
proceedings of the
american mathematical society
Volume 119, Number 2, October 1993

DIFFERENTIABILITY OF THE NORM
IN VON NEUMANN ALGEBRAS

KEITH F. TAYLOR AND WEND WERNER

(Communicated by Palle E. T. Jorgensen)

Abstract. Smooth points in von Neumann algebras are characterized in terms

of minimal projections. The theorem generalizes known results for the algebra

L°°(Q, I, n) and the space of bounded linear operators on a Hilbert space.

1. Introduction

Let X be a Banach space with norm || • || and unit ball Bx ■ Following the

generally adopted notion in Banach space theory, we call a point x £ X smooth

if the norm is Gateaux differentiable at x, i.e., if the directional derivatives

, , , x     r    II*+ W|-11*11(*) <Px(y) = lim n-£—^
h—»o n

exist, for all directions y. Due to the convexity of the norm function, the

mapping tpx is a real continuous functional. Also ||^|| = 1 and q>x(x) = \\x\\.

As a matter of fact, the point x is smooth if and only if there is only one

continuous functional with this property. (This also holds true for complex

spaces.)
If the limit in (*) is uniform iny, i.e., if

lim   li* + ̂ -iMI-^)=0,
IMI-o ||y||

then the norm is called Frechet differentiable at x. Clearly, Frechet differ-

entiability of the norm at x implies Gateaux differentiability of the norm at

x.

For a more detailed exposition we refer to [6].

Recently, Kittaneh and Younis [5] characterized the smooth points in 93 (^),

the Banach algebra of all bounded linear operators on a Hilbert space %?.

On the other hand, the smooth points in F°°(ft, Z, p), for a measure space

(ft, I, p) , have been known for a long time. Both !8(^) and L°°(ft, S, p)

are particular examples of von Neumann algebras. In the theorem below, we

give characterizations of the smooth points in any von Neumann algebra, which
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extend the previously mentioned results for *&(%?) and F°°(ft, Z, p). More-

over, we are able to show that the norm is Frechet differentiable at a point in a

von Neumann algebra if and only if it is a smooth point. This is obvious for

the case of L°°(Q,'L,p).

Theorem. Let VR be a von Neumann algebra and let T £ SOT. The following

assertions are equivalent:

(a) T is a smooth point of SOT.
(b) |F| is a smooth point of SOT.
(c) ||F|| is an isolated point in the spectrum of \T\ and the corresponding

spectral projection is a minimal projection in SOT.

(d) There exists a minimal projection P in SOT such that

\\\T\P\\ = ||n|    and   |||F|(/-F)||<||F||.

(e) There exists a minimal projection P in SOT such that

FPU = NTH    and   ||F(/-F)||<||F||.

(f) The norm in SOT is Frechet differentiable at T.

The proof of this theorem is given in §3, while §2 contains the necessary

information on von Neumann algebras. In §4 the concluding remarks relate

these characterizations to other work.

2. Von Neumann algebras

In this section, the definition and relevant properties of von Neumann alge-

bras are listed. The books of Kadison and Ringrose [4] and Takesaki [7] provide

excellent references for the rich theory of these algebras.

2.1. A C*-algebra is a Banach algebra 21 with involution, T —* T*, such that
||F*F|| = ||F||2 . A von Neumann algebra is a C*-algebra 9DT with a predual;

that is, there exists a Banach space £DT« such that SOT is isometrically isomorphic

to the dual (COT*)* of DDT*. It turns out that SOT* is necessarily unique up to
isometric isomorphism. Of course, SOT, can be considered as a closed subspace
of the dual SOT* of SOT and the continuous linear functionals on SOT, which lie

in SOT,, are called normal linear functionals on SOT.

2.2. Von Neumann algebras always have an identity, denoted / throughout

this paper, and an order structure. For T e SOT, let sp(F) denote the spectrum
of T. If F is selfadjoint (T* = T) and sp(F) C [0, oo), then T is called
positive. T is positive if and only if T — S*S, for some S £ SOT, and if and

only if T — R2 , for some positive R £ SOT. We write T > 0 if T is positive.

For any T £ SOT, let |F| = (T*T)XI2, using continuous functional calculus.

There exists a unique partial isometry V in SOT such that T — V\T\ and VV*

is the projection in SOT with the property that (VV*)T — T and if P is a

projection in SOT such that PT = T then VV* <P. Moreover, V*T = \T\.

2.3. Any von Neumann algebra SOT can be faithfully represented as an algebra

of bounded operators on some Hilbert space. More precisely, there exists a
Hilbert space %? and an isometric *-isomorphism of SOT onto a '-subalgebra

of 53 (W), which is closed in the weak operator topology. One can also ensure

that the identity / of SOT is mapped to the identity in 53 (%?). Then the terms
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selfadjoint, positive, projection, and partial isometry appearing in 2.2 have their

usual meaning as operators on %?.

2.4. The Spectral Theorem. If S is a selfadjoint element of SOT, then sp(5)

is real and contained in the interval [-||5'||, ||iS||]. Moreover, there exists a

projection-valued measure B i-> E(B) from the Borel subsets of [-||S||, ||5||]

into F(SOT), the lattice of projections in SOT, such that S = f^{XdE(X). If

S > 0, then E is supported on [0, ||5||]. If Xq is an isolated point in sp(S'),

then P = E({Xo}) is a nonzero projection in SOT such that SP = PS = XqP .

2.5. For tp £ SOT*, define <p* £ SOT* by (p*(S) = tp(S*) for all S £ SOT. Then
\\tp*\\ = \\<p\\ for all tp £ SOT*. If T > 0 implies tp(T) > 0 for T £ M, then tp
is called positive and we write tp > 0. If (p > 0, then tp* = tp .

2.6. There are natural left and right actions of SOT on SOT* which make SOT*

into a 2-sided Banach SOT-module. For A £ SOT and tp £ SOT* define Atp and
q>A in SOT* by (Acp)(B) = tp(BA) and (q>A)(B) = tp(AB) for all B £ SOT. Then

(i) M?||<M||||p|| and ||MI<IHIIMII;
(ii)  (A<p)* = <p*A*;

(iii)   tp £ SOT* implies Atp, tpA £ SOT*.

2.7. The next lemma generalizes [7, Lemma III.4.1].

Lemma. Let (y/n) be a sequence in SOT*, with \\y/n\\ < 1, for all n. Suppose

P and Q are projections in SOT such that \\Py/nQ\\ -* 1  as n -* oo.   FAevz

\\Py/nQ- Wn\\ -»0  AS  « ->00.

Proo/. Since ||P^„<2|| < PV»II < 1, we have \\Pipn\\ - 1. If ||F^„-^|| A 0,
then there exists a f5 > 0 and n £ N such that ||F^„ - ^„|| > 8 and ||F^„|| >

(i + s2y'2-s2.
Fix ^, 5 e SOT, MH, ||5|| < 1 such that (Py/„)(A) > (1 + <J2)'/2 - S2 and

((/ - P)Wn)(B) > 8 . Since ||5|| = \\SS*\\1'2, for all S £ SOT, we have

\\AP + 8B(I - P)\\ = \\APA* + 82B(I - P)B*\\1/2 < (I + 82)1/2.

However, y/n(AP + 8B(I - P)) = (Py/n)(A) + 8((I - P)i//„)(B) > (I + 82)1/2.

This contradicts \\ipn\\ < 1.
Analogously, or applying the previous paragraph to Qy/*, we have \\y/„Q -

y/n\\ -* 0 and also \\Py/nQ - WnQW —* 0 as n -» oo. Then

\\PVnQ - ffill < IIF^G - V»GII + II V»G - V»ll ̂0   as « - oo.

3. Proof of the theorem

As usual, we assume, without loss of generality, that ||F|| = 1 for the duration

of the proof. The scheme of the proof is to show (a) => (c) =*• (d) => (e) =*•

(f) ^ (a). Then (b) is obviously equivalent to the other conditions by replacing

T with |F|. Let T = V\T\ be the polar decomposition of T, as in 2.2.
(a) => (c) Assume that T is a smooth point of SOT. Let E be the projection-

valued measure from [0, 1] into F(50T) such that

|F|= / XdE(X)   as in 2.4.
Jo
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Let S0T(|F|) denote the von Neumann subalgebra of SOT generated by {|F|, /} .

Then 50T(|F|) is a commutative von Neumann algebra and E(B) e 50T(|F|) for

any Borel subset B of [0, 1]. Let E„ = E[\ - ±, 1 - ^) for n = 1,2,... .
Note first that 1 is a point in sp(|F|). If 1 is not isolated in sp(|F|), then

/ = {«€N:£„/0} is an infinite set, say J - {nx, n2, n^, ...}. Let Fx =

Efeli £»»-i and F2 = HkLi E"2k ■ Then ^i and F2 are projections in 50T(|F|)

satisfying FiF2 = 0. Now \T\En > (1 - ±)En; so |||F|F„|| > 1 - \, for
each n £ J. Thus |||r|F,|| = 1 and|||F|F2|| = 1. Since V*T = \T\, we
have 1 > ||rPi|| > ||F*FFi|| = |||F|Pi|| = 1. Likewise, ||FF2|| = 1. Now let
q>i,(p2 £ SOT* be such that ||^i|| = \\(p2\\ = 1 and g>i(TFx) = <p2(TF2) = 1.
Let pi, p2 £ SOT* be defined by px(S) = <px(SFx) and p2(S) = <p2(SF2) for
all S £ SOT. Then \\px\\ = \\p2\\ = 1 and pi(T) = p2(T) = 1; however,
px(TF2) = <px(TF2Fx) = 0 ^ tp2(TF2F2) = p2(TF2) = 1 . Thus px ^ p2 and
this contradicts the fact that T is a smooth point in SOT.

Therefore, 1 is an isolated point in sp(|F|). This implies that F({1}) is a

nonzero projection in SOT. If there exists an Fx £ P(50T) with 0 ^ Fx < F({1})

and F, ^ F({1}), then let F2 = F({1}) - Fx . As above, \\TFX\\ = \\TF2\\ = 1
and one sees that T cannot be a smooth point. Thus F({1}) must be a minimal

projection in SOT.

(c) => (d) is obvious.

(d) => (e) If |||F|P|| = 1 and \\\T\(I - P)\\ < 1, then, with the same P,
1 > ||FF|| > ||F*FF|| = |||r|P|| = 1 and ||F(7 - P)|| - ||F|F|(7 - P)|| <
|||F|(/-P)||<1.

(e) => (f) As before, let T = V\T\ be the polar decomposition of T and

let /0 XdE(X) be the spectral representation of |F|. Let us first show that

P = F({1}) and I -P = F([0, h]) for some h < 1:
To this end, denote by c(P) the central cover of P, i.e., the smallest central

projection in SOT dominating P. Then c(F)S0T has trivial center, P = c(P)P

is minimal in c(P)50T, and hence, c(P)50T is a type I factor. This implies

c(P)S0T = 53(Jg) for some Hilbert space ^ [7, Corollary V.1.28]. It follows
that TP is a partial isometry and PT*TP = P. This yields P(I- \T\2)P = 0,
and since 7-|F|2 > 0, we may conclude that F(/-|F|2)1/2 = (/-|r|2)1/2F = 0;

but then P|F|2 = |F|2P = F, and the above claim is now obvious.

To show (f), represent SOT on X = ^ ®%[ such that c(F)50T = 53(^o) and
(/ - c(P))50T C 53(^f) for some Hilbert space %fx. Define support functionals

in SOT* of |F| and T as follows: Let ^ be a unit vector in P(^") and let

tp(S) = (S£, 0   and   tp'(S) = (Si, VQ       for all S £ SOT.

Then, <p, <p' £VJlt, \\<p\\ = \\<p'\\ = 1, <p(\T\) = 1, and

tp'(T) = (TZ, VZ) = (V*TZ,Z) = (\T\Z,Z) = 1.

Note that Ptp — q> and Ptp' — tp'.

By a classical result of Smulyan (see, e.g., [6, 5.11 Proposition]), the norm

is Frechet differentiable at T if and only if tp' is a strongly exposed point in

SOT*; that is, it suffices to show that if (q>'n) is a sequence in the unit ball of SOT*

such that tp'n(T) -» 1 then \\(p'n - tp'\\ —> 0. Let ((p'n) be such a sequence and,

for each n, let tpn - tp'nV. Then (pn(\T\) - tp'n(V\T\) - tp'n(T) -► 1 and, of
course ||^„|| < 1 for all n .



DIFFERENTIABILITY OF THE NORM IN VON NEUMANN ALGEBRAS 479

Claim. tpn(P) —> 1. To see this we use the functional calculus (see [4, 5.2.9

Theorem]). There is a regular Borel measure p on sp(|F|) and the map / —►

f{\T\) = J0lf(X)dE(X) is a '-isomorphism of L°°(sp(|F|), p) with S0T(|F|),
the von Neumann subalgebra of SOT generated by |F| and /. For each n,

let y/„ represent q>n\mm) as a linear functional on L°°(sp(|F|). Then P in

S0T(|F|) corresponds to X{i}, the characteristic function of the atom {1} in
sp(|F|). Also |F| corresponds to the identity function i, where i(X) = X

for all X £ sp(|F|). Thus, y/n(t) —► 1 • For a continuous linear functional

y/ on L°°(sp(|F|), p) and some measurable set A C sp(|F|) define \p%A on

L°°(sp(|F|), p) by y,XA(f) = V(XAf) for all / e F°°(sp(|F|), p). If 0 < h< 1
is as above, it is easily seen that ||^|| = ||^X[o,/,]ll + \w(X{i})\ ■ Since y/„(i) <

h\\WnXlO,h]\\ + \Vn(X{l})\ ,   Vn(l) ̂  1 , and  ||^Z[0,/t]ll + k«(^{i})l = \\¥n\\ < 1,
we must have || Vn*[o,A]ll -» 0 and \y/n(X{i})\ -» 1. Since y/„(i) = y/nX[0,h](i) +
Vn(X{i}) > it follows that y/n(X{i}) ~* 1; but this corresponds to (pn(P) -* I,

and we have proven the claim.

Now, the projection V*V dominates P, so Q = VPV* is a projection in

SOT and

P<p'nQ(V) = <p'n(QVP) = <p'n(VPV*vp) = <p'n(VP) = <pn(P) - l.

Thus \\P(p'nQ\\ -> 1 . Lemma 2.7 implies that \\P<p'nQ-<p'„\\ -» 0. Clearly, P and
Q both belong to c(P)S0T and hence, on %? as chosen above, they correspond

to rank one projections. Therefore, QfflP = C(VP). Also Ptp'Q = tp', and

thus, for any y/ £ SOT*, Py/Q = a<p', where a £ C (in fact, a = y/(VP)). In
particular, Ptp'nQ = a„tp', where a„ = tp'n(VP) —* 1. Now we can show that

q>'n —> tp' in norm. For

\\<p'-<P'n\\<\\9'-P<PnQ\\ + \\P?'nQ-<Pn\\

= \l - an\ + \\P<p'nQ - <p'n\\ -> 0   as n -> oo.

(f) => (a) is immediate and this completes the proof of the theorem.

4. Concluding remarks

4.1. If SOT is a continuous von Neumann algebra, such as Type II or Type III

factor, then SOT has no smooth points since it has no minimal projections.

4.2. If SOT = F°°(ft, Z, p), then we recover the well-known result that the

norm in L°°(ft, X, p) is Gateaux differentiable at / if and only if it is Frechet

differentiable at /, which holds if and only if there is an atom E in Z such

that \f(E)\ = ll/H and ||/^£|| < ||/||.

4.3. If SOT = 53(X), then our theorem states that for T £ 53(^) the following
are equivalent:

(1) T is a smooth point.

(2) There exists a rank 1 projection P on / such that \\TP\\ = \\T\\ and
||F(/-P)||<||F||.

(3) T is a point of Frechet differentiability of the norm.

Similar to the first part of (e) => (f) one can derive Theorem 2 of [5] from

the equivalence of (1) and (2). It seems to be much easier to check if (2) holds

than the condition on the essential norm of T in [5].
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From (2) o- (3), we recover the 53 (^") version of the criterion for Frechet

differentiability of the norm given by Heinrich in [3]. (Heinrich gives criteria
for 53(F, F) with E and F arbitrary Banach spaces.) It does not seem to

have been observed before that (1) and (3) are equivalent in 53(^).

4.4. Recently, the facial structure of the unit ball in a von Neumann algebra

SOT was completely described by Edwards and Ruttimann [2]. (Actually, they

deal with the more general case of J BW*-triples. See also Akemann and Ped-

ersen [1], where the von Neumann algebra versions of the results of [2] are also

presented and extended to C*-algebras.) Let Bm denote the unit ball of SOT.

Any weak*-closed face F of Bm then has the form

FV = U + (I- UU*)Bm(I -U*U) = {T£ Bm\UU* = TU*}

for some partial isometry U in SOT.

By our theorem, T is smooth if and only if there is a partial isometry U

such that U*U is minimal, TU* = UU*, and ||F- U\\ < 1. In fact, whenever
T is smooth and P is the minimal projection as in (c), we may take U = VP,

where T = V\T\ is the polar decomposition of T. In light of (e) this condition

implies easily that T is a smooth point.

The above shows that the smooth points of P<m precisely find themselves in

the interior of the faces Fu where U has the property that U*U is a minimal

projection.
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