
proceedings of the
american mathematical society
Volume 119, Number 2, October 1993

DIAGONALIZATION IN COMPACT LIE ALGEBRAS
AND A NEW PROOF OF A THEOREM OF KOSTANT

N. J. WILDBERGER

(Communicated by Jonathan M. Rosenberg)

Abstract. We exhibit a simple algorithmic procedure to show that any element

of a compact Lie algebra is conjugate to an element of a fixed maximal abelian

subalgebra. An estimate of the convergence of the algorithm is obtained. As an

application, we provide a new proof of Kostant's theorem on the projection of

orbits onto a maximal abelian subalgebra.

0

Let M £ M(n, C) be a Hermitian matrix and consider the problem of diag-

onalizing M, that is, finding a unitary n x n matrix g such that g~xMg is

diagonal. This problem is essentially equivalent to that of finding the eigenval-

ues and eigenvectors of M. We propose an algorithm for solving this problem

which utilizes the Lie algebra structure of 0, the nx n skew-Hermitian matri-

ces, and the adjoint action of G, the n x n unitary group, on g. In fact our

method applies generally to any compact connected Lie group G and its Lie
algebra 0.

Fix a maximal torus T C G with Lie algebra tCg and let

(0.1) 0 = t©£>a
a€£+

be the decomposition of 0 into weight spaces under the adjoint action of T.

Here X+ is a set of positive roots and each space ga is two-dimensional. Given

Z e n, we will write

(0.2) Z = Z0 + J2 Z<*

corresponding to (0.1). The idea is then to choose a £ Z+ such that Za has

maximum norm and then find g £ G such that Ad(g)Z has no gQ component.

This turns out to be essentially a problem in SU(2), which we can solve using

only quadratic equations. If d(Z) denotes the distance from Z to the subspace
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t, then we prove the inequality

(0.3) d(Ad(g)Z) < y](l-l)/ld(Z)

where / is the number of positive roots.

We then repeat the procedure, getting a sequence Z = Zx ,Z2, ... converg-

ing to a point Z°° € t. Then Z°° is the diagonalized form of Z e 0. The rate

of convergence is controlled by (0.3).

As an application, we use the algorithm to provide a direct proof of a theorem

of Kostant [1] which states that if p: 0 —» t is the orthogonal projection and

Ox denotes the Ad(C7) orbit through X £ t, then

(0.4) p(Ox) = conv{Ox n t}

where conv denotes convex hull. It is well known that Ox n t is a finite set

of points, the Weyl group orbit of X, so p(Ox) is a convex polytope. Most

existing proofs of Kostant's theorem (for example, the approaches of Atiyah
[1,2], Heckman [4], or Guillemin and Sternberg [3] using symplectic geometry)

utilize Morse theory. Our proof is direct and conceptually simple.

1

The problem of diagonalization for G - SU(2) is easy. The group G consists

of all matrices of the form

<>■'> H-?'
where a, P £ C satisfy |a|2 + \P\2 = 1. The Lie algebra 0 = su(2) consists of

all matrices of the form

(1.2) X=   lX-     Z.
v     ' -z   -ix

where x £ R and z £ C, and t consists of the one-dimensional diagonal

subalgebra. The adjoint action is given by conjugation, so that for g and X

as in (1.1) and (1.2),

(1.3) Ad(g-x)X = g-xXg.

Given X £ 0, the diagonalization problem is to find g £ G such that g~xXg

is diagonal. We may assume z ^ 0. The eigenvalues of X are iX and —ik

where X = (x2 + \z\2)x/2 and the corresponding eigenvectors are

('•") \i(XZ-x)\   "-   |'V-V°  '

Both these vectors have length d = ^/2X(X - x). It follows that if we set

(15) g = -       Z        i{X~x)

U°j g     d  i(X-x)        z

then g £ SU(2) and

(1.6) S-^Ho    -ik   ■
Note that we have used only quadratic equations to obtain g .
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2

Let G be a compact, connected, semisimple Lie group with Lie algebra 0.
Let ( , ) be a G-invariant positive-definite form on 0 and | | the associated

norm. Let T be a maximal torus with Lie algebra t. Let Set* be the root

system of G with respect to t; fix an ordering of the roots with Z+ the set of
positive roots and A the set of simple roots. Then under the adjoint action of

T, 0 decomposes as an orthogonal direct sum

(2.1) B = te^0Q

where 0a is a two-dimensional subspace of 0 such that for let, ad(X) acts

on 0Q as

(2.2) a(*)|J    -1

with respect to some orthonormal basis of 0Q.  For each a £ I, let ka c t
denote the hyperplane

(2.3) ka = {X£ t\a(X) = 0}.

Let sa: t —► t denote reflection in the hyperplane ka and let  W, the Weyl

group, be the finite group generated by the sa , a £ X.

Let

(2.4) t+ = {X £ \\a(X) > 0 Va £ !+} .

Then t+ is a fundamental chamber for the action of W so that each X £ t is

H^-conjugate to exactly one element of t+ .

Now let Z £ 0 and consider the orbit Oz of Z under the adjoint action,

i.e.,

(2.5) Oz = {Ad(g)Z\g £ G}.

Then it is well known that Oz n t is a finite set and in fact consists of exactly

one W orbit. It follows that every adjoint orbit Oz intersects t+ in a unique
point.

Let

(2.6) Vz = Oz n t

and let

(2.7) Dz = conv(Fz).

Since the action of G preserves the form ( , ), all points of Vz have the same

norm and so are vertices of the polytope Dz .

For a £ Z+ , denote the centralizer of ka in 0 by cents(ka). That is

(2.8) cent8(A:Q) = {Z e 0|Z • X = 0 VX £ ka]

where we write [Z, X] = Z • X.
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Lemma 2.1.  centg(/ca) = t© $a.

Proof. Let Z £ cents(ka) and write the decomposition of Z according to (2.1)
as

(2.9) Z = Z0 + Y Zp

with Z0 € t and Zj £ Qp V^el+. Then

Z-X = 0   VX£ka

& Y x'Zp = °   VX £ka
pel*

(2.10) & Y P(x)z'p = °   V*€fca

where Z^ e 0^ is nonzero iff Zyj is nonzero

Denote the orthogonal complement in t of ka by k£ . Then ha = k^ ® 0a

is a three-dimensional subalgebra of centB(/cQ) isomorphic to su(2), and we

have the orthogonal decomposition

(2.11) centg (ka) = ka © f)Q.

Define

(2.12) mQ =   Y $P-

Then

(2. 13) 0 = fca©hQ©ma

is an orthogonal decomposition.   This decomposition is preserved under the

adjoint action of ha .

If Ha denotes the connected Lie subgroup of G with Lie algebra f)Q then

by §1 for any Z e hQ, we may find g £ Ha such that Ad(g)Z — Z' £ k^.
Furthermore, if the k^ component of Z is nonzero, then we may arrange that

the k^ component of Z' lies in the same Weyl chamber (i.e., half-line) as does
that of Z. Applying the same reasoning to an arbitrary Z 6 0 gives us the

following.

Lemma 2.2. Let a £ Z+ and Z £ 0.   Then we can find g £ Ha such that if
Ad(g)Z = Z' then

(i) Z' has no ga component;

(ii) the ka components of Z and Z' are identical;

(iii) the mQ components of Z and Z' have the same norm;
(iv) the k^  components of Z and Z' are in the same Weyl chamber of k^ .

We will refer to the process described in the above lemma as "rotating Z

about the hyperplane ka ". For Z £ q and a £ I+ , define the distance functions

(2.14) da(Z) = \Za\
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and

(2.15) d(Z)=   YZ° =\zZd^Z)2)      ■

The latter is just the distance from Z to t. The basic algorithm can now be
described. Let Z € 0, and set Z1 = Z. Construct a sequence Z1, Z2, ...
of elements of 0 recursively as follows. Given Zn~x, find a £ S+ such that

da(Z"~x) is maximum. Use the formulae of §1 and Lemma 2.2 to find g £

Ha such that Ad(g)Z"_1 = Z" has no Qa component and satisfies the other

conditions of the lemma. Then if \L+\ = I,

(2.16) £4,(Z"-1)2</</a(Z"-')2.

Thus,

d(z")2= Ydp(z")2= Ymz"-1)2
pez+ pez+
P?a P^a

(2.17) = S^iZ"-1)2-^"-1)2

<(^)£^(z"-i)2=(^w»-1)2.

It follows that d(Zn) -> 0 as n -> 00. Set

(2.18) Xn=p(Zn).

Then Xn~x and X" differ only in the k^ direction and

(2.19) \Xn-Xn-x\<da(Z"-x).

By (2.17) this becomes

,,_ n(«-2)/2
(2.20) \Xn -Xn-x\<y—±\ d(Zx).

Thus {Xn} is a Cauchy sequence and converges to an element X00 e t which

is also the limit of the sequence {Z"} . Since the orbit Oz is closed, X°° £ Oz

so we have "diagonalized" Z by performing an infinite series of rotations about
hyperplanes. Furthermore

\x*-x~\<Yv-r)     d(Zi)
k=n

(2.21) /, ,\C-V/2
(-I1) //-1\("-1)/2

= V     / d(Zi)<2l (LJ.) rf(Zl).
i-(¥) V ' ;

Each individual rotation is essentially a rotation in one of a finite number of

SU(2) inside G. This is clearly an algorithm that could be implemented in a

straightforward fashion on a computer.
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3

As an application, we use the algorithm to provide a new proof of a theorem

of Kostant. We continue with the notation of the previous sections.

Theorem 3.1 (Kostant [5]). Let let. Then p(Ox) = Dx .

Proof. Let Z e Ox. Write Z = Zx and use the above algorithm to find a
sequence Z{, Z2, ... converging to X°° £ t where the sequence of projections

p(Z") = X" also converges to X°° . Note that X°° must be W conjugate to

X. If we have rotated Z"_1 about the hyperplane ka to obtain Z", then

as remarked in the previous discussion, X" differs from Xn~x by an element

of k^ and furthermore X" is further from the hyperplane ka than Xn~x is.

Thus Xn~x is between X" and sa(X"). It follows that Xn~x e DXn and so

by IF-invariance Dxn-t QDXn. Therefore

(3.1) Dxi C-CDX« C-CD^oo

and so

(3.2) Xx£DXoo=Dx.

But Xx = p(Z) and Z £ Ox was arbitrary so that

(3.3) P(0X)CDX.

To show the reverse inclusion, suppose that X £ t+ and Y £ Dx n t+.

Consider a particle moving inside t+ which begins at Y and always moves

along a direction which is a positive multiple of a simple root. It is thus always

moving perpendicularly away from one of the walls of t+ . Suppose whenever
it has a choice (i.e., at the initial stage or whenever it reaches one of the walls of

t+) it chooses a direction in which it can move unimpeded in a straight line the

longest. Clearly the particle would eventually approach infinity so in particular

after a finite number of steps it will reach the boundary of Dx , say at a point

(3.4) Y' = X-Yr«a
a6Z+

where ra > 0. Here we have identified a with the unique element in t such

that

a(X) = (a,X)   Viet (so that aek£).

Then clearly after another finite number of steps along simple root directions,

the particle can reach X. Using the results of §1, we can choose X = Zx, Z2,

... ,Zk = Z of 0 such that ZJ+1 differs from Z; only by a rotation about
the hyperplane kaj, where XJ+X differs from Xj by a multiple of the simple

root aj. Then Z £ g is conjugate to X and p(Z) = Y as required.   □
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