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Abstract. Every complex manifold M" with holomorphic metric can be ob-

tained (at least locally) from a complex manifold E2'"~2 and one of its C-

principal bundles L . The manifold E is made of all (signed) complex geodesies

of M and L is the bundle on E of all choices of "times" evolving along the

geodesies.

Introduction

A theory of complex manifolds with holomorphic metric has flourished within

the twistor theory (cf. [BM, ELI, EL2, IYG, L1-L5, M, P, PW, W]); in this
context an important place is held by LeBrun's result (cf. [LI]), which shows

how, at least locally, every w-dimensional complex manifold with holomorphic

conformal structure can be obtained starting from a complex manifold of di-

mension 2 • n - 3 without any other structures.

The aim of this article is to show that it is possible to enrich that result:
every n-dimensional complex manifold (M, g) provided with a holomorphic

metric can be obtained, at least locally, starting from a complex manifold E of

dimension 2 • n - 2 and from one of its principal C-bundles /?: L -+ E.
In a sense, which we shall define exactly further on, the manifold E is the

manifold of all complex "geodesies" in M and the problem lies in being able
to distinguish in E those subsets made of "geodesies" coming out from each

point of M. Actually this operation takes place in the total space of the bundle
L, which has, as a fibre, on every "geodesic" the set of all possible choices of

"time", which evolves along the "geodesic" [note that this bundle is never the

product bundle (cf. the remarks following Theorem 3)].

Take a point p of M and set an initial "time" u in p—this "time"evolves

along all the geodesies coming out of p and originates a submanifold KPyU of
L; if a different initial "time" v is chosen, the submanifold KP>V is anything

but the "translation" of value v - u of Kpu in L. These submanifolds Kp t u

are all copies of the standard regular (n - l)-quadric and are embedded in L
with a normal bundle of a well-prescribed type.
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In order to go back to the points we have to select all the (n - l)-quadrics
in L with that prescribed normal bundle and we obtain a manifold CA of

dimension n + 1. In this manifold the holomorphic tangent space to a point

p' (corresponding to a quadric K in L) is naturally isomorphic to the space
H°(K, cf(N)) of holomorphic sections of the normal bundle N on K . Thanks

to the nature of the normal bundle the sections vanishing somewhere make a

cone Tpl, projecting a regular quadric, in H°(K ,cf(N)) and then in T'pt.

Moreover the action of C on L moves to an action on CA and defines a

holomorphic tangent vector field A on CA ; if the points where Api is in Tp<

are discarded, we get an open subset C of CA and for every p' in C it is

possible to find in Tp, one and only one metric tensor gp* having rp< as the

cone of null vectors and with quadratic norm -1 on Ap<.
Since for every point in M there are infinite quadrics in L, we must identify

in C the points along the integral curves of the field A and finally we obtain

a manifold R of dimension n that "contains" the points of M. The metric
in p = [pf] is achieved identifying the space T'pR with the subspace T'p,C

orthogonal to Ap>.
The procedure described above can be applied to every complex manifold E

(of even dimension greater than 3) and to each of its principal C-bundles, and
it is effective enough to produce every complex manifold (of dimension greater

than 2) with holomorphic metric and geodesically convex (therefore, at least

locally, every holomorphic riemannian manifold).
So far we have referred to the space E as the space of complex "geodesies"

of M, actually the elements of E are more precisely "signed" geodesies, that

is, geodesic curves of M along which a "signed" tangent vector evolves au-

toparallely (a "signed" tangent vector is a tangent vector X with a chosen root

of g(X, X)). Therefore in E there are, in general, two "signed" geodesies

for every nonnull geodesic of M and only one "signed" geodesic for every null

geodesic of M.

Notation.

Q(M) = quadric bundle on M of null directions for (M, g),

N(M) - space of null geodesies of M,

Y(F) = space of normal quadrics in F,

D(M) = Y(N(Af)),

C(J?, F) = space of transverse normal quadrics in F,

R(B, F) = space of .F-normal quadrics in B = space of

classes of transverse normal quadrics in F,

G(M) = space of geodesies of (M, g),

E(M) — space of signed geodesies of (M, g),

L(M) = C-bundle on E(Af) of choices of time

for signed geodesies.

Denoting by Qm the regular m-dimensional quadric of Pw+1 we will con-

sider as in LeBrun (cf. [LI, III. 2]) on Q the (w+1)-vector bundle T'P^,+1®H*.
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1. Definition. A normal m-quadric in a manifold F is an m-quadric holo-

morphically embedded in F with normal bundle T'P|q+1 ® H*. A normal

quadric Q is transverse with respect to the action of a 1-parameter group of

biholomorphisms of F if all the integral curves coming out from points of Q

are not tangent to Q.

2. Definition. Let B be a complex manifold of even (complex) dimension

2 • m (with m > 2) and let /? : F —► B be a holomorphic principal C-bundle
on B; an immersed m-quadric of B is called F-normal if it is the image on

B of a transverse normal m-quadric of F.

3. Theorem. Let B be a complex manifold of even (complex) dimension 2 • m
(with m > 2) and let ft : F —► B be a holomorphic principal C-bundle on B ;
the space R = R(B, F) of all F-normal quadrics of B has a natural structure

of an (m + l)-dimensional holomorphic riemaniannan manifold.

Proof. Let us denote by CA the (m + 2)-dimensional manifold of all normal

m-quadrics Qp< of F; the holomorphic tangent space Tp,CA to a point p'

of CA is isomorphic to H°(QP<, tf(N)), where N is the normal bundle of

Qp* in F. The space CA has a natural holomorphic conformal structure S

(cf. [LI, Theorem III. 2]) defined by the bundle of regular quadrics in Pr'CA
given by assigning for every p' in CA the cone corresponding in T'pl CA to the

set {s £ H°(QP>, cf(N)) : s has a zero}. The action of C on F induces an

action az of C on CA ; since for every compact subset K of F the number

sup{diam(.rv n Ft,) : b £ B} is finite, for every compact subset H of CA the

number r(H) = sup{|z| : az(H) n H ^ 0} is also finite and az(Qj,<) = Qp<

in F only for z = 0 (the group {z £ C : az(Qp>) = QP'} is limited in C).
Denoting by A the field on CA defined by the action of C, let us denote by
C = C(B, F) the open subset of CA of transverse quadrics, this is exactly

the set where A is not a null vector. On C there is a (unique) holomorphic

metric g' defining S, invariant by the action of C and with quadratic norm

-1 (or any other fixed nonzero complex number) on all the vectors of the
field A. In fact, since A is never zero on C, for every point p'0 of C it is

possible to find an open neighborhood V biholomorphic with a polydisc of
Cm+2 where the action az in C becomes the sum of z in the last coordinate

and where, moreover, 3 is defined by a holomorphic metric g" . The field A

is a conformal field for g" , rescaling the metric we can make it a Killing field:

there is a holomorphic function f(z, p') in a neighborhood of (0, p'0) such

that azg" = exp[f(z,p')]-gp',; taking h such that Apl(h) = (df/dz)(0,p') the

new metric g' defined by g'p, - exp(-h(p'))-gp, has LAg' = 0 (its coefficients

do not depend on the last coordinate). Normalizing g' on the field A we get

a metric with the desired properties, that is, the unique one in the conformal

class. The unicity implies that these local metrics patch together giving a global

metric of C. In C it is therefore possible to find a base V = {Vj}j€J of

the above coordinate open subsets where, moreover, two points are equivalent

under the action of a if and only if they equal all the coordinates except, at
most, the last one. Otherwise near a point p'0 of C it would be possible to find

two sequences of points {p'n] , {p1^} converging to a p'0 with p% = aZ(n)(p'n) but

such that not all the first m + 1 coordinates of p'n and p„' are equal; we would

have at the same time \z(n)\ > e > 0 and \z(n)\ < r({p'0} u {p'„,Pn)) and,
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therefore, there would exist a complex number z ^ 0 limit point for {z(n)}

such that az(p'0) = p'0, which is false.

Let us consider now the quotient space R' of all orbits of C via the action

of C and the quotient map q : C —> R'. The map a : R' —► R defined
by a([Q']) — P(Q') is weH defined and surjective. It is also injective because

p(Q') = fi(Q") implies there is a z in C such that Q" = az(Q'). In fact,

the set X = {z £ C : az(Q') n Q" ^ 0} is an analytic subset of C contained

in the disk of center 0 and radius r(Q' U Q") and, therefore, is a finite set

X = {zi, ... , zk}; for at least one (and only for one) of these complex numbers

Zj the intersection Q' n a_Z(;)((?") has a nonempty interior, for that number

we have Q" = azU)(Q'). We will identify the space R(B, F) with R' via the
map rj.

The space R' is a Hausdorff topological space; in fact, if {p'n}, {p%} are

nets of equivalent points of C with p% = azW(p'n) and converging to p', p"

we have \z(n)\ < r({p'n , p'^}li{p', p"}) and, therefore, p" = az(p') where z is

a complex number limit point for the net {z(n)} . For every chart (V, tp') in

V let us define V = q(V) and tp : V -» Cm+1 by <p(q(p')) = = (zV)> ... ,
zm+l(p')). The map tp is a well-defined homeomorphism between V and an

open subset of Cm+1. The family V = (Vj)j€j is a holomorphic atlas making

R' a complex manifold of dimension m + 1.

For every p' in C the set Hp> = {X' e Tpl : g'(X', A) = 0} is a nonde-

generate (m + 1)-dimensional subspace of Tp,, the map q*p< : Hp> -* r^p/) is

an isomorphism, and the metric g on R' defined by gq(j,i)(q*(X'), q*(Y')) —
g'p,(X', Y') for X', Y' in HP' is a well-defined holomorphic metric.   □

The map q : C —> R' makes C a principal C-bundle on R'. In fact, taking
two charts (V, tp') and (V, tp) as in the proof above the map O : q~x(V) ->

VxC defined by <D(az(/>')) = (q(p'), zm+2(p') + z) for p' in V is well defined

and is a trivialization of C on V.
The different classes of holomorphic principal C-bundles F on B are in

correspondence with the elements of the space Hx (B, cf). The product bundle
gives always CA = 0; in fact, every m-quadric in B x C is contained in a

"slice" B x {a} and, therefore, its normal bundle contains, as a factor, the

product line bundle and cannot be isomorphic with the bundle T'P^+1 ® H*.

When B is a Stein manifold the spaces CA , C, and R are empty (the only

principal C-bundle on B is, in this case, the product bundle); however, we

will prove in the following pages (cf. Theorem 7) that the construction of the

theorem above (applied to non-Stein manifolds) is able to give (at least locally)

every holomorphic riemannian manifold.

4. Definition. Let (F("', g) be a finite-dimensional (complex) vector space
with a (complex) scalar product; a signed direction of V is an element / of the

dual universal bundle 8 : U* -» PV on PV such that [l(X)]2 = g(X, X) for
all X in the direction r5(/).

The manifold SF of all signed directions of (V, g) is isomorphic to the

regular (n - l)-quadric of null directions of V x C (with scalar product
((X,A), (Y,B)) = g(X,Y)-A-B) via the map v : SF^P(KxC) defined
by v(l) = [X, l(X)]. The holomorphic map 8\ : SV -> PV presents SV as
a branched covering of PK with two leaves; for every nonnull direction of V
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there are exactly two signed distinct directions and only one for the null direc-

tions. A signed direction gives a direction [X] in V and the value l(X) (a

complex "norm" for X, that is, a square root of g(X, X)) for every vector X

in that direction.
For every holomorphic riemannian manifold (Mn, g) we will denote by

ST'M the bundle on M of (n - l)-quadrics of all signed tangent directions of

(M,g).
There are natural holomorphic maps 8 : ST'M -* PT'M and ns : ST'M ->

M. The space ST'M x C is biholomorphic to the space Q(M x C) of null
directions in the riemannian manifold M x C via the map x '■ ST'M xC-»

Q(M x C) defined by X(l, t) = [X, l(X)]{7[(l)>t) for X £ 8(1).
For every nonconstant (complex) geodesic y : D —> M defined on a con-

nected region D of the complex line, we have the following well-defined maps:

ny : D -* PT'M by ny(t) = [y'(t)]: oky : D -* ST'M by oky(t) = (the unique
linear map on C • y'(t) with value k on y'(t)); and crk>ay : D -» ST'M x C

by ok ay(t) = (oky(t), k • t + a) where k, a are complex numbers with k2 =

g(y'(t),y'(t)).

The curves ny, aky, and okay foliate PT'M, ST'M, and ST'M x C,
respectively.

For every nonzero tangent vector X in VpM there is an (inextensible) com-

plex geodesic yx : Dx —► M such that yx(zo) = P and y'x(zo) = X for some

z0 in Dx.

5. Definition. The space of leaves of the foliation of PT'M is the space

G(M) = G(M, g) of geodesies of M, the space of leaves of ST'M will be
called the space E(M) - E( M, g) of signed geodesies of M; and the space of

leaves of ST'M x C will be called the space L(Af) = L,(M, g) of choices of
time on the signed geodesies.

There is a natural map p : L(M) -> E(M) defined by /?([/, t]) = [/] and
a continuous action of C on L(AY) given by az([l, t]) = [I, t + z] such that

C-[/, t] = p~'([/]). The map 8 : ST'M -* Pr'Af induces a map <5A : E(Af) ->
G(A/).

Since X°0k,a7 is the lifting to Q(AfxC) of the null geodesic (y(u), k-u+a)
in M x C, the map ^ induces a homeomorphism xA between L(Af) and the
space N(Af x C) of null geodesies in M x C.

A justification for the name given to the bundle L(M) is: let oiyx be a signed

geodesic ran with unitary speed (g(X, X) = 1) reaching the signed direction

/ for the value z of the parameter (oiyx(z) - I); if we decide to assign to

/ the "initial time" u it is natural to say that the time "evolves" along the

geodesic becoming z' - z + u in /' = oiyx(z'). Therefore a choice of time for

a (nonnull) signed direction is a couple (/, u) in ST'M x C and two of such

choices (/, u), (/', u') are equivalent if and only if there is a tangent vector X

with g(X, X) = 1 and two values z, z' in the domain of definition of oiyx

such that oxyx(z) = I, oiyx(z') = I', and «' - u = z' - z . This is the same as

to claim that (/, u) and (/', u') are joined by a curve ok<ay in ST'M x C.

For null signed directions it is reasonable to call equivalent (/, m) and (/', u')

if and only if / and /' are joined by a signed geodesic in ST'M and u = u'

(the time "stops" on null geodesies); again this is equivalent to the claim that

(/, u) and (/', u') are joined by a curve akay.



626 ANTONIO CASSA

6. As in [LI] a manifold M with holomorphic connection is called geodesi-
cally convex if it is geodesically convex with respect to the underlying smooth
connection.

Proposition. Let (M(n), g) be a geodesically convex holomorphic riemannian

manifold, the spaces G(M), E(M), and L(Af) have a unique structure of com-

plex manifolds of dimensions, respectively, 2 •« - 2, 2 ■« - 2, and 2-n-l making
the maps qG : PT'M -* G(M), qE : ST'M - E(M), and qL : ST'M x C -
L(Af) holomorphic of maximal rank. Moreover, the map p : L(Af) -» E(M)
makes E(M) a holomorphic principal C-bundle on E(M).

Proof. Since the curves ny foliate PT'M2'"~X, imitating the proof of Theorem

III. 1 of [LI] for every [Xo], it is possible to find an arbitrarily small open

neighborhood W of [Xq] , an open subset B of C2""-2, a biholomorphism

tp between W and an open subset of Cx B, and a relatively compact and

geodesically convex open subset U of M such that the leaves of W are exactly

the sets Az = (prBo^)-1(z) (for z £ B) and every 7t(Az) is an inextensible

geodesic of U.
A geodesic of M does not decompose in U since U and M are geodesically

convex, hence the map 8 : B -> G(Af) defined by 6(z) = qa([X]) for [X] £
Az is not only well defined, continuous, and open but, moreover, is injective.

Therefore at every point #g(L¥o]) of G(M) the couple (qG(W),Q~x) gives a

local chart of G(Af); all these charts make G(Af) a topological manifold; the
transition functions between any two such local charts are holomorphic as can

be seen by using a finite sequence of overlapping Frobenius charts. Proceeding

as in [LI, Theorem III. 1 ] it is possible to prove that G(M) is a Hausdorff

manifold.
In the same way for every /0 in ST'M there exists an open neighborhood

WA of /o, an open subset BA of C2'"-2, a biholomorphism (pA between

WA , and an open subset of C x 5A such that the leaves of WA are the sets

AA = (prBA °tpA)~x(z) for z £ BA and the n(AA) are inextensible geodesies

of a relatively compact and geodesically convex open subset U of M. Then it
is possible to define maps 0A : BA -► E(Af) and charts (qE(WA), (dA)~l) on

E(Af) in an analogous way. In the manifold E(Af) it is possible to separate

points with different images in G(Af) since the map r5A: E(Af) -» G(Af) is

continuous; if okyx ^ onyY in E(Af) but nyx — nyY in G(Af) then neces-

sarily ohyY — (T-kyx (with k ^ 0, X ^ 0) and it is possible to find an open
neighborhood If of I in T'M and an open neighborhood D of k in C
such that for every X', Y' in W and every k', h! in D, ak>yX' ̂  o_n<yY>

holds. Otherwise there would exist two sequences {Xn}, {Yn} converging to

X in T'M, two sequences {k„}, {h„} converging to k in C, and a sequence

{X„} in C* and a sequence {z„} in C such that (Y„, -h„) = X„-(y'Xn(z„), k„)

for every n > I. Then taking subsequences, if necessary, it would be possible

to suppose {X„} converging to X ̂  0 and {z„} converging to z in Dx and to

obtain, going to the limit, (X, -k) = X • (X, k). But this would imply X — -1
and X = 0.

Given a holomorphic map eA : BA -> (T'M - 0) x C with eA(z) =

(X(z), k(z)) such that [k(z)]2 = g(X(z), X(z)) and ok{z)yx{z) = AA , the map

XA : BAxC^qL(WAxC) defined by XA(z, a) = qL(ok(z)yx(z)(u), k(z)-u + a)
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is a well-defined biholomorphism and its inverse gives coordinate functions to

qL(WAxC).

Since every geodesic in M is injective, az([l, t]) = [I, t] only for z — 0.

Moreover, p-l(dA(BA)) = XA(BA xC) and (6»Aoidc)o(AA)-1 : P~x(dA(BA))^

dA(BA) x C is a trivialization of L(Af) on dA(BA); this proves also that L(Af)

is a Hausdorff manifold.   □

7. When M is geodesically convex the map xA '■ L(Af) —> N(Af x C) is a

biholomorphism (note that M x C is geodesically convex, therefore, by [LI,

Theorem III. 1], N(Af x C) is a complex manifold). For every p £ M and

every u £ C the map ou : STp -> L(Af) defined by au(l) = [0i(x),u7x(z)] =

[ot{X)7x(z), l(X)'Z+u] (with X £ 8(1)) is an embedding of the (n-l)-quadric

STp. The map xA transforms the quadric ou(ST'p) = KPiU in the normal
quadric QPtU in N(M x C) made of all null geodesies of M x C through the
point (p, u). The map j : MxC-» C(E(Af), L(Af)) defined by j(p, u) =
Kp^u is a holomorphic embedding.

Theorem. Let (M, g) be a geodesically convex (Stein) holomorphic riemannian

manifold with dim(Af) > 3. Then (M, g) is isometric to a connected compo-

nent of the riemannian manifold R(E(M), L(Af)).

Proof. The manifold M x C with the product metric g((X, A), (Y, B)) =
g(X, Y) - A • B verifies all the hypotheses of Theorem III.5 of [LI], therefore
the map j defined above gives a conformal embedding of M x C in a connected

component of CA(E(Af), L(M)) = Y(L(M)) ~ Y(N(Af x C)) = D(M x C) (in
fact, in a connected component of C(E(Af), L(Af))); the product metric g of
MxC, via j, becomes a holomorphic metric on j(M x C) invariant by the
action of C, defining the conformal structure of C(E(Af), L(Af)) and with

quadratic norm -1 on the field A generated by the action of C. By the

local unicity of such a metric (cf. the proof of Theorem 3), the map j is in
fact a metric embedding of M x C in C(E(Af), L(Af)). Then, passing to
the quotient spaces of orbits given by the action of C, M is isometric to a
connected component of R(E(M), L(Af)).    □
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