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A NOTE ON MEDIAL DIVISION GROUPOIDS

J. JE2EK AND T. KEPKA

(Communicated by Maurice Auslander)

Abstract. In 1949 Sholander showed that every medial cancellation groupoid

can be embedded into a medial quasigroup. In this note we prove the dual

assertion that every medial division groupoid is a homomorphic image of a

medial quasigroup.

1. Introduction

By a groupoid we mean a nonempty set with one binary operation, for which

we use the multiplicative notation as a default. A groupoid is called medial (in

some papers entropic, in [4] alternation) if it satisfies the identity

(xy)(uv) = (xu)(yv).

While [2] can serve as a reference on the theory of medial groupoids, the book

[3] gives numerous examples and connections with other parts of mathematics.

Given a groupoid G and an element a £ G, the left translation La of
G is the mapping of G into itself defined by La(x) = ax for any x £ G.

Similarly, the right translation Ra is defined by Ra(x) - xa. We say that
G is a cancellation groupoid if all its translations are injective mappings. If

all the translations are surjective, G is a division groupoid. A quasigroup is a

cancellation and division groupoid.

As it is easy to see, a homomorphic image of a division groupoid is a divi-
sion groupoid. In particular, a homomorphic image of a medial quasigroup is

a medial division groupoid. The aim of this paper is to prove that each me-

dial division groupoid can be obtained as a homomorphic image of a medial

quasigroup.

Our proof will be based on an auxiliary construction given in §2 which is,

in fact, a two-dimensional version of the ergodic-theoretic construction of an

automorphism on a measure space naturally extending an endomorphism (see

[1, Chapter 10, §4] for the entropic theory of dynamical systems).

Let us remark that, according to [2, Proposition 6.4.1], finitely generated
medial division groupoids are already quasigroups.

For a groupoid G we define a binary relation to on G by (a, b) £ tc iff

La — Lb and Ra = Rf,. Clearly, tg is a congruence of G.
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A groupoid G is said to be regular if for any a, b, c £ G, ac = be implies

La = L), and ca = cb implies Ra = Rb • Clearly, every cancellation groupoid

is regular. Both the class of cancellation groupoids and the class of regular

groupoids are quasivarieties.

From [2] we shall need the following two results.

Lemma 1. Let G be a medial division groupoid. Then the factor G/to is regular.

Proof. See [2, Lemma 6.2.3].   □

Lemma 2. Let G be a regular medial division groupoid. Then there exist an

abelian group G(+), two commuting surjective endomorphisms f, g of G(+),

and an element q £ G such that

xy = f(x) + g(y) + q

for all x, y £ G.

Proof. See [2, Corollary 6.1.2].   □

2. Bi-unary algebras: an auxiliary construction

Lemma 3. Let S be a nonempty set and f, g be two commuting surjective

transformations of S. Then there are a set A, two commuting permutations

F, G of A, and a mapping y> of A onto S such that <pF = ftp and tpG = gtp.

Proof. Let N denote the set of positive integers. Denote by A the set of the

mappings a : N x N —► 5" such that

f(a(i+l,j)) = g(a(i,j+l)) = a(i,j)

for all i, j £ N. (It is possible to imagine the elements of A as being infinite

matrices over the set S.) For a £ A define elements F(a) and G(a) of A by

F(a)(i, j) = f(a(i, j)),        G(a)(i, j) = g(a(i, j)).

With respect to fg = gf, it is easy to check that both F(a) and G(a) belong
to A for any a £ A. The mappings F, G commute, as

FG(a)(i, j) = fg(a(i,j)) = gf(a(i,j)) = GF(a)(i,j).

We are going to show that F is a permutation of A. If a, b £ A are

elements such that F(a) — F(b), then for all i, j £ N we have

a(i,j) = f(a(i+l,j)) = F(a)(i+l,j)

= F(b)(i+l,j) = f(b(i+l,j)) = b(i,j)

and consequently a = b. Given an element c £ A, we can define d by

d(i, j) = c(i + 1, j) for all i, j and check that d £ A and F(d) = c.
In the same way one can prove that also G is a permutation of A . Define a

mapping <p : A —> S by <p(a) — a(\, 1). For all a £ A we have

<pF(a) = F(a)(\,\) = f(a(\,\)) = f<p(a)

and thus tpF = ftp. Similarly, <pG = gep. It remains to show that <p is a

mapping onto S.
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Let 5 be an arbitrary element of S. Put ax t i — s and for any i > 2 choose

an element a,,, £ S such that fg(aij) - a,-i,,-i; this is possible, as fg is
surjective. Setting

,.   .,      f *,w(a,-,«)    for/>;,
fl(l'j) = (/-'(^)   for/<;,

we obtain a mapping a of N x N into S1. We only need to prove that a £ A,

since <p(a) = s will then follow from our choice ax>x = s. If i > j, then

f(a(i + 1, j)) = /*'+I-'(a,+i.,+i) = g'w(a,,/) = fl(i, ;).

If j = i + 1, then

f(a(i + 1, j)) = /(aI+i,I+i) = f(ajj) = a(i - 1. J) = «(». »•

If j > i + 1, then

Aa(i+l,j)) = fJ-'{ajj) = a{i,j).

We have proved f(a(i+1, ;')) = a(z, /) in all cases, and g(a(j, j+1)) = a(z, j)
can be checked similarly.   D

Remark. Although we shall not use the fact in the following, let us remark that

the construction of A, F, G, (p given in the proof of Lemma 3 is universal in

the sense that if Ax, Fx, Gx, <px is any other quadruple with the same proper-
ties, then there exists a uniquely determined mapping yi : Ax —► A such that

y/Fx = Fyi and y/Gx = Gyt.

3. Medial division groupoids: the main result

Lemma 4. Let G be a medial division groupoid. Then G is a homomorphic

image of the regular medial division groupoid G/tg x G/tg ■

Proof. Let cp : G -» G/tg be the canonical projection. It follows from the

definition of tg that y/ : G/tg x G/tg —* G is a correctly defined mapping if
we put y/(<p(x), q>(y)) = xy for all x, y £ G. By the medial law,

y/((q>(x), tp(y)) • (<p(u), tp(v))) = (xu)(yv) = (xy)(uv)

= y/(<p(x), (p(y))-y/((p(u), <p(v))

for any x, y, u, v £ G and we see that yi is a homomorphism. Since G is a

division groupoid, y/ is surjective. The factor G/tg is a regular medial division

groupoid by Lemma 1, and it is clear that the product of regular medial division

groupoids is a regular medial division groupoid.   □

Theorem 5. Every medial division groupoid is a homomorphic image of a medial

quasigroup.

Proof. With respect to Lemma 4, it is sufficient to prove that any regular me-
dial division groupoid G is a homomorphic image of a medial quasigroup. By
Lemma 2 there are an abelian group G(+), two commuting surjective endomor-

phisms f, g of G(+), and an element q £ G such that xy = f(x) + g(y) + q
for all x, y £ G. By Lemma 3 there exist a set A, two commuting permuta-

tions F, G of A, and a mapping tp of A onto G such that <pF — ftp and
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<pG = gtp . Denote by H(+) the free abelian group over the set A . The per-

mutations F, G can be uniquely extended to automorphisms a, B of H(+),

and we have a/? = Pa. Moreover, the mapping <p can be extended to a homo-

morphism h of H(+) onto G(+). Since the homomorphisms ha and fh of

H(+) into G(+) coincide on the set of generators A , they coincide everywhere

and we have ha = fh. Similarly, hp = gh. Take an element e £ H such

that h(e) = q and define a multiplication on H by xy = a(x) + B(y) + e.

Then H becomes a medial quasigroup, and one can easily verify that h is a

homomorphism of the quasigroup H onto the groupoid G.   U

Remark. For a given medial division groupoid G let Q be a medial quasigroup
and r be a congruence of Q such that G ~ Q/r. Among the congruences s

of Q such that s c r and Q/s is a quasigroup, there is a unique largest one;

denote it by So . Then G is a homomorphic image of the medial quasigroup

Qo = Q/sq with the property that no nontrivial congruence of (2o contained

in the kernel of the homomorphism factors <2o to a quasigroup. In this sense,

every medial division groupoid has a "quasigroup cover". We do not know,

however, if this medial quasigroup cover is unique.
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