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FINITE LOOP SPACES WITH MAXIMAL TORI
HAVE FINITE WEYL GROUPS

LARRY SMITH

(Communicated by Frederick R. Cohen)

ABSTRACT. A finite loop space X is said to have a maximal torus if there is a
map f: BT — BX where T is a torus such that rank(7") = rank(X) and the
homotopy fibre of f has the homotopy type of a finite complex.
The Weyl group W, of f is the set of homotopy classes w: BT — BT

such that

BT % BT

VAN G

BX

homotopy commutes. In this note we prove that W, is always finite.

By a finite loop space we understand a topological space X such that:

e X has the homotopy type of a finite complex,
e X has the homotopy type of a topological group.

N.B. 1t is not assumed both structures may be realized on the same space
simultaneously.

A compact Lie group is a finite loop space, but there are well-known examples
(see, e.g., the book of Richard Kane [2] and the references there) of finite loop
spaces which are not Lie groups. An important idea, introduced by Rector [7]
(see also [6, I, II, III; 5]) for the study of finite loop spaces is that of a maximal
torus.

Definition. If X is a finite loop space, a maximal torus for X is a map
f: BT — BX where B(-) is the classifying space functor and 7 is a torus
such that

e rank(7) =rank(X) (see next page for definition of rank),
e the homotopy fibre F of f has the homotopy type of a finite complex.

A finite loop space need not have a maximal torus as Rector showed [7], and
if X is a fake Lie group, then it has a maximal torus if and only if it is a Lie
group [6, I-III; 5]. For a finite loop space with maximal torus, Rector adapted
a further concept from Lie theory, namely, the Weyl group.
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Definition. If X is a finite loop space with a maximal torus f: BT — BX,
then the Weyl group of f, Wy, is the group of homotopy classes of maps
w: BT — BT such that

BT % BT

VAN i
BX

homotopy commutes.

Notice that [BT, BT] ~ GL(n; Z), where n =rank(T), so W, < GL(n; Z).
If G is a compact connected Lie group and X a fake Lie group (e.g., X = G)
of type G (see [6, I] for definitions) with a maximal torus f: BT — BX (e.g.,
f =B, where p: T — G is the inclusion of a maximal torus), then W, ~ V.
However, for a general finite loop space there seems no reference for the fact
that W, is a finite group.t We rectify this in the following:

Theorem. Let X be a connected finite loop space and suppose X has a maximal
torus f: BT — BX . Then the Weyl group Wy is finite, and |Wy| is a divisor
ofd=d,---d, where 2d, -1, ...,2d,—1)is the type of X .

The type of a finite loop space X (or H-space) is defined following Hopf
(see, e.g., [3]) who showed

H*(X;Q) = H'(S* ™! x .- x §?@=1, Q)

where the integers 2d; — 1, ..., 2d, — 1 are called the type of X and n its
rank. If X is a Lie group, then the rank as just defined coincides with its rank
as a Lie group.

Proof. Let X have rank n and type (2d; — 1, ..., 2d, — 1). By the Leray-
Samelson theorem [3] it follows that for sufficiently large primes p or p =0
H*(X;F,) ~E(uy, ..., uy)
where (F, :=Z/p, Fo=Q)
degu, =2d;, -1, i=1,...,n.

From the Milnor-Moore spectral sequence [4] it then follows

H*(BX,F,) ~Fplp1, ..., pnl
where

deg p; = 2d;, i=1,...,n.

Let F denote the fibre of the maximal torus f: BT — BX . Consider the Serre
spectral sequence {E,, d,}

E, = H*(BT;F,),

E,;=H*(BX;F,)® H*(F; F,).
Since F is finite, E3* is a finitely generated H*(BX ;F,) module. If p =0,
or p is sufficiently large, H*(BX ; F,) is a noetherian ring, and hence an easy

argument shows that H*(BT ; F,) is a finitely generated H*(BX ; F,) module.
Recall

H* (BT F,) =Tty ..., ty]

t In [8] Rector and Stasheff state that this is the case but give no proof.
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where
degt; =2, i=1,...,n

Therefore,
f*tH*(BX;F,) - H* (BT, Fp)

must be monic for H*(BT ; F,) to be finitely generated over H*(BX ; F,), and
furthermore by Maccauley’s theorem [9] H*(BT;F,) is a free H*(BX; F,)
module.

From this point on assume that p is a prime that is sufficiently large and
ptd =d,---d,. Then according to Adams-Wilkerson [1] there exists an essen-
tially unique embedding

¢: H'(BX;F,) — H*(BT; Fp)
and a finite group W (p) < GL(n; F,) with
9(H*(BX;F,)) = H*(BT; F)"®

and
|W(p) =d.

The uniqueness of ¢ allows us to suppose that ¢ = f*. By the very definition
of Wy we have

H*(BT; F,)"® < H*(BT; F,)".

Let FF(—) denote the field of fractions functor, and set H*(BT;F,) = B.
Then
FF(B)"") = FF(B¥W) < FF(B"') < FF(B)"

where the first equality results from [6, 1.3.2]. By Galois theory it follows that
the image of W, under the reduction homomorphism

p: GL(n; Z) — GL(n; Fy)

is contained in W(p).
Suppose that |Wy| >d. Let 1 =wp, wy, ..., ws € Wy be d+ 1 distinct
elements. Choose p even larger if necessary so that

.. L 0<r,s<d,
prwe(i, j) —ws(i, j): { 1<i.j<n.
Then the mod p reduction of these elements would have to be distinct, contrary
to the fact

p(Wp) <W(p), |W(p)l=d.
Therefore, W, is finite, and p is monic if p is large enough. O

Remark. The referee has suggested an alternate proof. In outline the idea is
as follows. Work over the rationals Q instead of the finite field Z/p. As
above A := H*(BT; Q) is a finitely generated module over B := H*(BX; Q).
(One must argue that H*(BX; Q) — H*(BT; Q) is monic and:) Therefore
A D B is an integral ring extension. The canonical map W — Aut(FF(A4))
of the Weyl group W into the automorphism group of the field of fractions
of A is an injection. FF(A) D FF(A)Y D FF(B) is a sequence of field
extensions, where the first is a Galois extension. An argument using Poincaré
series (e.g., T. Springer, Invariant theory, Lecture Notes in Math., vol. 585,
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§2.5.6, Springer, New York) shows that the degree [FF(A) : FF(B)] of the
extension FF(A) D FF(B) is given by [[d;. Hence, the order of W divides
[14d;, and in particular, the order of W is finite.

N.B. The paper of Rector-Stasheff [8] was published in 1974 and the book of
Springer was first published in 1977.

The preceding theorem answers yet one more question about the Weyl group
of a maximal torus for a finite loop space but leaves open many more. In
particular:

o Is the Weyl group of a finite loop space with maximal torus nontrivial?

e Is H*(BX;F,) the ring of invariants of W, acting on H*(BT; F,)?
Affirmative answers would classify the possible Weyl groups as the groups gen-
erated by reflections and answer in the affirmative the question of whether the
type of a finite loop space with maximal torus must coincide with that of a Lie
group.
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