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A CYCLIC MONOTONICALLY NORMAL SPACE
WHICH IS NOT tfo

MARY ELLEN RUDIN

(Communicated by Franklin D. Tall)

Abstract. We construct a space as in the title, thus answering a variety of

questions.

We construct a space T as in the title, answering questions raised in [MRRC,

vMR, MR, M, H, vD].
For T to be monotonically normal [B, Z], points must be closed, and, for

every point u and open neighborhood U of u, there must be an open neigh-

borhood H(u, U) such that

(1) for u i V and v i U, H(u, U)nH(v, V) = 0, and
(2) for U CV, H(u, U)cH(u, V).

Such a function H is called a monotone normality operator for T.

If G is a monotone normality operator for T and n > 3, we say that a

sequence {y'\i < n} from T is an AA-cycle of G if _v° = y" and

f]G(y',T-{yi-x})^0;
i<n

T would be called acyclically monotonically normal if it had an operator with-

out any cycles. We show that if G is a monotone normality operator for T,

then G has a cycle of length 3. That is, we find a set {y'\i < 3} of three points
such that

f]G(yj, T -{/'-'}) #0.
i<3

(Here and throughout the paper we add i 's (and j's) modulo 3. Thus y3 =

y° .) Hence T gives a strong negative answer to the following frequently asked

question, first asked in [MRRC]: is every monotonically normal space acyclically

monotonically normal? Equivalent questions are known [MRRC, M, MR].

For each n e to, Kuratowski [K] defined a class Kn of spaces. Both Ko

spaces and monotonically normal spaces are Kx [vD], while acyclically mono-

tonically normal spaces are A'n [MR]; T is Kx but not Kq . Thus T gives a

negative answer to the following, again frequently asked [H, MRRC, M, MR,

Received by the editors November 4, 1991.

1991 Mathematics Subject Classification. Primary 54D25.

Key words and phrases. Monotonic normality, K0 space.

©1993 American Mathematical Society

0002-9939/93 $1.00+ $.25 per page

303



304 MARY ELLEN RUDIN

vMR], questions, first asked by van Douwen in his thesis [vD]: is every Kx

space #o (partially answered by van Mill [vM]) and is every monotonically

normal space KQ ?

Also T is first-countable, 0-dimensional, hereditarily separable, hereditarily

Lindelof, and hereditarily paracompact [BR], quite a nice space in many ways.

Define T = 3-w ; let < be the usual partial order on T defined by t < s in

T if s extends t. Then (T, <) is a tree of height co+l which has 3" as its nth

level. Let X = 3<(0 and Y = 3W (the top level of the tree); T = XuY . Each
x e X has exactly three immediate successors {xo, xx, x2}. For x < y e Y

in the tree T, define

Bx(y) = {y} u{zeX\x<z<y}

U {t e T\3z e X with x < z < y and i < 3 with z, < y and z,+1 < t}.

(Recall that we add a's modulo 3.) Our topology on T is the one induced by

using {{x}|x e X}xj {Bx(y)\x < y e Y} as a basis.

We make several observations.

I. This is indeed a topology.

Proof. If t e Bx(y) D Y and z is maximal in X for z < y and z < t, then

Bz(t) c Bx(y). For yeY, {Bx(y)\x < y} is a decreasing local basis at y .   □

II. Points are closed.

Proof. Suppose t ^ y in T. We need a neighborhood of y missing t. We

can assume y e Y. If t e X, t e 3" for some n e co and t <£ Bx(y), where

x is the term of 3" with x < y. If t e Y, there is a maximal x e X with

x < t and x < y ; t f Bx(y).   □

III. T is monotonically normal.

Proof. Define H(x, U) = {x} ifxel and H(y, U) = Bx(y) if yeY and
x is minimal for Bx(y) C U.

Since the other conditions necessary for H to be a monotonic normality

operator are trivially satisfied, we only need check (1). Suppose u e U which

is open, v e V which is open, u £ V, and v $. U. We can assume both u

and v are in Y.
If t is maximal in X for t < u and t < v , then one of {to, tx, t2} is < u

and another is < v . We can assume that tj < u and ti+x < v . Since v <£ U ,

H(u, U) = Bx(u) for some x > t. But Bx(u)xlBz(v) = 0 for all z < v . Thus

(1) holds and T is monotonically normal.   □

IV. T is not acyclically monotonically normal.

Comment. This follows from observation V, but I give a proof, for it is basic to

T. I first observed that a triple branching Souslin tree, similarly topologized, has

this property. I sent this information to Moody who independently discovered

a "real" example.

Proof. Suppose G is a monotone normality operator for T. Let r be the

unique first term of T (its root). For each yeY there is an f(y) < y in T

such that Bf{y)(y) c G(y, Br(y)).
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Claim. There are x e X and {yx, y2, y3} c Y such that, for i < 3, j(y') <

x < Xj <y'.

Suppose our claim is true. For each i observe that, since y'~x $ B,(yl),

G(yl, W')) C G(yi, T - {y'-»}). And x e Bf^y1) C G(yi, Br(y')). So

xef]G(yi,T-{yi-1}).
«3

Thus G has a 3-cycle as desired.

To prove our claim, suppose that for every x e X there is an i(x) < 3 such

that for all y e Y with x,(x) < y, f(y) > x .

For each n e to we then choose x" e X by induction, taking x° = r and

xn+x — xZx„). There is a unique yeY which extends x" for all n e to. But

there is « 6 co with /(>>) < x" . Since x"+1 = x",„, < y and /(y) < x" , we

have a contradiction to the definition of i(x"). Our claim thus holds, and T
is not acyclically monotonically normal.   □

V.   T is not a K0 space.

In order for a space T with topology z to be A^o , it is necessary [K] that, for

every Y c T having the subspace topology p, there be a function Ac: p —> z

such that, for all U and V in p,

(1) AC(0) = 0,
(2) Ac(C)nT = C,and
(3) Ac(CnF) = Ac(C)nAc(F).

Assume such a ac for our space T and its subspace Y.

(For r to be Kx for every 7 , there is a Ac satisfying (2) such that k(U) n
ac(F) = 0 if CnF = 0.)

For p < x e X and / < 3 define

UpXi = {u e X\p < u < Xj}

U{t e T\3ueX and j<3 such that p <u<x, Uj<x,, and uj+x < t).

Recall that r is the root of T. Define

Uxi = Urxi U {t e T\xt < t].

Our proof that there can be no Ac as assumed has several steps,

(a) There is p e X such that, for all x > p in X and i < 3,  Upxi c

k(UxinY).

Proof oj (a). Suppose there is no such p . Then by induction, for each n e co,

we can choose pn e X as follows. Let p° = r. Assume that p2n - p has

been chosen. By our supposition, there are x > p and i < 3 such that Upxi tt

k(Uxi n Y). Choose p2n+l = x and p2n+z = x,.

There is a unique yeY which extends p" for all n e to. By property (2)

of ac , there is some z e X such that Bz(y) c k(Br(y) n T) and some a? e co

such that z <p2n =p. Then if x = />2"+1 and x, = />2"+2, Cpx, £ k(Uxi n 7).

But Cpx/ c flp(y) C Bz(y) and fir(y) C CX1-, so Upxi c ac(Cx/ n Y), which is a

contradiction.   D

We keep p satisfying (a) fixed for the rest of the proof.
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(h) If p <t e X and j < 3, then UptJ c k(Urtj n Y).

Proojoj(b). To see this, simply observe that if x = tj, f|,<3 Upxi = Uptj and

f1,<3 UXi = Urij. Thus from (a) and property (3) we get (b).   □

(c) Sn holds jor all n eco.

Definition and proof jor (c). If new, p < x e X, and / < 3 , let Vnxi = {v e

X\Xj < v and n is the number of terms of X between x, and v}. Let S„ he

the statement Vnxi c k(UrXi n Y) for all x and i.

We prove the Sn 's by induction.

So holds, since V0xi = {x,} and x, e Upxi c /c(Crx; n 7) by (b).

Suppose 5"„ holds and v e V(n+i)xi f°r some x and i. Since Sn holds,

u e VnXjj c k(UrXij n Y), where (x,); < v. Observe that by the definition

of UrxAy-\), v e C/rjc,tA-D c k(UrXi(j-\) n y) °y (b)- Thus by property (3),

v e k(UrXjj n UrXjty-i) fl 7) = k(Urxj n 7). Thus 5„+i holds, and we have
proved (c).   □

An immediate consequence of (c) is

(d) If p < x e X and i < 3 , then {v e X\xj < v} c k(Urxi n y).
(e) Completion of the proof that k fails to have the desired properties.

Fix x and i as in (d), and choose yeY extending x,. By property (2) there

is z e X with x, < z < y such that Bz(y) C k(BXi(y) n 7). Choose uel

with z < i) < y ; then t; 6 Bz(y) c k(BXi(y) nr"). We have Bx,(y) n Crx, = 0 ,

so k(BXi(y) n C/w,- n 7) = 0 by property (1). But v e k(Urxi n 7) by (d),
and v e k(BXi(y) n 7). Hence Ac(Crx, n 7) n k(BXi(y) n 7) / 0, contradicting
property (3).

Comments. 1. T is strongly monotonically normal. (See [H].) That is, 7" has
a monotonic normality operator G such that A e G(ja, C) implies G(a, C) c

G(y, U). If y e X, define G(y, U) = {y} . If y e Y and x is minimal for
Bx(y) c U , then define

G(y, U) U {t e T\3z e X with x < z < y

and i < 3 with z, < / and {w e T\z, <w}cU}.

2. Questions of A. V. Arhangel'skii. Does there exist a compact AVspace

which is not Kxl Or a compact monotonically normal space which is not

acyclically monotonically normal?
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