
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 119, Number 1, September 1993

MINIMAL SURFACES AND //-SURFACES
IN NONPOSITIVELY CURVED SPACE FORMS

BENNETT PALMER

(Communicated by Peter Li)

Abstract. We show that if the Gauss curvature of a surface of constant mean

curvature in a nonpositively curved space form is sufficiently pinched, the sur-

face is stable. In this case, we also give an upper bound for the inradius. We then

show that the inradius of a stable minimal surface in Euclidean space, which is

contained in a solid cylinder, is bounded above by a constant depending only

on the radius of the cylinder.

Let Af3(c) denote a 3-dimensional oriented space form of constant sectional

curvature c < 0. Let X: M —► M*(c) he a smooth immersion of a smoothly

bounded surface M with curvature K and mean curvature h . Set

K = max K,        K = min K.
M M

We show

Theorem I. For h , c e R with -A2 :— h2 + c < 0, there exist universal constants

co(c, h) > e2 with the following property:

If M c M3(c) is a smooth orientable surface with constant mean curvature

h and

(-A2 - K)/(-A2 -K)< co(c, h)

then M is stable. In addition, IA... — e2 < co(0, 0) < 10.75...  holds.

Theorem II. If -oo < K_, K < -A2, and M contains a geodesic ball Br(xo)

of radius r then

n2 —
r2 < -;—=- lo%e[(-A2 - K)/(-A2 - K)].~4(-A2-K)      e ~"

In the second part of this paper we consider surfaces in E^ which are ex-

trinsically bounded in some way. Let Cr = {X = (Xx, X2, X3) e E31 x2 + x\ <

R2}. We show

Theorem III. There exists a constant cx > 0 with the following property: If M c

E3 is an orientable stable minimal surface with Br(p) c M and M c Cr\Cr,

fior some Rx > R2 > 0 then r2 < cx(R2x - Rj).
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Before beginning the proofs, we review some basic facts about surfaces in

M\c).
Let M -> M3(c) he an orientable surface. Let ds2 denote the induced

metric. (M, ds2) may be considered a Riemann surface in a natural way by

introducing isothermal coordinates (x, y) and using z - x + iy as a com-

plex coordinate. Doing so, ds2 may be expressed as ds2 = ep\dz\2 and the
curvature is

(1) K = -2e-ppzz.

The second fundamental form of M has an expression

n = Ke{tpdz2 + hepdz dz}

where qbdz2 is an invariant quadratic differential and h is the mean curvature.

The fundamental equations of the immersion are those of Gauss

(2) \tf)\2 = e2p(h2 + c-K)

and Codazzi

(3) <f)2=ephz.

When h = const, (3) implies that tp is holomorphic in z . It then follows that

either tp = 0 and M is totally umbilic or the zeros of tf) are isolated.

Lemma 1. Let M c M3(c), c < 0, have constant mean curvature h such that

h2 + c < 0. Assume M has no umbilics. Then the conjormal metric

(4) ds2 = (h2 + c- K)ds2

has curvature K satisfying

(5) k>\.
Proof. Using (l)-(3) one has

0 = A log |0| = Alog(-^2 - K)x'2 + Ap

= Alog(-A2-K)x'2-2K

where A = 4e~pdzdz . Therefore, using (1) to compute K one has

K = -(-A2 - ^)-'{Alog(-^2 - K)x'2 -K} = (-A2 - K)~l(-K).

Since K < 0 on M, (5) follows.

Proposition 1. Again assume h = const, h2 + c = -A2 < 0, and

(7) 0< -A2-K< -A2-K <-A2-K<oo.

Then the first (nontrivial) eigenvalue Xx ofi the problem

f Axp + 2X(-A2-K)xp = 0   onM,
(*) y
w I xp = 0 ondM

satisfies

(8) [x2log((-A2 - K)/(-A2 -K))]-x <XX.
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Proof. Let y/ > 0 be the eigenfunction corresponding to Xx . Let g(x,y)

denote the positive Green's function of M. Then

xp(x) = aj / (-2A2 - 2K(y))xp(y)g(x, y) * l(y)
Ja

<XX f -2K(y)xp(y)g(x,y)*l(y).
Jn

Therefore,

W(y)\ < AiH^Hoo / -2K(y)g(x,y)* l(y) = Xx\\xp\\ocv(x),

where v solves

Av = 2K   in M,
(9)v ; v = 0      on dM.

Choosing x where xp achieves its maximum we arrive at

(10) l^A.HIoo.

By (6) and (9)
A(v-\og(-A2-K)xl2) = 0   inM

and on dM
v - lo%(-A2 - K)x/2 < - log(-A2 - K)x'2.

It follows from the maximum principle and (8) that on M

v< log(-A2 - K)x'2 -log(-A2 -k)x'2

<log(-A2-K)xl2-lo%(-A2-k)xl2.

Using this and (10), (8) follows.

Proof of Theorem I. The surface M is stationary for the functional

/ = area + 2//(enclosed 3-volume).

The second variation of J for variations of the form xp • N where N is the

unit normal to M and xp e C0X(M) is given by S2J = / -xpLxp. Here L

is the selfadjoint elliptic operator Lxp = Ax// + 2(-2A2 - K)xp . Assuming the

hypothesis of the theorem, we have by Proposition 1, X\ > 1. Using integration

by parts we obtain

52J=   f-tpLify=  f(\Vxp\2-2(-2A2-K)xp2)

>   f(\Vxp\2-2(-A2-K)xp2)>0

and M is stable.

The upper bound for co(0, 0) follows from Example I.

Remark. We have shown that under the hypothesis of Theorem I, the second

variation of J is nonnegative for all compactly supported variations. When

h / 0 this is stronger than the condition that 82J be nonnegative for all

volume-preserving variations (cf. [B-DC]).
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Example I. Let C C R3 « C x R be the catenoid parameterized by X(u, v) =

(e'v cosh(u), u), (u, v) e R x [0, 2n). One easily computes that the curvature

is given by K = -(coshw)-4 and that the support function is given by 5 =

-1 + u tanh(w).

Denote by ilt the symmetric "waist" domain of the catenoid given by |w| <

t. Then ilt will be stable as long as s is negative, that is, for t <ux w 1.2... .

For ilt

e2 > K/K = (cosh t)4

holds for t < tx w 1.0850.... It follows that Theorem I has correctly predicted

stability in this case. Furthermore, for ilux , K_/K w 10.75... furnishes the

upper bound in the corollary. Finally the total curvature of ilt is

/"'' -2
2ti l    cosh    udu « 2n( 1.590. ..)> 2n.

J-t,

Consequently the criteria of Theorem I is independent of the Barbosa-DoCarmo
result [B-DC1].

To prove Theorem II we state without proof a special case of an eigenvalue

estimate due to Gage [G].

Theorem (Gage). Let Bf be a geodesic ball of radius f contained in a surface of

curvature K > -p2 = const. Then the first Dirichlet eigenvalue of the Laplacian

A on Br satisfies

(12) Xx<n2/r2 + p2/4.

Proof oj Theorem II. For a region il c M let Xx(il) denote the first Dirichlet

eigenvalue of A for il. Here A is the Laplacian for the metric ds of Lemma
1. Let Xx(il) he the first eigenvalue of the problem

3) Axp + 2X(-A2-K)xp = 0   mil,

xp = 0   on dil.

Since A = (-A2 - AT)-1A, it is clear that Xx(il) = 2Xx(il). Let y be a mini-
mizing geodesic of length f for the metric ds . Then

f = f(-A2 - K)['2 ds > (-A2 - K)x'2 f ds.
Jy Jy

It follows that Br,_A2_Ku/2 c Br. By a well-known monotonicity property of

eigenvalues

^■l(Bf(_/12_7/)l/2) > ^x(Br) = 2Xx(Br).

So by Lemma 1 and Gage's Theorem with ft = 0, we have

-"     _   >2Xx(Br).
r2(-A2-K) ~

Combining this with the lower bound of Proposition 1 yields the result.

We now consider surfaces in Ew which are extrinsically bounded.



MINIMAL SURFACES AND //-SURFACES 249

Lemma 2. Let M c E3 be a minimal surface. Let il c M be a smoothly

bounded subdomain, and let px be the first Dirichlet eigenvalue ofi the Laplacian

in il. Assume

(14) McCRi\Cr2,        Rx>R2>0.

Then

(15) ^/cfhr
Prooj. Define x = \(x2 + x2). Let N — (Nx, N2, A/3) be a unit normal defined

on a neighborhood in M. Then

At = i Y (2x>Ax' + 2IIV*<H2) = 11^*1 II2 + HVx2ll2
i=l,2

= 1 - Nx2 + 1 - A/22 = 1 + Nj > 1.

By (14) we have

06) f<r<§.
Let xp > 0 be a solution of Axp + ptp — 0 with xp = 0 on dil. Then

xp(x) = px / ^(ja)^(jc, y)* l(y)
Ja

and consequently

M*)l <vi\\vf\\oo / £(*,>0* i(y)-

Taking x values where ^ achieves its maximum yields

(17) 1 < px max / g(x, y) * l(y) = px maxS(x)
x€ii Jq xen

where S solves
AS = -1    in Q,

S = 0      on <9Q.

Therefore,

A(S + t)>0   inQ        and        S + x = x<R2x/2   on dil.

By the maximum principle

_     /<? /??     /<?    .    _
S<^J--t<^--^    inQ.~   2 ~   2        2

Combining this with (17) proves (15).

Prooj oj Theorem III. Since M is stable, it follows by a result of Schoen [Sc,

Corollary 4] that there is an estimate K(x) > -2a/r2, for all x e Br/2, where

a is a universal constant. Using this lower bound for K in Gage's upper bound

for px gives

a       n2 _   4CX

"' £ 4r~2 + T2" ": ~W
Combining this with the lower bound for px  in Lemma 2 gives the result.
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Corollary. Let M c E3 be a complete minimal surface. Ij there exists p e M

such that

(18) limsup- /     (-K) = 0
r^oo     r JBr(P)

then M is not contained in a cylinder.

Prooj. Assume to the contrary that M c Cr for some R, 0 < R < oc . Let a*o

be a constant with a-2. > cxR2 with cx as in Theorem III. Then any disc Bro c M

is unstable.   By a result of Barbosa and DoCarmo [B-DC1]  JB (-K) > 2n.

Taking the sequence rn = nr0, one finds that since BFn(p) contains at least n

disjoint geodesic balls of radius r0,

If      .   _,.     2ixn     2ix
- /       (~K)>-= — >0,
rn Ji3rn(P) nr0 ^0

giving a contradiction.
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