DIAGONALIZATION IN COMPACT LIE ALGEBRAS AND A NEW PROOF OF A THEOREM OF KOSTANT

N. J. WILDBERGER

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. We exhibit a simple algorithmic procedure to show that any element of a compact Lie algebra is conjugate to an element of a fixed maximal abelian subalgebra. An estimate of the convergence of the algorithm is obtained. As an application, we provide a new proof of Kostant's theorem on the projection of orbits onto a maximal abelian subalgebra.

0

Let $M \in M(n, \mathbb{C})$ be a Hermitian matrix and consider the problem of diagonalizing M, that is, finding a unitary $n \times n$ matrix g such that $g^{-1}Mg$ is diagonal. This problem is essentially equivalent to that of finding the eigenvalues and eigenvectors of M. We propose an algorithm for solving this problem which utilizes the Lie algebra structure of \mathfrak{g} , the $n \times n$ skew-Hermitian matrices, and the adjoint action of G, the $n \times n$ unitary group, on \mathfrak{g} . In fact our method applies generally to any compact connected Lie group G and its Lie algebra \mathfrak{g} .

Fix a maximal torus $T \subseteq G$ with Lie algebra $\mathfrak{t} \subseteq \mathfrak{g}$ and let

$$\mathfrak{g}=\mathfrak{t}\oplus\sum_{\alpha\in\Sigma^+}\mathfrak{g}_\alpha$$

be the decomposition of $\mathfrak g$ into weight spaces under the adjoint action of T. Here Σ^+ is a set of positive roots and each space $\mathfrak g_\alpha$ is two-dimensional. Given $Z \in \mathfrak g$, we will write

$$(0.2) Z = Z_0 + \sum_{\alpha \in \Sigma^+} Z_\alpha$$

corresponding to (0.1). The idea is then to choose $\alpha \in \Sigma^+$ such that Z_α has maximum norm and then find $g \in G$ such that $\mathrm{Ad}(g)Z$ has no \mathfrak{g}_α component. This turns out to be essentially a problem in $\mathrm{SU}(2)$, which we can solve using only quadratic equations. If d(Z) denotes the distance from Z to the subspace

Received by the editors November 29, 1990 and, in revised form, February 25, 1992. 1991 Mathematics Subject Classification. Primary 22E15; Secondary 58F05. Key words and phrases. Diagonalization, compact Lie algebra, Kostant's theorem.

t, then we prove the inequality

(0.3)
$$d(\operatorname{Ad}(g)Z) \le \sqrt{(l-1)/l}d(Z)$$

where l is the number of positive roots.

We then repeat the procedure, getting a sequence $Z=Z^1$, Z^2 , ... converging to a point $Z^{\infty} \in \mathfrak{t}$. Then Z^{∞} is the diagonalized form of $Z \in \mathfrak{g}$. The rate of convergence is controlled by (0.3).

As an application, we use the algorithm to provide a direct proof of a theorem of Kostant [1] which states that if $p: \mathfrak{g} \to \mathfrak{t}$ is the orthogonal projection and O_X denotes the Ad(G) orbit through $X \in \mathfrak{t}$, then

$$(0.4) p(O_X) = \operatorname{conv}\{O_X \cap \mathfrak{t}\}\$$

where conv denotes convex hull. It is well known that $O_X \cap \mathfrak{t}$ is a finite set of points, the Weyl group orbit of X, so $p(O_X)$ is a convex polytope. Most existing proofs of Kostant's theorem (for example, the approaches of Atiyah [1, 2], Heckman [4], or Guillemin and Sternberg [3] using symplectic geometry) utilize Morse theory. Our proof is direct and conceptually simple.

1

The problem of diagonalization for G = SU(2) is easy. The group G consists of all matrices of the form

$$(1.1) g = \begin{vmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha} \end{vmatrix}$$

where α , $\beta \in \mathbb{C}$ satisfy $|\alpha|^2 + |\beta|^2 = 1$. The Lie algebra $\mathfrak{g} = \mathfrak{su}(2)$ consists of all matrices of the form

$$(1.2) X = \begin{vmatrix} ix & z \\ -\overline{z} & -ix \end{vmatrix}$$

where $x \in \mathbb{R}$ and $z \in \mathbb{C}$, and t consists of the one-dimensional diagonal subalgebra. The adjoint action is given by conjugation, so that for g and X as in (1.1) and (1.2),

(1.3)
$$Ad(g^{-1})X = g^{-1}Xg.$$

Given $X \in \mathfrak{g}$, the diagonalization problem is to find $g \in G$ such that $g^{-1}Xg$ is diagonal. We may assume $z \neq 0$. The eigenvalues of X are $i\lambda$ and $-i\lambda$ where $\lambda = (x^2 + |z|^2)^{1/2}$ and the corresponding eigenvectors are

Both these vectors have length $d = \sqrt{2\lambda(\lambda - x)}$. It follows that if we set

(1.5)
$$g = \frac{1}{d} \begin{vmatrix} z & i(\lambda - x) \\ i(\lambda - x) & \overline{z} \end{vmatrix}$$

then $g \in SU(2)$ and

$$(1.6) g^{-1}Xg = \begin{vmatrix} i\lambda & 0 \\ 0 & -i\lambda \end{vmatrix}.$$

Note that we have used only quadratic equations to obtain g.

2

Let G be a compact, connected, semisimple Lie group with Lie algebra \mathfrak{g} . Let $(\ ,\)$ be a G-invariant positive-definite form on \mathfrak{g} and $|\ |$ the associated norm. Let T be a maximal torus with Lie algebra \mathfrak{t} . Let $\Sigma\subseteq\mathfrak{t}^*$ be the root system of G with respect to \mathfrak{t} ; fix an ordering of the roots with Σ^+ the set of positive roots and Δ the set of simple roots. Then under the adjoint action of T, \mathfrak{g} decomposes as an orthogonal direct sum

$$\mathfrak{g}=\mathfrak{t}\oplus\sum_{\alpha\in\Sigma^+}\mathfrak{g}_{\alpha}$$

where g_{α} is a two-dimensional subspace of g such that for $X \in \mathfrak{t}$, ad(X) acts on g_{α} as

$$(2.2) \alpha(X) \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$$

with respect to some orthonormal basis of \mathfrak{g}_{α} . For each $\alpha \in \Sigma$, let $k_{\alpha} \subseteq \mathfrak{t}$ denote the hyperplane

$$(2.3) k_{\alpha} = \{X \in \mathfrak{t} | \alpha(X) = 0\}.$$

Let $s_{\alpha} \colon \mathfrak{t} \to \mathfrak{t}$ denote reflection in the hyperplane k_{α} and let W, the Weyl group, be the finite group generated by the s_{α} , $\alpha \in \Sigma$. Let

$$\mathfrak{t}_{+} = \{ X \in \mathfrak{t} | \alpha(X) \ge 0 \ \forall \alpha \in \Sigma^{+} \}.$$

Then \mathfrak{t}_+ is a fundamental chamber for the action of W so that each $X \in \mathfrak{t}$ is W-conjugate to exactly one element of \mathfrak{t}_+ .

Now let $Z \in \mathfrak{g}$ and consider the orbit O_Z of Z under the adjoint action, i.e.,

$$(2.5) O_Z = \{ \operatorname{Ad}(g) Z | g \in G \}.$$

Then it is well known that $O_Z \cap \mathfrak{t}$ is a finite set and in fact consists of exactly one W orbit. It follows that every adjoint orbit O_Z intersects \mathfrak{t}_+ in a unique point.

Let

$$(2.6) V_Z = O_Z \cap \mathfrak{t}$$

and let

$$(2.7) D_Z = \operatorname{conv}(V_Z).$$

Since the action of G preserves the form (,), all points of V_Z have the same norm and so are vertices of the polytope D_Z .

For $\alpha \in \Sigma^+$, denote the centralizer of k_{α} in g by cent_g (k_{α}) . That is

(2.8)
$$\operatorname{cent}_{\mathfrak{g}}(k_{\alpha}) = \{ Z \in \mathfrak{g} | Z \cdot X = 0 \ \forall X \in k_{\alpha} \}$$

where we write $[Z, X] = Z \cdot X$.

Lemma 2.1. cent_g $(k_{\alpha}) = \mathfrak{t} \oplus \mathfrak{g}_{\alpha}$.

Proof. Let $Z \in \text{cent}_{\mathfrak{g}}(k_{\alpha})$ and write the decomposition of Z according to (2.1) as

$$(2.9) Z = Z_0 + \sum_{\beta \in \Sigma^+} Z_{\beta}$$

with $Z_0 \in \mathfrak{t}$ and $Z_{\beta} \in \mathfrak{g}_{\beta} \ \forall \beta \in \Sigma^+$. Then

$$Z \cdot X = 0 \quad \forall X \in k_{\alpha}$$

$$\Leftrightarrow \sum_{\beta \in \Sigma^{+}} X \cdot Z_{\beta} = 0 \quad \forall X \in k_{\alpha}$$

$$\Leftrightarrow \sum_{\beta \in \Sigma^{+}} \beta(X) Z_{\beta}' = 0 \quad \forall X \in k_{\alpha}$$

$$\text{where } Z_{\beta}' \in \mathfrak{g}_{\beta} \text{ is nonzero iff } Z_{\beta} \text{ is nonzero}$$

$$\Leftrightarrow Z_{\beta} = 0 \quad \forall \beta \neq \alpha. \quad \Box$$

Denote the orthogonal complement in t of k_{α} by k_{α}^{\perp} . Then $\mathfrak{h}_{\alpha}=k_{\alpha}^{\perp}\oplus\mathfrak{g}_{\alpha}$ is a three-dimensional subalgebra of $\operatorname{cent}_{\mathfrak{g}}(k_{\alpha})$ isomorphic to $\operatorname{su}(2)$, and we have the orthogonal decomposition

$$(2.11) \operatorname{cent}_{\mathfrak{a}}(k_{\alpha}) = k_{\alpha} \oplus \mathfrak{h}_{\alpha}.$$

Define

$$\mathfrak{m}_{\alpha} = \sum_{\substack{\beta \in \Sigma^{+} \\ \beta \neq \alpha}} \mathfrak{g}_{\beta}.$$

Then

$$\mathfrak{g} = k_{\alpha} \oplus \mathfrak{h}_{\alpha} \oplus \mathfrak{m}_{\alpha}$$

is an orthogonal decomposition. This decomposition is preserved under the adjoint action of \mathfrak{h}_{α} .

If H_{α} denotes the connected Lie subgroup of G with Lie algebra \mathfrak{h}_{α} then by §1 for any $Z \in \mathfrak{h}_{\alpha}$, we may find $g \in H_{\alpha}$ such that $\mathrm{Ad}(g)Z = Z' \in k_{\alpha}^{\perp}$. Furthermore, if the k_{α}^{\perp} component of Z is nonzero, then we may arrange that the k_{α}^{\perp} component of Z' lies in the same Weyl chamber (i.e., half-line) as does that of Z. Applying the same reasoning to an arbitrary $Z \in \mathfrak{g}$ gives us the following.

Lemma 2.2. Let $\alpha \in \Sigma^+$ and $Z \in \mathfrak{g}$. Then we can find $g \in H_\alpha$ such that if Ad(g)Z = Z' then

- (i) Z' has no g_{α} component;
- (ii) the k_{α} components of Z and Z' are identical;
- (iii) the \mathfrak{m}_{α} components of Z and Z' have the same norm;
- (iv) the k_{α}^{\perp} components of Z and Z' are in the same Weyl chamber of k_{α}^{\perp} .

We will refer to the process described in the above lemma as "rotating Z about the hyperplane k_{α} ". For $Z \in \mathfrak{g}$ and $\alpha \in \Sigma^+$, define the distance functions

$$(2.14) d_{\alpha}(Z) = |Z_{\alpha}|$$

and

(2.15)
$$d(Z) = \left| \sum_{\alpha \in \Sigma^+} Z_{\alpha} \right| = \left(\sum_{\alpha \in \Sigma^+} d_{\alpha}(Z)^2 \right)^{1/2}.$$

The latter is just the distance from Z to \mathfrak{t} . The basic algorithm can now be described. Let $Z \in \mathfrak{g}$, and set $Z^1 = Z$. Construct a sequence Z^1, Z^2, \ldots of elements of \mathfrak{g} recursively as follows. Given Z^{n-1} , find $\alpha \in \Sigma^+$ such that $d_{\alpha}(Z^{n-1})$ is maximum. Use the formulae of §1 and Lemma 2.2 to find $g \in H_{\alpha}$ such that $\mathrm{Ad}(g)Z^{n-1} = Z^n$ has no \mathfrak{g}_{α} component and satisfies the other conditions of the lemma. Then if $|\Sigma^+| = l$,

(2.16)
$$\sum_{\beta \in \Sigma^{+}} d_{\beta} (Z^{n-1})^{2} \leq l d_{\alpha} (Z^{n-1})^{2}.$$

Thus,

$$d(Z^{n})^{2} = \sum_{\substack{\beta \in \Sigma^{+} \\ \beta \neq \alpha}} d_{\beta}(Z^{n})^{2} = \sum_{\substack{\beta \in \Sigma^{+} \\ \beta \neq \alpha}} d_{\beta}(Z^{n-1})^{2}$$

$$= \sum_{\substack{\beta \in \Sigma^{+} \\ \beta \in \Sigma}} d_{\beta}(Z^{n-1})^{2} - d_{\alpha}(Z^{n-1})^{2}$$

$$\leq \left(\frac{l-1}{l}\right) \sum_{\beta \in \Sigma^{+}} d_{\beta}(Z^{n-1})^{2} = \left(\frac{l-1}{l}\right) d(Z^{n-1})^{2}.$$

It follows that $d(Z^n) \to 0$ as $n \to \infty$. Set

$$(2.18) X^n = p(Z^n).$$

Then X^{n-1} and X^n differ only in the k_{α}^{\perp} direction and

$$(2.19) |X^n - X^{n-1}| \le d_{\alpha}(Z^{n-1}).$$

By (2.17) this becomes

$$|X^n - X^{n-1}| \le \left(\frac{l-1}{l}\right)^{(n-2)/2} d(Z_1).$$

Thus $\{X^n\}$ is a Cauchy sequence and converges to an element $X^\infty \in \mathfrak{t}$ which is also the limit of the sequence $\{Z^n\}$. Since the orbit O_Z is closed, $X^\infty \in O_Z$ so we have "diagonalized" Z by performing an infinite series of rotations about hyperplanes. Furthermore

$$|X^{n} - X^{\infty}| \leq \sum_{k=n}^{\infty} \left(\frac{l-1}{l}\right)^{(k-1)/2} d(Z_{1})$$

$$= \frac{\left(\frac{l-1}{l}\right)^{(n-1)/2}}{1 - \left(\frac{l-1}{l}\right)^{1/2}} d(Z_{1}) \leq 2l \left(\frac{l-1}{l}\right)^{(n-1)/2} d(Z_{1}).$$

Each individual rotation is essentially a rotation in one of a finite number of SU(2) inside G. This is clearly an algorithm that could be implemented in a straightforward fashion on a computer.

As an application, we use the algorithm to provide a new proof of a theorem of Kostant. We continue with the notation of the previous sections.

Theorem 3.1 (Kostant [5]). Let $X \in \mathfrak{t}$. Then $p(O_X) = D_X$.

Proof. Let $Z \in O_X$. Write $Z = Z^1$ and use the above algorithm to find a sequence Z^1 , Z^2 , ... converging to $X^\infty \in \mathfrak{t}$ where the sequence of projections $p(Z^n) = X^n$ also converges to X^∞ . Note that X^∞ must be W conjugate to X. If we have rotated Z^{n-1} about the hyperplane k_α to obtain Z^n , then as remarked in the previous discussion, X^n differs from X^{n-1} by an element of k_α^\perp and furthermore X^n is further from the hyperplane k_α than X^{n-1} is. Thus X^{n-1} is between X^n and $S_\alpha(X^n)$. It follows that $X^{n-1} \in D_{X^n}$ and so by W-invariance $D_{X^{n-1}} \subseteq D_{X^n}$. Therefore

$$(3.1) D_{X^1} \subseteq \cdots \subseteq D_{X^n} \subseteq \cdots \subseteq D_{X^\infty}$$

and so

$$(3.2) X^1 \in D_{X^\infty} = D_X.$$

But $X^1 = p(Z)$ and $Z \in O_X$ was arbitrary so that

$$(3.3) p(O_X) \subseteq D_X.$$

To show the reverse inclusion, suppose that $X \in \mathfrak{t}_+$ and $Y \in D_X \cap \mathfrak{t}_+$. Consider a particle moving inside \mathfrak{t}_+ which begins at Y and always moves along a direction which is a positive multiple of a simple root. It is thus always moving perpendicularly away from one of the walls of \mathfrak{t}_+ . Suppose whenever it has a choice (i.e., at the initial stage or whenever it reaches one of the walls of \mathfrak{t}_+) it chooses a direction in which it can move unimpeded in a straight line the longest. Clearly the particle would eventually approach infinity so in particular after a finite number of steps it will reach the boundary of D_X , say at a point

$$(3.4) Y' = X - \sum_{\alpha \in \Sigma^+} r_{\alpha} \alpha$$

where $r_{\alpha} \geq 0$. Here we have identified α with the unique element in $\mathfrak t$ such that

$$\alpha(X) = (\alpha\,,\,X) \quad \forall X \in \mathfrak{t} \text{ (so that } \alpha \in k_\alpha^\perp)\,.$$

Then clearly after another finite number of steps along simple root directions, the particle can reach X. Using the results of §1, we can choose $X = Z^1$, Z^2 , ..., $Z^k = Z$ of $\mathfrak g$ such that Z^{j+1} differs from Z^j only by a rotation about the hyperplane k_{α_j} , where X^{j+1} differs from X^j by a multiple of the simple root α_j . Then $Z \in \mathfrak g$ is conjugate to X and p(Z) = Y as required. \square

ACKNOWLEDGMENT

The author would like to thank Michael Cowling for some useful remarks.

BIBLIOGRAPHY

- 1. M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1-15.
- 2. ____, Angular momentum, convex polyhedra and algebraic geometry, Proc. Edinburgh Math. Soc. 26 (1983), 121-138.
- 3. V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513.
- 4. G. J. Heckman, Projections of orbits and asymptotic behaviour of multiplicities for compact Lie groups, Invent. Math. 67 (1982), 333-356.
- 5. B. Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. 6 (1973), 413-455.

School of Mathematics, University of New South Wales, Kensington, New South Wales, 2033, Australia