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Abstract. By using Majid's bicrossproduct Kac algebra, a nontrivial example

of an action of a Kac algebra on a von Neumann algebra is given. It is shown

that the actions constructed are ergodic. The crossed products by the actions

are examined.

0. Introduction

The theory of Kac algebras defined in [ES] has been studied as a right frame-
work for formulating Pontryagin-Tannaka-Krein-Tatsuuma duality for locally

compact groups. By nature, the theory contains algebras L°°(G) and 31(G) -

the group von Neumann algebra of G, as its typical examples, where G is

any locally compact group. Meanwhile, the concept of a coaction of a locally

compact group G was proven to be essential for duality for crossed products

of von Neumann algebras, and it was noted that the Kac algebras L°°(G) and

31(G) play vital parts in the duality (see [NT] for the details). Motivated by
this, Enock introduced in [E] the notion of an action of a Kac algebra on a von

Neumann algebra. Group actions and group coactions supply typical examples

of this notion. Every coproduct of a Kac algebra may also be considered as an

action of the Kac algebra on itself; however, to the best of the author's knowl-
edge, those are the only examples to date. Thus they are, so to speak, trivial
examples in that one would not need to introduce such a concept of a Kac al-

gebra action in the first place as long as they were the only examples. In this

sense, the theory is short of examples. In order to find a "nontrivial" example,

one would first need to look for a noncommutative and noncocommutative Kac

algebra that would act on a von Neumann algebra. From this point of view,

the recent work of Majid deserves to be noted. In [M] he studied the notion

of a matched pair of locally compact groups and their actions and provided a

lot of examples. He also proved there that the crossed products associated with

a modular matched pair are equipped with a Kac algebraic structure; he called

them the bicrossproduct Kac algebras. These Kac algebras are noncommutative

and noncocommutative except in the trivial case. The purpose of this paper
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is to construct a "nontrivial" example of an action of a Kac algebra on a von

Neumann algebra by making good use of the bicrossproduct Kac algebras.

The organization of the paper is as follows. In § 1 we first briefly review the
definition of a Kac algebra and the notion of a Kac algebra action. We then

recall the concept of a matched pair and the definition of the bicrossproduct

Kac algebras associated with it. Section 2 is devoted to the construction of

a nontrivial example of a Kac algebra action by using the bicrossproduct Kac

algebras. It is shown that the actions constructed are ergodic. We also examine
the crossed products by the actions.

1. Preliminaries

In this section, we first review the definition of a Kac algebra [ES] (see also

[Sl]) and the notion of an action of a Kac algebra on a von Neumann algebra

[E]. Second, we recall the concept of a matched pair of locally compact groups

and their actions. We also recall the definition of the bicrossproduct algebra

associated with a matched pair.
A Kac algebra K is a quadruplet (J(, T,k, tp) in which

(Ki)   (J!, T, k) is an involutive Hopf-von Neumann algebra [ES, Definition

1.2.1];
(Kii)   tp is a faithful, normal, semifinite weight on J£;

(Kiii)   (ijt ® tp)(T(x)) = cp(x) • 1 for all x £ J?+ ;
(Kiv)   (u®<p)((l®y*)r(x)) = K((iJt®tp)(r(y*)(l®x))) forall x,y£Nv;
(Kv)   of o K = k o o9_t for all t£R.

Here Nv = {x £ J(: cp(x*x) < oo} and a9 is the modular automorphism of

cp . We will always think of J? as represented in a standard form on the Hilbert

space ^ associated with cp. The *-isomorphism T is called the coproduct
(or the comultiplication) of K. Given a Kac algebra K = (Jf ,Y, k , cp), there

canonically exists another Kac algebra K = (JZ, f, k, cp) called the dual Kac

algebra of K [ES]. The pair {•#, ^9} is again a standard representation.
To any locally compact group G, one can associate two canonical Kac alge-

bras. One is the commutative Kac algebra KA(C7) = (L°°(G), YG, jG, tg) in

which

TG(f)(s, t) = f(st),        jG(f)(s) = f(s~l),

rG(f) = jf(s)ds       (f£L°°(G),s,t£G),

where ds is a left Haar measure of G and L°°(G) is the algebra of all (equiva-

lence classes of) essentially bounded measurable functions on G with respect to

the left Haar measure. The other is the system KS(C7) = (3i(G) ,8g,kg, cpG),
where 31(G) is the group von Neumann algebra of G. The morphisms 8G

and kg are characterized by the identities

8G(X(s)) = X(s) ® X(s),    kg(X(s)) = X(s~x)       (s£G).

Here X denotes the left regular representation of G. The weight cpG is the

so-called Plancherel weight of G that is derived from the left Hilbert algebra
Jf(G), the set of all continuous functions on G with compact support, with

the usual convolution as its product. The Kac algebra KS(G) is cocommutative

or symmetric. KA(C7) and KS(tr) are dual to each other.
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An action of a Kac algebra K = (J£ ,T ,k, tp) on a von Neumann algebra

3° is a *-isomorphism 8 of 3s into 3s ®^ satisfying 8(1) - 1 and

(8 ® ijf) o 8 = (i#> ® T) o 8.

In [E] the above action is referred to as a right action of K on 5s, but, in
this paper, we simply call it an action. Note that every coproduct of a Kac

algebra K is an action of K on itself. The ordinary notion of an action of a

locally compact group G on a von Neumann algebra 3° (i.e., an automorphic

representation of G on 3s) is, as shown in [NT, E], equivalent to an action

of the Kac algebra KA(G)" on 3°. (See [S2] for the definition of K".) In
turn, an action of the cocommutative Kac algebra KS(C7) on 3° is precisely

the same as a coaction of G on 3° in the sense of [NT]. Given an action 8 of

a Kac algebra K = (Jf ,Y ,k ,cp) on a von Neumann algebra 3°, the crossed

product of 3s by the action is defined in [E] to be the von Neumann algebra

8(3°)NQ®Jf'. We denote it by 3s xs K, or by 3s xsJ( if there is no danger

of confusion.

For the concept of a matched pair, we consider two locally compact groups

Gx and G2 with their left Haar measures px and p2, respectively. We assume

that Gx acts on and is at the same time acted on by the set tr2 continuously

and nonsingularly. By nonsingularity of a group action, we mean that the action

preserves the null sets with respect to the measure in question. We denote by

a (resp. /?) the action of Gx (resp. G2). We shall keep using the letters a,

P for the induced actions of Gx and G2 on algebras L°°(G2) and L°°(GX),

respectively. Namely, we have

ag(k)(s) = k(ag-t(s)), Ps(f)(g) = /(&-.(*)),

where k e L°°(G2), f £ L°°(GX), g £ Gx, and s £ G2. By assumption, it
makes sense to consider the Radon-Nikodym derivatives

The functions x and *F are cocycles on Gx x G2 and are assumed to be jointly

continuous. We further assume that the actions a and /? satisfy the compati-
bility conditions:

n n ag(e) = e, fit(e) = e,
{l-l> ag(st) = aMg](s)ag(t),        fis(gh) = fiak{s)(g)fis(h),

where g, h £ Gx and s, t £ G2. In this case, we say that the system (Gx, G2,

a, P) is a matched pair. We refer the reader to Lemma 2.2 of [M] for the

properties that x and *P enjoy in case of (Gx,G2,a, /i) being a matched

pair. A matched pair (Gx, G2, a, fi) is said to be modular [M] if

X{g,s) =V(s,g) 82(ag(s)) ^8x(Ps(g))

X(g,e)     V(s,e)       ' 82(s) 8x(g)

for all g £ Gx and s £ G2, where <5, (/ = 1,2) indicates the modular functions

of C7,. In [M] Majidgave abundunt examples of (modular) matched pairs of Lie

groups and their actions. He also showed that if (Gx, G2, a, ft) is a matched
pair, the crossed products L°°(G2) xaGx and L°°(C7i) xpG2 can be equipped

with a structure of an involutive Hopf-von Neumann algebra (see [ES] for the
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definition of an involutive Hopf-von Neumann algebra). He called the crossed

products the bicrossproduct Hopf-von Neumann algebras. In particular, with

the additional condition that the matched pair is modular, the crossed products
become Kac algebras (see [ES]), dual to each other. He then called the algebras

the bicrossproduct Kac algebras. We remark that these involutive Hopf-von

Neumann algebras are not commutative or cocommutative except in the trivial

case.

2. Construction of an example of a Kac algebra action

In this section, we construct an example of an action of a Kac algebra, which

is not necessarily commutative or cocommutative, on a von Neumann algebra.

The construction will be done by making use of the bicrossproduct Kac algebra

associated with a modular matched pair.

Throughout this section, we shall fix a modular matched pair (Gx, G2, a, /?).

We denote by K = (J!, Y,k, cp) the associated bicrossproduct Kac algebra,
where J? = L°°(G2) xaGx. With respect to our purpose, we are most interested

in the coproduct Y of K. So let us briefly recall how the morphism Y was
defined in [M]. Let 3% (i = 1, 2) denote the Hilbert space L2(Gj). Then we
set ^ = M ® %?2. We define a unitary operator W on %? ® %?, which is

regarded as the set of L2-functions on Gx x G2 x Gx x G2 , by

{WZ}(g,s,h,t)=e(pt(h)-lg,s,h,am-lg(s)t)       ({ £%>®%f).

The inverse W* of this operator is given by

{Wf}(g,s, h, t) =Z{fiatW-it(h)g,s, h, ag(s)~lt).

(See the proof of Theorem 2.6 of [M] for W.) The coproduct Y of K is

defined by the identity

Y(x) = W(l®x)W*       (x£jf).

The next lemma illustrates what Y does to typical elements a(k) (k £ L°°(G2))

and Xx(p)  (p £ Gx) of the algebra Jf .

Lemma 2.1. With the notation as above, we have

{Y(a(k))£}(g,s,h,t) = k(ag(s)ah(t))Z(g, s, h , t),

{Y(Xx(p)®l)Z}(g,s,h,t)=Z(Pah{t)(p-l)g,s,p-ih,t)

where £t£%,®%f'.

A proof of the assertion is implicit in that of Theorem 2.6 of [M], thus we

omit the details here.
Now we would like to let the Kac algebra Jf = L°°(G2) xa Gx act on the

abelian von Neumann algebra L°°(G2). To do this, we first introduce a unitary

operator Va on the Hilbert space ^2 ® %?, which is regarded as the set of all

L2-functions on G2xGxxG2, by

{VaQ(r, g,s) = X(g, e)l'2C(r, g, rag(s))       (C£^2®^).

Once we note that x(g > s) = X(g > e) by modularity, it is not difficult to show
that the operator Va is indeed unitary with the inverse V* given as

{Va*Q(r, g,s) = x(g,ey1/2C(r, g, ^-.(r"1*)).
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We then define a ^-isomorphism 8a of L°°(G2) into ^f(H2®^) by

Sa(k) = Va(l*i®l*[®k)V;       (k£L°°(G2)).

Here S?(3£) stands for the algebra of all bounded operators on a Hilbert space

J?.  Our aim is to prove that this morphism 8a gives an action of -# on
L°°(G2).

Lemma 2.2. We have {8a(k)Q(r, g, s) = k(rag(s))C(r, g, s) for any k £

L°°(G2) and C € %?2 ® %*. The image of L°°(G2) under the morphism 8a
is contained in L°0(G2)®J^.

Proof. The first assertion is easily verified by a simple calculation, so we leave its

verification to the reader. For the second assertion, we define, for each r £ G2,

the function kr on G2 by kr(s) - k(rs) (s £ G2). Then, with the notation

introduced so far, we have that k(rag(s)) — kr(ag(s)) = a(kr)(g, s). We note

that the function r £ G2 >-> a(kr) is an essentially bounded Jf-valued func-

tion on G2, so it belongs to L°°(G2, J?) = L°°(G2)®^'. Hence, by the first
assertion, the operator 8a(k) lies in the von Neumann algebra L°°(G2)®^.

Q.E.D.

Theorem 2.3. The ^isomorphism 8a defined above is an action of the Kac al-
gebra J£ = L°°(G2) xa Gx on the von Neumann algebra L°°(G2).

Proof. For any a £ L°°(G2) and xe/.we have

(Sa ® U)(a ®x) = 8a(a) ® x = Va(l^2 ® l*. ® a)V* ® x

= (Va ® 1^)(1^ ® U ® a®X)(V* ® l&).

This shows that (8a ® ij?)(X) = Ad(Va ® 1^)(1^ ® l^ ® X) for any X £
L°°(G2)®Jf. Hence, for any k £ L°°(G2) and £ £ ^2 ® %* ® %*, which is

considered as the set of all L2-functions on G2xGxxG2xGxxG2, we have

{(Sa®i^)o8a(k)i}(r,g,s,h,t)

= {(Va® ljr)(l;r2 ®l%{® 8a(k))(V: ® l*)£,}(r, g,s,h,t)

= X(g, e)l/2{(ljr2 ® 1* ® 8a(k))(Va* ® l*)Z}(r, g, rag(s),h, t)

= X(g, e)ll2k(rag(s)ah(t)){(V: ® l^}(r, g, rag(s), h , t)

= k(rag(s)ah(t))Z(r ,g,s,h,t).

In the meantime, for any a and x as above, we have

(il°°(g2) ® T)(a® x) = a® Y(x) = a®W(l& ® x)W*

= (h°°(G2) ® W)(a ® lr ® x)(lLoc(G2) ® W*).

It follows from this that (il°°(g2) ® F)(X) = Ad(lz.<x,(G2) ® W)(XX^) for any

X £ L°°(G2)®Jr. Here Xx ,3 is the operator on %2®^f ®^ given by the

equation Xx^ = (a ® l&)(\ ® X)(o ® l&), where a in general denotes the
unitary between tensor products J?x ® 3?2 and 3t2®Xx of Hilbert spaces 3?x,

3?2 defined by flipping vectors o(nx ® n2) = r\2 ® r\x . Thus, for k and £ as
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before, we obtain

{(il°°(g2) ®F) °$a(kK}(r, g,s,h,t)

= {(1l~((,2) ® W)Sa(k)Xti(lLoo{Gl) ® W*)Q(r, g,s,h,t)

= R(fc)i,3(lt~(G2) ® W*)£}(r, pt(h)-lg,s,h,aMh)-lg(s)t)

= k(rah(apl(h)-ig(s)t)){(lL~{G2) ® W*)£}(r, Pt(h)~xg, s, h, am-ig(s)t)

= k(rah(api{h)-ig(s)t))£(r, g,s,h,t).

Now, from the compatibility condition (1.1), it follows that

<*h((XPl{h)-ig(s)t) = <Xp,(h)(ap,(h)-'g(S))ah(t) = C*g(s)an(t).

Consequently, we conclude that

(Sa ® u) o 8a(k) = (iz,-(G2) ® T) o 8a(k)

for any k £ L°°(G2). Therefore, the *-isomorphism 8a is an action of the Kac

algebra J? on L°°(G2).   Q.E.D.

Remark 2.4. By symmetry, the bicrossproduct Kac algebra L°°(GX) xp G2,

which is dual to L°°(G2) xa Gx, acts on the von Neumann algebra L°°(GX).

The action 8p is given by

h(f) = Vp(ljrx®f®l%>)V;       (f£L°°(Gx)),

where Vp is a unitary on the Hilbert space %fx®%?, which is regarded as the

set of all L2-functions on GxxGxxG2, defined by

{Vpn}(g,h,s) = V(s,e)x'2n(g,gps(h),s)       (n£^x®T).

The verification is left to the reader.
In what follows, we shall further investigate the action 8a of ^ on L°°(G2)

to get much information on it; but before we begin to do so we need to introduce

a notion of ergodicity of a Kac algebra action.

Definition 2.5. (1) Let 8 be an action of a Kac algebra on a von Neumann
algebra 3s . Then the set

3>s = {a£3°:8(a) = a®l]

is clearly a von Neumann subalgebra of 3s . It is called the fixed point algebra

of the action 8.
(2) Let 8 be as above. We say that the action 8 is ergodic if its fixed point

algebra is trivial: 3°s = C.

It is well known that if 8 is an action of KA(C7)CT for some locally compact

group G then 3s6 is the ordinary fixed point algebra. Thus ergodicity in our
sense is consistent with the conventional notion of ergodicity of a group action.

Proposition 2.6. The action 8a in Theorem 2.3 is ergodic. Similarly, the action
8p is ergodic.

Proof. We retain the notation introduced so far. Let k £ L°°(G2) be such
that 8a(k) = k ® Ij?. We regard the von Neumann algebra L°°(G2)®^ as

L°°(G2, Jf), the set of all (equivalence classes of) essentially bounded J(-

valued functions on G2.   Then, as we saw in the proof of Lemma 2.2, the



KAC ALGEBRA ACTIONS ON VON NEUMANN ALGEBRAS 509

operator 8a corresponds to the function r e G2 >-> a(kr), where kr(s) = k(rs).

The element k ® Ij? in turn corresponds to the one r £ G2 i-» k(r) • l^ . Hence

the condition 8a(k) = k ® Ij? is equivalent to the one that a(kr) = k(r) • Ijg

for p2-a.e. r £ G2. Fix an element r £ G2 with a(kr) = k(r) • l_# . Since

a(kr) = k(r) • \jr = a(k(r) • lL^{G2)),

it follows from injectivity of a that kr = k(r) • 1l°°(g2) ■ Now it is easy to

see that the function k is constant a.e.; therefore, the action 8a is ergodic.
Similarly, we can show ergodicity of 8p .   Q.E.D.

Next we will look at the crossed product L°°(G2) xSaJ? of L°°(G2) by the

action 8a of J?. First we define a unitary representation w of G2 on %? by

{w(t)Q(g,s) = S2(ag(rx))-xl2V(rx , e)x'2aPt-Ag), sag(rx)~x),

where E, £ %?. Due to (1.1) and modularity, w(-) is indeed a unitary repre-

sentation.

Lemma 2.7. The action Adw(t) of the group G2 on &(%*) leaves the algebra
group Lco(Gx x G2) globally invariant.

The proof is straightforward, so it is left to the reader.

Proposition 2.8. The crossed product L°°(G2) xSa J? is isomorphic to the

von Neumann algebra generated by L°°(GX x G2) and w(G2)". Under the

isomorphism, the center of the crossed product is the fixed point algebra
L°°(GX x G2)Mw^ of the action Adw(-) on L°°(GX x G2).

Proof. We denote the crossed product by (£. By definition, & is generated

by f5Q(L°°(C72)) and C ® JH'. We note that the algebra J(' is engendered
by L°°(GX) ® C and {v(s) ® p2(s): s £ G2}", where p2 is the right regular

representation of G2 and v(-) is the unitary implementing the action ft :

Ms)f}(g) = ¥(*-', s)1/2/m-(g))     (f e *[).

Hence, recalling the definition of the action 8a, we deduce that the algebra

V*SVa is generated by C ® C ® L°°(G2), Va*(C ® L°°(GX) ® C)Va, and
V*{1 ® v(s) ® p2(s): s £ G2}"Va . By the definition of Va , it is easy to see

that

Fa*(l®/®l)Fa = l®/®l

for all / e F°°(C7i). Thus FQ*(C ® L°°(GX) ® C)Va = C ® L°°(GX) ® C. Next
we compute the following:

{Va*(l®v(t)®p2(t))VaQ(r,g,s)

= X(g, e)-x/2{(l®v(t)®p2(t))VaQ(r,g,ag-l(r-xs))

= X(g, e)-x/282(t)x^(rx,g)x/2{VaQ(r, 0t->(g), ag->(r-xs)t)

= X(g,e)-x/282(t)x^(rx, e)l/2x(f}.t->(g),e)x/2

x C(r, Pt->(g), '•a/?,_,(«)K-'('""15)0)>

where £ £ 3% ® %?. By the second identity of Lemma 2.2 in [M], we have

S2(t)x/2X(g,e)-x'2x(Pt->(g),e)x'2 = 82(ag(rx))-x/2.
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Meanwhile, it results from (1.1) that

raP,-i(g)(ag-*(r~ls)t) = raM,-i ig))(ag-'(r~ls))aPt-dg)(t)

= sap,-t(g)(t) = sag(rx)-x.

The last step is due to the fact that e = ag(trx) = ap_^g)(t)ag(rx). Conse-

quently, we obtain

{Va*(l®v(t)®p2(t))VaQ(r,g,s)

= 82(ag(rx))-x^(rx, g)x'2C(r, pt-l(g),sag(rx)-x)

= 82(ag(rx))-x^(rx, e)x'2ttr, Pt->(g), sag(rx)-x)

= {(l®w(t))C}(r,g,s).

The second equality is guaranteed by the modularity *¥(t~x, g) = ^(r-1, e).
From the above computation, it follows that

V*@Va = C®C® L°°(G2) \/C® L°°(GX)® C V C ® w(G2)"

= C®L°°(Gx®G2)Vw(G2)".

Therefore the crossed product (£ is isomorphic to L°°(GX x G2) Vw(G2)" . It is

now clear that the center of S is isomorphic to F°°(C7i x G2) r\w(G2)', which

coincides with the fixed point algebra F°°(C7i x G2)Mw .   Q.E.D.

Finally we close this section with a remark that a similar result holds true for

the crossed product L°°(GX) xSf J? .
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