R; let oe be

the positive measure on the Borel sets defined by oe(A) = [P(A)e, e]. Let Oe be

the isometry given by the spectral theorem from Se onto L2(oe), which has the

properties that <&e(P(A)tb) = x(A)<£>e(tj>), for tp in Se, and that Q>e(H(p)(X) =

X<S>e(<f))(X) forall <f> in D(H)nSe. Let Ue = Q>e°Pe , where Pe is the orthogonal
projection from L2[0, oo) onto Se .

Remark. Theorems 1.5 and 1.6 are proved in [7]; to apply the formalism of [7]

let W in [7] be Co°(0, co) and let B he multiplication by co. The results are

stated in [7] only for q bounded below, but the same proofs work for the q of

this paper.

Theorem 1.5. Suppose that e is in the domain oj H and that \\e\\2h = \\e\\2 +

\\He\\2. Then there exists a subset C oj R such that oe(R\Q = 0 and such
that, for every X e £, there exists a unique element Fxye of C°°[0, oo) wa'Aaj the

following properties:

(i) xFxye = XFlye, and FXye(0) — 0; furthermore, for any 6 e Cq°(0, oc) ,

/ 6(x)Fpe(x)dx = Ue(6)(B) for almost every 8 with respect to oe (note that

if e e W, this implies that Je(x)Fxy€(x)dx = 1, which may be regarded as a

normalization of FXye).

(ii) FxyeeZw.
(iii) If a(X) = Fxye, then a is a measurable function with respect to oe from

R into Zm, in the sense that Ve > 0 there exists a compact set T such that

tje(R\T) < e and such that the restriction of a to T is a continuous function

from T into Zw.
(iv) If B is a Borel subset oj[0, oo) and A is a Borel subset oj R, then there is

a positive constant K such that jh\\x^)a(X)\\Zoidae < y/2K\\P(A)e\\h\\x(fi)co\\2.

Theorem 1.6. There exists an e in the domain oj H such that Se = L2.

Remark. We now give the definition of diagonalization and introduce a spectral

measure which we denote by pe . Since the properties of pe are very important

for our theory, it is useful to note that by an elementary calculation given below
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it follows that the definition of pe does not depend upon e but only upon Se.

In other words, if Se = Sf, then pe = Pf.

Definition 1.7. Suppose that e e domain(//) is a cyclic vector for H. Let pe

he the positive measure on R defined by the relation dpe = H^elll doe. Let

Q = r(H), where r is a bounded continuous function from the spectrum of

the restriction of H to Se into C. Let A be a Borel subset of R. We say that

P(A)PeQ is diagonalizable in B(Yco,Zw) with respect to H if

(a) for every e > 0 there exists a positive integer Ac and a finite disjoint

family {A,}*=] of subsets of R such that pe(At) is finite for every i and such

that there exists a set of real numbers {A,-}*_, with A,- 6 A, n A and with the

property that, injecting P(A)Q6 canonically into Zw ,

h(A)PeQ - ][>(A, n AMA,-)^,., A (6)      < e\\e\\Ya

for all 6 e Ya, where

(b) Fx,,e e Zw with ||FAi(,||Zw / 0, and where

(c) Rx,,e{<t>) = Gxlye(<f))Gxiye for any <£e T^ , where C^,, = Fx,,el\\Fin,e\\z» >

and where GxX^) is JQ°° tf>(x)Gxi(x)dx . Note that while the points A, depend

on A, the number Ac and the sets A, do not; these depend only upon £ .

Remark. The following is immediate from the fact that the norm limit of a

sequence of operators with finite-dimensional range is compact.

Theorem 1.8. Suppose that P(A) is diagonalizable in B(YW, Zw) with respect

to H. Then P(A) is a compact operator jrom Yw into Zw. In particular, the

identity operator P(R) is not diagonalizable in B(YW,ZW) with respect to H.

Remark. Since the embedding of Yw into L2 is continuous, as is the embedding

of L2 into Zw, it follows that P(A) is in B(Yo,, Zw). Since the previous

theorem showed that there exists an element e of the domain of H such that

Se = L2, we do not need to consider Pe.

Remark. The following is part of Theorem 3.3 of [7], specialized to our situa-

tion.

Theorem 1.9. Suppose that pe is as in Definition 1.7 and that A is a Borel set

such that pe(A) is finite. Then P(A) is diagonalizable in B(YW,ZW).

Theorem 1.10. Let t, be a Borel subset ofi R. Let tf>(x, X) be defined by
xcf)(x,X) = Xcf>(x,X), 0(0, A) = 0, and (f>'(0,X) = 1. Let X — Jx be a
function with domain £ and range contained in the real-valued elements of

C°°([0, oo)), such that Jx(x) = a(X)tf>(x, X), with a measurable. Then the func-

tion X —» ce(X) = J0°° Jx(x)6(x) dx is Borel measurable for any 8 e Cq°(0 , oo).

Let a be a positive Borel measure on £,, such that fior any subset A ofi i\ and

any 6 e C0°°(0, oo), ce(X) e L2(a\A) and \\P(A)6\\2 = JA\c0(X)\2 da(X). Then
a and oe are absolutely continuous with respect to each other, and hence Jx e Zw

fior almost every X with respect to a. Furthermore, for any Borel subset A of £,,

l\\Jx\\2zJa=  i\\FxAli>doe = pc(A).
Ja Ja
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Proof. First, note that by Theorem 1.5, J0°° Fxye(x)cb(x)dx = Ue(<f>)(X) for

almost every A with respect to oe. Hence, by the spectral theorem, ||.P(A)</>||2 =

/a \Fi.,e(<f>)\2 doe(X). By the spectral theorem, oe is the unique such measure.

Now suppose that Jx and a are as above. Then Jx — b(X)Fxye, where b is

a measurable complex-valued function. Hence

\\P(^W = f\b(X)\2\Fxye(<f))\2da(X)
Ja

for any A. Hence doe = \b(X)\2 da . Now

f\\J(X)\\2zJa= f\b(X)\2\\Fxye\\2zJa= f \\Fx>e\\Zia doe ,
J a Ja Ja

as we desired to show.

Theorem 1.11. Suppose that H has a purely discrete spectrum. Let {xpi} be a

complete orthonormal set of eigenfunctions of H, listed in increasing order of the

eigenvalues A,. Let pe be as in Definition 1.7, with e a cyclic vector guaranteed

by Theorem 1.6. Then pe(A) = J2x ga llwllz •

Proof. Let e he a cyclic vector as in Definition 1.7. ae(A) = X^ €a 11^' > ̂ ll2 •

But [e,FXiye] = 1 . Thus FXt,e = ip,/[e, xpt]- Hence pe(A) = JA \\Fxye\\2Zujdoe =

zZxeA II V'llz ' as we desired to show.

Remark. A simple direct argument using the above result shows that in the

discrete spectrum case, P(A) is diagonalizable in B(YW, Zw) whenever pe(A) <

co . Hence Theorem 1.9 is only needed in the continuous spectrum case, which

is the main case that we are interested in in this paper. In the discrete spectrum

case, however, the question of whether unbounded sets A exist with pe(A) < oo

is less easy. The fact that such sets do exist is a consequence of Theorem 2.2.

2. The discrete spectrum case

The following estimates are fairly standard; see pp. 7-8 of [2], for example.

Lemma 2.1. There is a number C, independent of x and X, such that for X > 0
and 0 < x < oo, if <p(x, X) is the solution to xy = Xy, y(0) = 0, y'(0) = 1 ,

and xp(x, X) = x/( 1 + \/Xx), then

(i)  \4>(x, A)| < Cx//(x, A)exp{C J* xp(s, X)\q(s)\ ds};

(ii)  \4>(x,X)-sin(y/Xx)/yfX\ < Cxp(x, A)[exp{C/0" xp(s, X)\q(s)\ ds} - 1].

Theorem 2.2. Suppose the spectrum oj H is purely discrete. Suppose that co is

as in Definition 1.1 and that, in addition, linv^oo co(x) = 0. Let {A,} be the

sequence of eigenvalues, arranged in increasing order, and let {y/j} be the se-

quence ojassociated eigenjunctions, normalized in L2. Then lim„^oo ||^a„||| =

lim^ooj/o00 co2(x)xp2(x) dx} = 0.

Prooj. With tf> as above, xp„(x) = d„tp(x, X„) for some sequence dn of con-

stants. Part (ii) of the preceding lemma implies that if A„ > 0 and x e [0, b],

then

|y/rXntp(x, X„) - sin(y/X~nx)\

<c(by/X~l(\+byfK)   explcj (s\q(s)\/(l + y/Tns))ds\- 1    .



240 D. B. HINTON AND R. M. KAUFFMAN

It follows that \y/Xn(p(x, Xn)-sin(y/%,x)\ converges uniformly to 0 on [0, b]

as aj -> oo. Therefore,

/■oo rb rb

1= /    xpn(x)2dx> /   xp„(x)2dx= /   d2tf)(x, Xn)2dx
Jo Jo Jo

and

lim  /   X„<f>(x, Xn)2dx = lim  /   sin2(y/~X~nx)dx — b/2.

It follows from the preceding two inequalities that limsup,,^^ bd2/(2X„) <

1. Since b is arbitrary, it follows that lim„_^00(af2/A„) = 0. Therefore,

pb rb

(2) lim  /   xpn(x)2dx= lim(d2/Xn) /   X„cf>(x, Xn)2dx = 0.
n^ooj0 n-> oo Jq

But /fc°°|w^„|2 < supx>A |G)(x)|2||vAn||2 • Using (2), we easily complete the

proof.

Corollary 2.3. Under the hypotheses oj Theorem 2.2, there exist infinite subsets

A of the spectrum of H on which P(A) is diagonalizable in B(YW, Zw).

Proof. This follows immediately from Theorems 2.2, 1.8, and 1.11.

3. Decaying potentials

In this section, we assume, in addition, that f0°°(l+x)\q{x)\dx < oo . Under

this hypothesis, Theorems 3.1 and 3.2 are well known. Theorem 3.1 is well

known in scattering theory. A proof can be found in [9, p. 185]. It also follows

from the asymptotic behavior of the m(X) function at A = 0 and can be
deduced from the results.of Klaus [8]. Theorem 3.2 is a summary of results

which appear in a variety of places. That (i) of Theorem 3.2 holds under the

assumption that q e Lx appears in Titchmarsh [10] and in much more general

circumstances in [5]. These references use the Titchmarsh-Kodaira formula to

show that p is continuously differentiable in (0, oo). Assertion (ii) follows

from the asymptotics of the m(X) function given in [6] and the Titchmarsh-

Kodaira formula. Properties (iii) and (iv) are proved by Klaus [8]. A standard

reference for property (v) is Chapter 9 of [3].

Theorem 3.1. The restriction of the spectrum to (-oo, 0) consists of eigenvalues,

which are finite in number (and which may be absent).

Theorem 3.2. There exists a continuously differentiable function p(X) with do-

main (0, oo), which has the following properties:

(i) p is extendable to a continuous function on [0, oo);

(ii) lim^^ p'(X)/y/X = c0 > 0;

(iii) if tp(x, 0) d. LoofO, oo), then lim/i^o+ p'(X)/yfX = a0 > 0;

(iv) if tf)(x, 0) e LoofO, oo), then limA^0+ \/A/a'(A) = bo^.0;
(v) jor any 6 e Q^O, oo), defining F(X) to be J0°° d(x)tp(x, X)dx, then

fior each positive integer N, P(0, N]6(x) = J(0 N] F(X)cf>(x, X)p'(X) dX.

(This property uniquely specifies p'.)
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Theorem 3.3. Suppose that A c R and that either 0 is not a limit point of A

or tp(x,0) £ LoofOjOo). Suppose also that fA(l/y/J)dX < co. Then pe(A) is

finite.

Proof. Since spectrum (H) n (-oo ,0] is a finite set, it follows from Theorems

1.3 and 1.9 that this set has finite measure with respect to pe . Hence we need

only consider the case where A is a subset of (0, co). Define Jx(x) to be

<f>(x, A). Then Jx satisfies the hypotheses of Theorem 1.10. Hence

pe(A) = j U(x,X)\\2zJ(X)dX = j yaCco2tf)(x,X)2dx^p'(X)dX.

Since /0°°(1 + x)\q(x)\ dx < oo , it follows from part (i) of Lemma 2.1 that

\<t>(x, A)| < Kx/(1 + y/Xx), where A^ is independent of x and A. Hence, for

Ac[0,oo),

pe(A)<  f l r{co2(x)K2x2/(l + y/Xx)2}dx\p'(X)dX
/->\ Ja Uo j

<[{[   cjo2(x)(K2/X)dx\MyfXdX.

The last inequality follows from the fact that p'(X) < MyfX, which follows
from Theorem 3.2. From (3), the theorem is obvious.

Theorem 3.4. Suppose that <f>(x, 0) e Z.co[0, °°) ond that 0 is a limit point of

A. Then pe(A) < oo if fA(l/y/X)dX < oo, provided the additional hypothesis

J0°° x2co2(x)dx < oo holds.

Proof. Let A = Ax U A2, where Ai = A n (0, 1). By the preceding theorem,
Pe(A2) < oo . Using the first inequality of (3), we see that

Afe(Ai)< j I r co2(x)K2x2/(l + VXx)2dx\p'(X)dX

< (f°°K2x2co2(x)dx]p(Ax).

The result follows.

Theorem 3.5. Suppose that A is a subset ofiR such that jAn[l A\/yfX)dX < oo.

Then P(A) is diagonalizable in B(YW, Zw), and therefore P(A) is compact in

B(Y0),L2).

Remark. Compactness in B(Ym,L2) is seemingly stronger than compactness in

B(YW, Zw), since L2 is topologically embedded in Zw . For P(A), however,

the two are equivalent by Theorem 5.2 of [7].

Proof. The result follows from Theorem 3.3, combined with the observation

that if P(A) is diagonalizable on each of two sets it is diagonalizable on their

union. It should be noted that P(A) is diagonalizable on any bounded set by

Theorem 5.5 of [7].

Example. To get some perspective on the results of this section, let us consider

the special case where q(x) = 0. In this case the usual Fourier sine transform
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may be written for f e L2[0, oo) and any Borel set A:

/•OO

(a) F(X) =       (sin(yTXx)/yTX)j(x)dx,
Jo

(b) P(A)j(x) = J ^(A) (sin( VAx)/VA) dp(X),

where p(X) — 2Xi/2/3n . The convergence of (a) is in the norm of L2(p), and

that of (b) is in the norm of L2[0, oo); what this means is that the restriction of

!? to Cq°(0, oo) extends by continuity to a unitary operator from L2[0, oc)

onto L2(p), although for arbitrary / neither integral exists in the usual sense.

Choose e so that Se = L2[0, oo). Since q(x) = 0, Flye(x) = b(X)sin(y/Xx)

for A > 0, and by Theorem 1.10, with a = p,

(c)    pe(A)= i\\sin(yrXx)/JX\\2zJp(X)
Ja

= f ( f   sin2(y/Xx)co2(x)dx) (l/nVI)dX.

Furthermore, if cg(X) = J0°° Fxye(x)9(x)dx ,

(d)   ce(Xl)Fxlye(s)l\\Fx,ye\\2Zia
"    /»oo "I /-OO

=    /    sin(y/XjX)8(x)dx  sin(y/XjS)/       co(x)2sin2(y/Xjx)dx.
Jo J Jo

By Theorem 1.9, if //f(A) < oo and e > 0, there are sets Ai, ... , A* and

points A, 6 A, n A such that for any 6 e Yw

k

P(A)e-Y^^nAi)ce(Xi)Fxiye/\\Fxiye\\ii      <e\\e\\Yia.
1=1 /

This fact also follows in this context directly from the continuity of the mapping

taking A to sin(y[Xx)/y[X, considered as a function from R into Zw. This

continuity does not hold in general, though it does hold when (1 + x)q e Lx .

A good deal of the work involved in proving Theorem 1.9 is to compensate for

this lack of continuity. Note that a3(A) plays no role in the calculations.

For example, if co = 1/(1 +x2)'/2,

/•OO

/    sin2(v/Ax)w2(x)dx = n(l - e~2VX)/4
Jo

so that pe(A) = jA\(l-e-2^)dX/yfX.

If co = e-^W , then /0°° sin2(y/Xx)co2(x)dx = 2A/(1 + 4A). Hence in this

case pe(A) = jA[2yfX/(n + 4nX)]dX.

Note that in each case for pe(A) to be finite it must be true that fA( l/\/~X) dX

< oo. Note also that the measure pe is quite different from the measure p .
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