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A CYCLIC MONOTONICALLY NORMAL SPACE
WHICH IS NOT K,

MARY ELLEN RUDIN

(Communicated by Franklin D. Tall)

ABSTRACT. We construct a space as in the title, thus answering a variety of
questions.

We construct a space T as in the title, answering questions raised in [MRRC,
vMR, MR, M, H, vD].

For T to be monotonically normal [B, Z], points must be closed, and, for
every point ¥ and open neighborhood U of u, there must be an open neigh-
borhood H(u, U) such that

(1) foru ¢ Vand v ¢ U, Hu,U)NH(v, V)=, and
(2) forUcV, Hu,U)c Hu, V).

Such a function H is called a monotone normality operator for T .
If G is a monotone normality operator for T and n > 3, we say that a
sequence {y‘|i < n} from T is an n-cycle of G if y° = y" and

NGO T-{y'}) # o;

<n
T would be called acyclically monotonically normal if it had an operator with-
out any cycles. We show that if G is a monotone normality operator for 7,
then G has a cycle of length 3. That is, we find a set {y‘|i < 3} of three points
such that

NGy . T-{')#2.

<3
(Here and throughout the paper we add i’s (and j’s) modulo 3. Thus y3 =
y°.) Hence T gives a strong negative answer to the following frequently asked
question, first asked in [MRRC]: is every monotonically normal space acyclically
monotonically normal? Equivalent questions are known [MRRC, M, MR].

For each n € w, Kuratowski [K] defined a class K, of spaces. Both K

spaces and monotonically normal spaces are K; [vD], while acyclically mono-
tonically normal spaces are Ky [MR]; T is K; but not Ky. Thus T gives a
negative answer to the following, again frequently asked [H, MRRC, M, MR,
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vMR], questions, first asked by van Douwen in his thesis [vD]: is every K|
space Kj (partially answered by van Mill [vM]) and is every monotonically
normal space K ?

Also T is first-countable, O-dimensional, hereditarily separable, hereditarily
Lindelof, and hereditarily paracompact [BR], quite a nice space in many ways.

Define T = 3<¢;let < be the usual partial order on 7 defined by ¢ < s in
T if s extends ¢. Then (T, <) isatree of height w+1 which has 3" asits nth
level. Let X = 3<? and Y = 3% (the top level of the tree); T = X UY . Each
X € X has exactly three immediate successors {xp, x;, x2}. For x <y €Y
in the tree T, define

By(y) ={y}u{zeX|lx <z <y}
U{teT|3ze X with x < z <y and i < 3 with z; < y and z;;; < t}.

(Recall that we add i’s modulo 3.) Our topology on T is the one induced by
using {{x}|x € X} U{Bx(¥)|x <y € Y} as a basis.
We make several observations.

1. This is indeed a topology.

Proof. If t € B,(y)NY and z is maximal in X for z <y and z < ¢, then
B,(t) C Bx(y). For ye Y, {B(y)|x <y} is a decreasing local basis at y. 0O

II. Points are closed.

Proof. Suppose t #y in T. We need a neighborhood of y missing ¢. We
canassume ye Y. If te€ X, t € 3" forsome n € w and ¢t ¢ By(y), where
x is the term of 3” with x < y. If t € Y, there is a maximal x € X with
x<tand x<y;t ¢ By(y). O

III. T is monotonically normal.

Proof. Define H(x, U)={x} if xe€ X and H(y, U) = Bs(y) if y€ Y and
x is minimal for B,(y)Cc U.

Since the other conditions necessary for H to be a monotonic normality
operator are trivially satisfied, we only need check (1). Suppose u € U which
isopen, v € V which isopen, u ¢ V,and v ¢ U. We can assume both u
and v arein Y.

If ¢ is maximal in X for ¢ < u and ¢ < v, then one of {f, ¢, tr} is <u
and another is < v. We can assume that ¢; <« and t,,; <v. Since v ¢ U,
H(u, U) = By (u) for some x >¢. But B,(u)NB,(v) =@ forall z<v. Thus
(1) holds and T is monotonically normal. O

IV. T is not acyclically monotonically normal.

Comment. This follows from observation V, but I give a proof, for it is basic to
T . 1first observed that a triple branching Souslin tree, similarly topologized, has
this property. I sent this information to Moody who independently discovered
a “real” example.

Proof. Suppose G is a monotone normality operator for 7. Let r be the
unique first term of T (its root). For each y € Y thereisan f(y) <y in T
such that By,,(¥) C G(v, B,(»)).
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Claim. There are x € X and {y!, y2, y3} C Y such that, for i < 3, f(y') <
x<x;i <y

Suppose our claim is true. For each i observe that, since y'~! ¢ B,(y),
G(y', B,(y") C G(y', T —{y"~'}). And x € By, (y') C G(y', B,(y')). So

xe[GH' . T-{"}.
i<3
Thus G has a 3-cycle as desired.

To prove our claim, suppose that for every x € X there is an i(x) < 3 such
that for all y € Y with x;,) <y, f(y) > x.

For each n € w we then choose x" € X by induction, taking x° = r and
x"*! = x . . There is a unique y € Y which extends x" for all n € . But
there is n € w with f(y) < x". Since x"*! = Xitem <y and f(y) < x", we
have a contradiction to the definition of i(x"). Our claim thus holds, and T
is not acyclically monotonically normal. 0O

V. T isnota Ky space.

In order for a space T with topology 7 to be Kj, it is necessary [K] that, for
every Y C T having the subspace topology p, there be a function k: p — 1
such that, for all U and V in p,

(1) k(e)=2,
(2) kK(U)nY =U, and
(3) k(UNV)=k(U)Nnk(V).

Assume such a k for our space T and its subspace Y .

(For T to be K; forevery Y, there is a k satisfying (2) such that k(U)nN
k=2 if UnV =2.)

For p<x € X and i < 3 define

Upxi={ue X|p<u<x}
U{t€ T|3ue X and j<3 such that p < u<x, u;<x;, and u;;; < t}.
Recall that r is the root of T . Define
Uei=Uxi U{t e T|x; < t}.

Our proof that there can be no k as assumed has several steps.
(a) There is p € X such that, for all x > p in X and i < 3, Uy C

Proof of (a). Suppose there is no such p. Then by induction, for each n € w,
we can choose p"” € X as follows. Let p® = r. Assume that p?" = p has
been chosen. By our supposition, there are x > p and i < 3 such that Uy, ¢
k(UxinY). Choose p?"*! = x and p?"*2 = x;.

There is a unique y € Y which extends p” for all » € w. By property (2)
of k, there is some z € X such that B,(y) C k(B,(y)NY) and some n € w
such that z < p?* = p. Then if x = p?**! and x; = p?**2, Uy ¢ k(UxiNY).
But Upyx; C By(y) C B:(y) and B,(y) C Uy, s0 Upx; Ck(Uy;NY), which is a
contradiction. 0O

We keep p satisfying (a) fixed for the rest of the proof.
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(b)If p<teX and j<3,then Uy, Ck(UynY).

Proof of (b). To see this, simply observe that if x =t;, ;.3 Upxi = Up;; and
Ni<3 Uxi = Uyj. Thus from (a) and property (3) we get (b). O

(c) S, holds forall ne w.

Definition and proof for (¢). If new, p<xe X,and i<3,let V,,;, ={ve
X|x; <v and n is the number of terms of X between x; and v}. Let S, be
the statement V,,; C k(U,;NY) forall x and i.

We prove the S, ’s by induction.

So holds, since Vox; = {x;} and x; € Upy; C k(Ui NY) by (b).

Suppose S, holds and v € V,,),; for some x and i. Since S, holds,
vV € Vay,j C k(U,jNY), where (x;); < v. Observe that by the definition
of Urx,v(y-l)’ v € Urxi(j—l) C k(Urx,(j—l) NY) by (b). Thus by property (3),
V € k(Ux,j N Upgyy-1y NY) = k(Uxi NY). Thus S, holds, and we have
proved (c). O

An immediate consequence of (c) is
(d) If p<xeX and i<3,then {ve X|x;j<v} Ck(UxNY).
(e) Completion of the proof that k fails to have the desired properties.

Fix x and i asin (d), and choose y € Y extending x;. By property (2) there
is z € X with x; < z < y such that B.(y) C k(By,(y)NY). Choose v € X
with z <v <y;then v € B,(y) Ck(By,(y)NY). We have By, (y)NU.xi =2,
s0 k(By,(y)NUxiNY) = @ by property (1). But v € k(U,,; N Y) by (d),
and v € k(By,(y)NY). Hence k(U,x,;, NY)Nk(By,(y)NY) # @, contradicting
property (3).
Comments. 1. T is strongly monotonically normal. (See [H].) That is, T has
a monotonic normality operator G such that t € G(y, U) implies G(¢, U) C
G(y,U). If y e X, define G(y,U) ={y}. If y € Y and x is minimal for
B, (y) c U, then define

Gly,U)u{teT|3ze X withx<z<y
and i <3 with z; <tand {w € T|z; <w} Cc U}.

2. Questions of A. V. Arhangel’skii. Does there exist a compact Ky-space
which is not K;? Or a compact monotonically normal space which is not
acyclically monotonically normal?
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