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ON QUANTUM SPACES OF LIE ALGEBRAS

LIEVEN LE BRUYN AND MICHEL VAN DEN BERGH

(Communicated by Maurice Auslander)

Abstract. The homogenization H(g) of the enveloping algebra of a finite di-

mensional Lie algebra 0 is an Artin-Schelter regular algebra. We characterize

rf-dimensional linear subspaces in the corresponding quantum space P?(0) as

homogenizations of induced representations from codimension d Lie subalge-

bras. Furthermore we prove that the point variety has an embedded component

iff there is a line, not contained in this point variety.

1. Introduction and notation

To any finite-dimensional Lie algebra

n

q = CXX © ••• © CXn   with [Xi ,Xj] = Y^ aij, kXk
k=i

one classically associates an associative algebra U(g), the so-called "enveloping

algebra" of g. The enveloping algebra carries a natural filtration

Uo(q)cUx(q)c---cU„(q)c---

such that gr U(g>) = S(q) , the symmetric algebra on a.. This is the famous

Poincare-Birkhoff-Witt theorem.
By homogenizing the defining relations of U(q) one can also associate a

regular algebra in the sense of Artin and Schelter [1] to g. This algebra, which
will be denoted by H(q) in the sequel, is the positively graded quadratic algebra

generated by Xq, ... , Xn where Xq is taken to be central and the remaining

defining relations are

n

XiXj - XjXj - 2J o.ijkXkXQ .
i=l

Observe that H(q)/(X0 - I)H(q) = U(g), the enveloping algebra of q , and that
H(q)/XqH(q) = gr U(q)) = S(q) . From these facts one derives as usual (see,
e.g., [8] or [9]) that H(g) is a Noetherian maximal order domain, that it is

Auslander-regular of dimension n + 1, and that it satisfies the Cohen-Macaulay
property.
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Following Artin [3] we define the quantum space Vg(g) of q to be Proj(//(g)),

which is the quotient category of the category of all finitely generated graded

left i/(g)-modules modulo the subcategory of finite length modules. Via the

identification S(q) = H(q)/X0H(q), P(g*) = Proj5(g) will be thought of as
the hyperplane at infinity of Vq(g) with equation Xo = 0.

As in [2] one can define points and lines in Pi (q) . This note originated from
our attempts to understand the following example, taken from [7].

Example 1.1. Let sl(2, C) = Ce©C/©Ch with [e,f] = h, [h,e] = 2e, and
[h, f] = -2f. Then the lines in P9(sl(2, C)) are precisely the lines lying on

the pencil of quadrics in P3 = Proj(C[e, f ,h,t\)

Q(d) = ^((h2 + 4ef) + S2t2).

In particular, all lines intersect the hyperplane V(t) at infinity in a point of

the conic (t, h2 + 4ef), which is precisely the embedded component of the

point-variety of P„(sl(2, C)).

Moreover, all three-dimensional Lie algebras behave in a similar way. That is,

the point-variety has an embedded component lying in the plane at infinity and

all lines not lying on the point-variety intersect with the hyperplane at infinity
in a point of this component.

In this note we partially generalize Example 1.1 by showing that there always

is a subvariety of the hyperplane at infinity in P9(fl), closely related with a
possible embedded component of the point variety, such that all lines, not lying

in the hyperplane at infinity, intersect this variety. In case [g, g] = g this variety
is the embedded component of the point variety.

We also show that the existence of such an embedded component is caused
by the fact that there may be lines in Pg(g), not lying in the point variety of

P»(fl)•
The proofs of these results, given in §3, rely on the classification of linear

subspaces in P9(g), given in the next section.

2. Linear subspaces, Lie subalgebras, and polarizations

We first state a few generalities. To any finitely generated filtered U(g)-

module
oo

••• C M_i C M0 C Mx C ■•• C   y  Mt = M,
i=—oo

we can associate a graded //(g)-module (and hence an object in P?(g)):

oo

M= ® MiXlcM[X0,X0-1].
;'=—oo

We observe that M/(X0- \)M = M and conversely, any X0-torsionfree graded
left //(g)-module arises in this way, see [4] or [6].

In the sequel there will be a few occasions where we will use the notation M

for a graded i/(g)-module, even if it is not a priori obtained from some filtered

(7(a)-module M; i.e., M could have Xo-torsion.
In this note we concentrate on a specific class of graded left //(fl)-modules.



ON QUANTUM SPACES OF LIE ALGEBRAS 409

Definition 2.1. A ^-dimensional linear subspace of P?(a) is the object in Fq(g)

associated to a cyclic graded left //(a)-module M = 0°!OM, with Hilbert

series JT(M, t) = £~0dimc(Af,)'!' » 1/(1 - t)d+l.

Theorem 2.2. The d-dimensional linear subspaces of P9(a) are:

(1) The d-dimensional subspaces in P"_l = Proj(5'(a)),

(2) The homogenizations M of induced modules

M = (7(a) ®U{f)) Cf

where fj is a Lie subalgebra of g ofcodimensiondand Cf is the one-dimensional

representation of f) determined by f £ h* such that /([h, h]) = 0. Here the

pair (I), f) is uniquely determined by M.

Proof. Let M be a graded //(n)-module as in Definition 2.1. Then it is easy

to see that M is either annihilated by Xq or X0 acts without torsion. In the

first case M will be a quotient of H(q)/X0H(q) = S(q) ; i.e., M will represent

a linear subspace in Proj S(q) .

In the second case M = M/(X0 - \)M is a filtered (H(q)/(X0 - I)H(q) =
£/(a))-module, i.e., there is a map (/>: U(q) -> Af such that

dim0(«7,(fl))=^}/).

The result now follows from the following proposition.   □

Proposition 2.3. Assume that M is a left U(a)-module and that there is a sur-
jective map <p: U(q) -* M such that

(1) dim<£((7,(a))=(^')    forieN.

Then there is a unique pair (h, /) such that

(2) M a U(b) ®uw Cf

with notation as in Theorem 2.2.

Furthermore the filtration induced on M via <f>  makes (2) into a filtered
isomorphism.

Proof. The uniqueness of the pair (fi, /) is easy to see. Therefore we concen-
trate on its existence. First define

h' = (7i(g)nker0.

Clearly dim tf = n — d.
Using the fact that U(q) has a PBW-basis, it is easy to see that

t/i(fl)h'nC/,(0) = [h',h'] + r/.

Furthermore if V is the image of Ux(g)h' in U2(q)/Ux(q) - S2(q) then we
compute that

-"-(T)-cr)-
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Hence we obtain

dim U\ (g)rj' = dim V + dim Ux (g)h/ n Ux (g)

(3) -('^-('J'j-i-ar.n+n.
Also, using (1) and the fact that Ux(g) c ker<f> we find that

(4) "•<*+(TM" 22)-
Combining (3) and (4) we find

dim([h', h'] -I- h') < n - d = dim tf.

Hence [h/, ()'] c r/ and thus we find that h' is a Lie subalgebra of Ux (a).

Let f) be the image of I)' in g under the canonical decomposition Ux (g) =

C © g. Since 1 ^ h', there will be a linear map /eh* such that

fr' = {K-/(ll)|ll€&}.

Let m , u e h . Then

[« -/(«), v -/(«)] = [«,»]€&'

and therefore /([«, v]) = 0.
We now have a surjective map

U(g)/U(g)r)'^U(g)®U{f,)Cf^M.

Applying (1) yields that this map must be a filtered isomorphism.   □

To any of-dimensional linear subspace in P?(g) we can associate a unique

J-dimensional linear subspace in P" = P(g* © CXq) as follows. Let M be a

graded quotient H(g) -* M. Then restriction to degree 1 defines a linear map

0 © C^o —» Mx , hence a linear subspace in P" . Conversely, a linear subspace

in P" can at most correspond to one linear subspace in Proj H(g).
If we identify the open affine piece X0 — 1 with g* we would like to know

the minimal dimension d(f) of a linear subspace in Fq(g) containing f £ g*.
If / £ g* then we denote by Bf the bilinear form (x, y) —> f([x, y]) and

with gf = {x £ g\f([x, g]) - 0} the radical, which is a Lie subalgebra of g,

and as Bf induces a nondegenerate alternating bilinear form on a/g^ we have

that n - dim(g^) is even.

In view of Theorem 2.2 we see that a rf-dimensional linear subspace of P?(g)
containing / is the homogenization of an induced one-dimensional represen-

tation of a codimension d Lie subalgebra h such that /([fj, h]) = 0. In the

terminology of [5, Chapter I, §12] fj is subordinate to /. One knows that the

maximal dimension of such a Lie subalgebra is \(n + dim(g^)), meaning that

d(f)>\(n-o\im(gf)),

and if equality occurs then h is said to be a polarization of g at /. Note that

polarizations exist for every / if g is solvable or g - sl(n) and for arbitrary

g a (solvable) polarization exists whenever / is a regular form (cf. [5, Chapter

I, §11]).



ON QUANTUM SPACES OF LIE ALGEBRAS 411

Corollary 2.4. The minimal dimension d such that every point in P(g* © CAT,*)

is contained in a d-dimensional linear subspace of Fq(g) is equal to \(n - r)

where r is the index of g.

If g is semisimple, the index of g is equal to its rank. Moreover, in this

case all linear subspaces in P?(g), not lying in the hyperplane at infinity and of
minimal dimension, are obtained by parabolic induction.

3. Points, lines, and embedded components

Recall from [2] that the bihomogeneous equations for the point-variety of

H(g) are given by

xi   xj    ~xj   xi     - \2_^aij,kxk   J xo   '

y(l)v(2) _ v(l)r(2)
Aq    -A.,       — A(     Aq     ,

where 1 < i, j, k < n .
To simplify some of the notation in the sequel, let us make the following

conventions. If U - Y,uiXi € g then u = J2uix\ > "(1) = £**<■*/• etc-

Similarly, if U, V £ g and [U, V] = Y,vJtxi then [u, v] - £iu,-x,-. As
above, U and V may be equipped with the superscripts (1) and (2).

Using this notation we may rewrite (5) more succinctly as

(6) x^xf-xf^ = [x^,xf]x^,

(7) jW-W-
These equations determine a variety X c P(g* © CXq) x P(g* © Cxq) .
Let a: Y = prx(X) -* Y' — pr2(Y) be the induced automorphism, which is

given by shifting point modules one place to the right (we are working with left

modules instead of right modules as in [2]). From the description (Theorem
2.2) of points as one-dimensional representations of U(g) or points at infinity

it follows that o is the identity on YTed .

Theorem 3.1. If we set Xj = ■*,■, then the defining relations for Y are

(Xi[Xj , xk] + Xj[Xk , Xi] + Xk[Xi, Xj])Xo — 0,

[Xj, Xj\XQ = (J .

Proof. We will cover Y by affine opens. First assume that xo = x0!) = 1.

Then from a = id on Yre^ we may assume that Xq   — 1. Then from (7) we

obtain that x}1' = x|2). Substituting this in (6) yields that [x,, x,-] = 0 for
i, j £ {I, ... , n} . This set of equations clearly defines the same variety as (8)

when xo = 1.

Assume now that xs — xj'^ = 1 for some s £ {1,...,«}. Again we may

assume that xj2' = 1. Put e, = xjl) - xj2). Clearly e^ = 0, and from (7) it

follows that e0 = 0.
Equations (6) and (7) may now be rewritten as

(9) XjSk - XkEj = [Xj , xk]x0,

(10) xoe^O,

j,k£{\,...,n).
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Applying (9) with j = s yields

ek = [Xs » Xk]Xo .

Resubstituting yields the equations

(xs[Xj , Xk] + Xk[Xs , Xj] + Xj[Xk , xs])x0 = 0,

[Xs, Xj]x0 = 0,

where j, k £ {I, ...,«}. Using the fact that xs = 1, we find that the equations

(11) are equivalent with the equations (8).   □

Now we give an interpretation for the two sets of equations occurring in (8).

Lemma 3.2. (1) A = F([x,, x/]; 1 < i, j < n) C P(g*) is the linear space of
one-dimensional representations of g.

(2) B = V(Xi[Xj, xk] + Xj[xk, Xi] + xk[xt, Xj]; 1 < i, j, k < n) C P(g*)
classifies codimension one Lie subalgebras of g.

Proof. (1) is clear. A point of B is a surjective map </>: g —► C satisfying
<j>(u)(j>([v, w]) + <j)(v)<f)([w, u]) + <j>(w)4>([u, v]) - 0. Let h = ker(<j>) and take
u, v £ rj and to ^ h . It follows that (p([u ,v]) = 0; i.e., h is a codimension one

Lie subalgebra. Conversely the quotient map g -» g/f) = C for any codimension

one Lie subalgebra h of g gives a point of B .   □

Corollary 3.3. Every line in P?(g), not lying in the hyperplane at infinity, inter-
sects B.

Proof. Such a line is given by a module of the form

(w ^t/wC/ r,
where h is a codimension one Lie subalgebra of g and f £i)* is a linear form
such that f([\), h]) = 0.

The intersection with the hyperplane at infinity is represented by

(U(g)®uwCfy®H(g)/X0H(g)*S(g)/S(g)t).

The corresponding point in P(g*) is given by the quotient map g —> g/r) = C.

Hence it must be a point of B .   D

Corollary 3.4. If [g, g] = g then the point variety of Fq (g) consists of

(1) the origin,

(2) the hyperplane at infinity, and
(3) an embedded component at infinity given by B.

Proof. Clear from equations (8).   □

Theorem 3.5. The following are equivalent:

(1) The point variety of H(g) is reduced, i.e., Y - Fred = F([x,, X/Jxo; 1 <
i,j<n).

(2) All lines in Fq(g) lie on the point variety.

(3) For every codimension one Lie subalgebra rj of g the equality [f), h] =
[g, g] holds.

Proof. From the results of the foregoing section it is clear that (2) and (3) are
equivalent. Let us prove that (1) implies (3).
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First, there can be no codimension one Lie subalgebra h such that [g, g] is

not contained in h , for otherwise there is a point in A not lying on B meaning

that there would be an embedded point at infinity. Hence, assume there is a

decomposition g = h©Ce where h is a codimension one Lie algebra and [f), rj]

is properly contained in [g, g] c fj. Let xt> '■ 8 -* C be the projection on the
second factor. Then, there exists a <f> £ g* such that </>([\\, h]) = 0 whereas

<rX[fl > 0]) ^ 0 • But then yi — xt> + e • <t> is a point of B over the dual ring C[e],
which is not a point of A over C[e] meaning again that the point variety has

an embedded point.
Finally, let us prove that (3) implies (1): we have to show that A — B and

as A is smooth it suffices to prove that any point of B over C[e] lies in A.

So take a surjection y/: g —> C[e] with the property that

y/(u)y/([v , to]) + y(v)y/([w, u]) + y/(w)y/([u, v]) = 0.

Decompose y/ = y/x + ey/2 . Then the kernel of y/x is a codimension one Lie

subalgebra h. Put g — h©Ce where y/(e) = 1. Substitute u, v £ h and w = e

in the above relation, and as [g, g] = [rj, {)] c h we obtain y/([u,v]) = 0, i.e.,

V([b, h]) = V([&, 0]) = 0, so it belongs to A.   D

Remark 3.6. With Theorem 3.5 in mind, we pose the question of whether d-

dimensional linear subspaces (for d > 1) of Fq(g) arise in a similar way from
embedded points in varieties describing lower-dimensional subspaces.

Remark 3.7. Although Theorem 3.5(3) is relatively succinct, it is somewhat

unclear to us for which Lie algebras it holds. As the referee pointed out to us,

for g reductive, it is easy to see that Theorem 3.5(3) is true if and only if g

has no ideal isomorphic to sl(2, C).
The case g solvable is less clear. Even the case where g has a lower central

series of length 2, i.e., [g, [g, g]] = 0, is somewhat technical. Such a Lie algebra

is described by the data (V, W, <p) where V and W are finite-dimensional

vector spaces and </> is a surjective linear map /\ V -> W. g is then given

by V © W with [(v, w), (v', w')] = <f>(v A v'). It is easy to see that any
codimension one Lie subalgebra h of g is of the form V © W, where V has

codimension one in V . Hence [h, h] = cp(/\2 V) whereas [g, g] = W.

Hence Theorem 3.5(3) holds if for any V c V of codimension one, <f>(/\2 V)
- W. If

A2          (dimF-l)(dimF-2)
dim W > dim f\  V =-^- ,

this will never be the case and hence there will be an embedded component.

On the other hand if dim W = 1 and cp has maximal rank (as a contravariant

anti-symmetric tensor) then it is easy to see that there will be no embedded
component if dim V > 4.
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