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LYAPUNOV CHARACTERISTIC EXPONENTS
ARE NONNEGATIVE

FELIKS PRZYTYCKI

(Communicated by Clifford J. Earle, Jr.)

Abstract. We prove that, for an arbitrary rational map f on the Riemann

sphere and an arbitrary probability invariant measure on the Julia set, Lyapunov

characteristic exponents are nonnegative a.e. In particular log|/'| is integrable.

An analogous theorem is proved for smooth maps of an interval with all critical

points being nonflat.

This allows us to fill a gap in the proof of Denker and Urbahski's theorem

that there exists a probability conformal measure on the Julia set with exponent

equal to the supremum of the Hausdorff dimensions of probability invariant

measures with positive entropy.

0. Introduction

Our main aim is to prove the following

Theorem A. Let j be a rational mapping ojthe Riemann sphere C and p an

arbitrary probability j-invariant measure on the Julia set J = J(f). Then jor

p-almost every point x e J

(1) *(*)= limlog|(/")'(x)|>0.
fl—>oo

In particular, the junction log|/'| is p-integrable.

This easily yields

Corollary A. For p-almost every x e J, limsxxpn^^ \(jn)'(x)\ > 1 .

The same methods (Koebe-like distortion lemma + the nonexistence of

homtervals,which replaces Montels's Theorem) give

Theorem B. For every j: I —> / a smooth map ojthe interval with a finite num-

ber of critical points all being nonflat and p an arbitrary probability f-invariant

measure on fR, which denotes the complement ojthe domain oj attraction to

sinks and neutral points here, jor p-almost every point x e JR the formula (1)

holds.

One could ask whether, given fi, #(x) > 0 for every p and p-a.e. x.

Sometimes it is true; for example, it is obvious if / is expanding on J (i.e.,
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if I (/"")'I > 1 f°r some n). It is also true for subexpanding /, namely, such

that the tolimit set to(Crit(~)J) is disjoint with Crit, where Crit = Crit(/)

denotes the set of critical points for /, and there are no neutral rational points

in /. This uses the recent Mane's result that j is expanding on to(CritnJ)

[M].
However, x = 0 for p supported by a "neutral set". Then we call p a

neutral measure. This happens, for example, for neutral points in J(j) with

Dirac measures on them, for harmonic measure on the boundary of a Siegel

disc, or even in the case J(j) - C for the invariant probability measure on the

unit circle for some maps of the form

z^Xz-^(^-Y     for|A| = |y| = l,y«l;
1 - ax \1 - yaz )

see [H, GPS].
Corollary A is useful already in a weaker form, namely, that there exists

at least one x in every closed forward invariant subset of J such that

limsup„_00 \(fi")'(x)\ > 1. This fact allows one to prove that the supremum

of Hausdorff dimensions of probability /-invariant positive entropy measures

on J(f) is equal to the smallest exponent 8 for which a Sullivan's conformal

measure exists (i.e., a probability measure with Jacobian \j'f). This equality

was almost proved in [DU], and the above-mentioned version of Corollary A

was just the missing link.

We end this introduction with a sketch of the proof of Theorem A in the

case there exists only one critical c in J(j) because in this case the main

idea is very transparent. We consider the Riemann sphere with the standard

conformal metric; the distances and |/'(x)| are considered with respect to it;

for any x e J, r > 0, B(x, r) denotes the ball with the origin at x and radius

r in this metric.

Step 1. There exists a constant C > 0 such that, for every n > 0 , dist(j"(c), c)

> exp-AjC. Otherwise /" maps B = B(c, 2exp-AtC) into itself and so the

family jk"\s , k = I, ... , is normal. Hence, c $ J, a contradiction.

Step 2. Case (1). Assume that for a constant C > 0, x e J , and every n large

enough we have dist(/"(x), c) > exp -ajC . Then

(2) limsup-log|(/")'(x)|>-C.
n—►oo    AJ

Otherwise the diameters of jn(B(x, e)) for e small enough shrink at least

like \(fn)'(x)\z" for z arbitrarily close to 1 due to the fact that the contraction

is stronger than approaching by fn(x) the critical point (this is a standard

Pesin's theory consideration). Again J"\b(X,e) would be a normal family. Thus

if x(x) exists, we get x(x) > ~C.
Case (2). If there exist n arbitrarily large with dist(/"(x), c) < j exp -ajC ,

then for C as in Step 1, there is a univalent branch f~" on B — B(c, exp -nC)
such that j~n(B) 3 x and with the use of Koebe's distortion lemma we obtain

I(/")'(■*)I > Constdiam(fi) = Constexp-AzC,

since, roughly speaking, j~"(B) cannot be larger than C. Hence, we again

obtain (2), and if ^(x) exists we get x(x) > -C.
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The idea is that the "bad" case where f(x) is close to c happens to be

"good" because the critical point is the safest from being contaminated by crit-

ical values for iterates of /. The model situation is the subexpanding case

where the critical values cannot approach c at all.

Step 3. x(x) > —C f°r a constant C > 0 and /^-almost every x implies by

the BirkhofT Ergodic Theorem the integrability of log \f'\ which implies x > 0 •
This is standard.

1.  FlNITENESS FEATURES

Here / is a rational mapping of the Riemann sphere; we keep the notation

from §0.

Lemma 1. Let c e Crit n J. There exists a constant Cx > 0 such that, for every

e, n>0, ij jn(B(c,e))f]B(c,e)^0 then n > C,log±.

Proof. We may assume e is small, if it is large Cx takes care of it. Then

diamf(B(c,2e)) < 10e2 and diamfn(B(c, 2e)) < lOe^""1 where L =

suoxec\j'(x)\. If IOa^L"-' < e, then as j"(B(c,2e)) intersects B(c,e)

we obtain f"(B(c, 2e)) c B(c, 2e), so c is in a domain of normality for

the iterates /*, which contradicts c e J. Thus, 10e2L"_1 > e; hence,

n > (log 757)/ l°g L, which proves our lemma.

Lemma 2 (finiteness lemma). There exists a constant M > 0 such that for every

c e Critn7, for every n > 0 there are at most M critical values for f" in

B — B(c, exp-Aj).

Prooj. Suppose that for cx e Crit, Ac > / > 0, we have fk(cx), fl(cx) e B.

Then by Lemma 1 k - I > Cx logt^J^) = Cxn . So for M = (C71 + 1 )jtCrit

Lemma 2 is satisfied.

In the sequel we shall refer to the following Mane's lemma [M]:

Lemma 3 (Mane's lemma). Given e>0, 0 < ac < 1, c > 0, and N > 0 there

exists d > 0 such that, if jor a disc B = B(x, 3) we have dist(fi, p) > c for
every neutral rational or attracting periodic point p and for some n >0 and a

component V oj j~"(B) there are not more than N critical points of fi" in

V, then diam W < e jor every component W oj j~n(B(x, kd)) n V.

In fact, the inductive consideration proving the next lemma also proves

Mane's lemma for N > 0 if one has it already for N = 0.

Lemma 4 (bounded distortion lemma). There exists C2 > 0, such that jor every

c e Crit C\J and n > 0 there exists r, j < r < 1, such that jor every j, 0 <

j < n, every component Dr oj j~"(Br), where we write Bx = B(c, zexp-n)

for every z, 0 < z < 1, the following holds:
for every two points y e dDr, z e Drn j~n(BXj2)

(3) dist(f >(y),fi>(z)) > C2diamjJ(Dr).

Proof. Let D be an arbitrary component of f~n(Bi/4). We need to consider

only large aj . So due to Lemma 2 and Mane's lemma we may assume that the

diameters of all jJ(D), j = 0, ... , n , are small. Due to Lemma 2 there exist

5 < fX < r2 < I, r2- rx > -^j such that there are no critical values for /"
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in clBr2 \Bn . Consider an arbitrary component Dri of j~"(Br2) in D. For

rx <z <r2 denote f~"(Bx) n Dn by DT.

Observe that all sets fj(Dr2) are simply connected, />(Dr2\clDr<) are topo-

logical annuli, and the degree of f" on Dn \ cl Dr[ is at most dM"Cnt where

d majorizes multiplicities of / at critical points.

We prove it by induction. For j = n everything has been assumed. Assume

the above assertion for j < n . Then jJ~x(Dr2) contains at most one critical

point for / because it has small diameter. This critical point is in fact in

jJ~x(Dri). So jj~x(Dri) is simply connected, jj~x(Dr2\clDn) is a topological

annulus, and the degree of j on it is the multiplicity of it at the critical point.

Formally from Lemma 2 it follows that we meet critical point with jJ(Dr2) for

at most Mfl Crit number of ;'s. (We multiply M by fl Crit as the orbit of one

critical point may hit another critical point so they give the same critical value

for /" in Bri. In fact, from the proof of Lemma 2 it follows that we can omit

the factor flCrit as we shall in the sequel.)

Let

r" = r2 - \(r2 - rx),        r' = rx + \(r2- rx).

The distortion (i.e., supremum of the ratios of the absolute values of deriva-

tives over all pairs of points) of each branch of /-"("-■/) on, say, each half of

the annulus Br»\Bri (for example, 0 < Arg(z-c) < n or n < Arg(z-c) < 27t)

to fJ(Dr'i \ Dri) is bounded by a constant depending only on M (use Koebe's

distortion lemma). Finally we have degree of jn~' on jJ(Dr»\Dri) bounded

by dM . This yields the lemma for r = r" .

Lemma 5. There exist k ,  C3 > 0 such that jor every n, x if f(x) e BX/2

then there exist j, A satisjying 0<j<j + A<n, A>ajac such that

\(jA)'(fj(x))\>C3exp-2n.

Proof. Take DX/2 b x as in Lemma 4. We have

diam/"(Z)1/2)/diamZ)1/2 > (exp-«)/(2 diamC).

Hence, for some T < M + 1

(Ay Til   diam/>'(D1/2)   \      _     t
4 I    t-fi   +Xfry—v    ^ Constexp-Aj

AA ydiamfJ->+x(Dx/2)J

where jo = 0, jt = n , and, for t = 1, .'... , T- 1, j, < jt+\  are consecutive

integers for which jj'(Dr) intersects Crit  (r from Lemma 4).

Denote A, = j, - jt-i — 1 ■ By Lemma 4 and Koebe's distortion lemma /A'

for every t has distortion on jJ'-'+](Dx/i) bounded by a constant depending

only on C2. Hence from (4) for a constant C4 depending only on C2 we get

r

(5) nK-/"A')'^,",+i(x))i>c47'exp-'j-
1=1

If each At = \(jA')'(jJ'-] + i(x))\ for A, > acai were smaller than exp-2Aj

(ac will be specified below), then

n^^ n a< n ^<(exP-2A7)L-r.
A,>Kn       A,<Kn
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We used the fact that there exists A, > acaj , which holds if xnT + T < n . If

we assume additionally 1 > icTlogL, then we get fT A, < exp-Ai(l + t) for

some t > 0, which contradicts (5) for aj large.

2.   Xix) > 0  FOR A RATIONAL MAPPING OF  C

In this section we shall prove Theorem A. We start with a lemma standard

in Pesin theory [P]:

Lemma 6. For every x e C if

(6) limsup -(log|(/")'(x)| - logdist(/"(x), Crit)) < 0
n—>oo    AI

then there exists z > 0 such that

(7) lim diam/"(5(x, t)) = 0;
n—»oo

more precisely,

(8) ~«108       |(/-)'(x)|        =°-

Proof. Denote A = limsup„^00log(|(/''!)'(x)| - logdist(/"(x), Crit)). By (6)

for every X > 1 satisfying log A < \A\ and for every e > 0 there exists t > 0

such that for every aj > 0

T\(fn)'(x)\X»

dist(/"(x),Crit)

Assume that e < 1 . We have for every y, z e Bn := B(f(x), t|(/")'(jc)|A")

the inequality

\f'iy)\     .  <suPfl,ft6BJAa)l-|/^)|._

\j'(z)\        ~ infaeBn\j'(a)\ '      ""

We have diam Bn converging to 0 exponentially fast. So in the case B„ is far

from Crit, the ratio R„ is exponentially small. In the opposite case choose a

closest critical point to B„ . Denote the multiplicity of / at this critical point

by d . We have

d\st(Bn , Crit)rf-2 diam Bn     „
Rn < Const-\. '   —'   . , .  ,- < Conste.

dist(fl„, Cruy-'

For e small enough this implies f(B„) c Bn+X , so f"(B(x, z)) c Bn and

diameters converge to 0, which proves (7).

Taking X arbitrarily close to 1 one obtains the inequality < in (8). The

other side of the inequality follows from the existence of a universal bound for

the distortions of all /" on B(x, z).

Corollary. If x e J and dist(/"(x), Crit) > exp-Aj<5 for all n large enough

then x{x) > S .

Proof. If the assertion were false then by Lemma 6 we would find z for which

(7) holds. Hence, the family /" would be normal on B(x, z), which is con-

trary to the assumption x e J .
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Prooj oj Theorem A. First we prove that there exists a constant Const such that

for /A-almost every x e J ■we have x{x) > Const > -oc . Let E be the set in J

on which x exists (we allow the value -oo). By the Birkhoff Ergodic Theorem

p(E) = 1. Fix an arbitrary # > 0. For every C > 0 let E(C) denote the set

of x e E such that for every aj > 0

log|Cn'(x)| < n(X(x) + t)) + C    if x(x) > -oo,

(9) or

log\(f")'(x)\<-ntf-[ + C     ifx(x) = -oo.

Of course \JC>0E(C) = E. Fix an arbitrary C with p(E(C)) > 0. Con-
sider the function O equal to 1 on E(C) and 0 outside. Again by the Birkhoff

Ergodic Theorem for almost every x e E(C) there exists a nonzero limit

lim^oo \ Y^jZo ®(fJ(x)); hence, for all ;' large enough (depending on x) we

have

K.
(10) nj+x(x) - nj(x) <-nj

where aj;(x) denote all consecutive integers for which f^x)(x) e E(C) and

ac is from Lemma 5. We now have two possibilities:

1. Suppose that for every aj large enough dist(/"(x), Crit) > ^exp-Ai. In

this case x(x) > -2 by the Corollary.
2. Suppose now that there exist aj arbitrarily large and c e Critn/ such

that jn(x) eB(c, ±exp-Ai). Then by Lemma 5 (jA)'(jj(x)) > C3exp-2Ai.

As A > acaj we find by (10) / > 0, t < \n such that jj+'(x) e E(C). We have

\(f*-')'(fj+t(x))\.L'>\(fAy(fJ(x))\

(recall that L - sup |/'|). Hence,

\(f*-')>(fJ+<(x))\ > L-Kn'2C, exp -2aj

and in view of (9)

exp((A - t)(x(jJ+l(x)) + r3) + C) > L~Kn/2C3 exp -2aj

or

exp(-(A - t)t}~x + C)> L-Kn/2C3 exp -2aj

in the case x(fJ+t(x)) = -oo
Hence, as x is /-invariant and as we may restrict our consideration only to

X + # negative we get

n^(x(x) + r>) + C > -2aj + logC3 - aj^ logL

or a corresponding inequality for ,y = -oo .

Taking # arbitrarily small (positive) and aj large we see that the case x =

-oo leads to a contradiction, so we arrive at

X(x) > -4/AC-logL.
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In particular, we have proved that J log\ j'(x)\dp(x) = jlogx(x) dp(x) >

-oo; i.e., log |/'| is /A-integrable.

Now we shall prove that, for almost every x , x(x) > 0.
For an arbitrary c e Critn7 and every 8 > 0 denote Bn = B(c, exp-n8).

Then for Ain large enough, denoting the multiplicity of / at c by d, we have

-oo <   /    log\f'\dp < Const J2 / logdist(x, c)d~x dp(x)
Jb„0 nyn(j Jb„\b„+i

< Const(^ -1)J] (~n8)p(Bn \ Bn+X)
n>na

= -Const(rf- 1)8 ^p(Bn).
n>n0

So the series ^2p(B„) is convergent and, by the /-invariance of p,

2^p(j~n(Bn)) is convergent. So by the Borel-Cantelli lemma, for almost every

x, f"(x) x$ B(c, exp-n8) for aj sufficiently large. Doing the same for every

c e Critn/ we obtain dist(jn(x), Crit) > exp-«<5 for every 8 > 0 and aj

sufficiently large. So by the Corollary we obtain x(x) >0.

Prooj oj Corollary A. Suppose the assertion of Corollary A is false. Then there

exist E c J, an integer Ain , and 0 < C < 1 such that p(E) > 0 (in fact, p(E)

arbitrarily close to 1), and for every x e E, n > no one has |(/")'(x)l < C < 1 .

Given x denote J(n) = {j : 0 < j < n, jj(x) e E}. By the Birkhoff
Ergodic Theorem for almost every x e E there exists a = a(x) > 0 such that

&(J{n)) > an for all aj large enough. So taking into account only each n0th /'

from J(n) and next neglecting the last one and indexing them jx, j2, ... , jm

we obtain under the convention jo = 0, jm+x = n

m

\(f"Y(x)\ = Y[\(fJ»*-HfHx)))' < can/n°-[.
s=0

This implies ^(x) < ^ logC < 0, which contradicts Theorem A.

3. The interval case

The proof of Theorem B is basically the same as in the complex case, so we

list only the places where there are differences.

1. The proof of the analogon of Lemma 1 (frequency lemma) should be

changed because it is not sufficient to arrive at the situation fn(B(c, e)) c

B(c, e) contradictory in the complex case. In the interval case this happens

even for e arbitrarily small, for unimodal oo-renormalizable maps [CE]. The

modified proof is as follows:

Fix aj > 0 and suppose that there exists a critical point c not in a basin of

attraction to a periodic sin-; or a neutral point such that

(11) fn([c-e,c + e])n[c-e,c + e]^0.

Fix an arbitary Co for which there exists a critical point Co so that (11) holds

and

(12) £o < 2inf{e : (11) holds for e and some c}.
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If aj < logyg^/logL then for every j = 1, ... , aj under the notation Jj :=

fij[(c0 - 2e0, c0 + 2e0]) we have

\Jj\<5e20L" <e0/2.

So there is no critical point in Jj for every j = 1, ... , aj .  Otherwise, as in

(11) f "(Jj) r\ Jj ^ 0, so the assumption (12) would not be satisfied.

We conclude that j"(Jo) lands in Jo entirely right or left of Co and /"on

[co - 2eo, c] and on [c, Co + 2eo] is monotone. This implies the existence of a

sink of period aj or 2aj in Jo which attracts Co, a contradiction. We conclude

that aj > log jgj/log L if (11) is satisfied.
2. The analogon of Lemma 3 (Mane's lemma) holds even with ac = 1.

However, in the presence of infinitely many sinks or neutral points one needs

to fix a closed set A c JR not containing sinks and neutral points and in-

stead of assuming distance of B(x, d) from them greater than c one assumes

dist(B(x, d), A) <d.
We prove this for N — 0 (then the case N > 0 is very easy). If a sequence of

intervals (/„) satisfies the properties diam/„ > Const > 0, diam/"(/„) —> 0,

and dist(/"(/„), A) —► 0, then all the intervals from a subsequence /„; of

(/„) contain a nondegenerate interval J which is a homterval; i.e., f"(J) do

not contain critical points for all n = 0, 1, ... and diam/n'(J) —► 0. So by

[MMS] or [BL] f"(J) converge to a sink or a neutral point, contrary to the

convergence of a subsequence to A .

3. In the proofs of the analogons of Lemma 4 and Lemma 5 we use Koebe's

distortion lemma in the interval version [S, MS]. Denote the interval being the

component of j~^n~'\Br2) containing fJ(Dr2) by DJ , J = 0, ... , n, (r2

from the proof of Lemma 4) and the analogous sets for rx by D'J. We apply

Koebe's distortion lemma to each j~A': DJ,+> —► Djl+l (notation A, from the
proof of Lemma 5). This is allowed due to the fact that the multiplicity of the

covering by the family of (Dj), j — j, + 1, ... , j,+ x , is bounded by a universal
constant (finiteness lemma).

Finally for each t we have for each component A of f~x(D-i,+x \ D'J,+l) in

D>'
diam ,4       _        diam j(A)

—.-—r- > Const -.-^7-rf ,
d\amD>> diamz>+1

where Const depends only on the nonflatness at the critical point involved (see

Figure 1).

4. In the proof of the analogon of the Corollary from §2 the argument of nor-

mality should be replaced by the existence of a homterval J of diam f"(J) -* 0

so by [BL] f"(J) converges to a sink or a neutral point (as at point 2).

V_

>
—

L-y->

Figure 1
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Added in proof

Theorem B follows easily from the "specification property", more precisely
from Corollary 5 of A. M. Blokh, Decomposition oj dynamical systems on an

interval, Russian Math. Surveys 38 (1983), no. 5, 133-134. I owe this obser-

vation to F. Hofbauer.
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