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RATIOS OF REGULATORS IN EXTENSIONS OF NUMBER FIELDS

ANTONE COSTA AND EDUARDO FRIEDMAN

(Communicated by William W. Adams)

Abstract. Let L/K be an extension of number fields. Then

Reg(L)/ Reg(/q > c[L . Q](log \DL\)m ,

where Reg denotes the regulator, DL is the absolute discriminant of L, and

C[L ■. Q] > 0 depends only on the degree of L . The nonnegative integer m =

m{L/K) is positive if L/K does not belong to certain precisely defined infinite

families of extensions, analogous to CM fields, along which Reg(L)/ Reg(#) is

constant. This generalizes some inequalities due to Remak and Silverman, who

assumed that K is the rational field Q, and modifies those of Berge-Martinet,

who dealt with a general extension L/K but used its relative discriminant where

we use the absolute one.

1. Introduction

Remak [RI] laid down the principle that a number field ought to have a large

regulator if and only if it has a large discriminant. In one direction this follows

from work of Landau [L, Sie], who proved that y/|Z)i|(log|Z)z.|)[L:Q1_1 is an

upper bound for Reg(L). To obtain an inequality in the opposite sense, Remak

considered the field Q(EL) generated by the units EL of L. The geometry

of numbers tells us that Q(£l) can be generated by integral elements (units)

whose size at every embedding is bounded in terms of Reg(L). It follows that

|Dq(£l)| can be bounded above by a function of Reg(L). Remak then observed
that Q(El) — L unless L is a CM field (a totally imaginary quadratic extension

of a totally real field). Thus he proved [RI]

(1-1) Reg(L)>C;vlog(^),

where L is assumed non-CM, N = [L : Q], and Cn > 0 depends explicitly on
N. In 1984 Silverman [Sil] improved the dependence on log|Di,| in (1.1) to

Reg(L)>2—(1og(JgL))""',
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where \Dl\ > A/^'082'"" is assumed, rL is the unit rank of L, and p =

maxFcL{rF}.

It follows from (1.1) that given an integer N and a real number y there

are only finitely many non-CM number fields L such that [L : Q] < N and

Reg(L) < y. CM fields must be excluded since the regulator, being essentially
that of a proper subfield, can have the same value for infinitely many CM fields.

We can, however, drop all restrictions on the degree [L : Q] by using Zimmert's

[Z]bound
Reg(L)>(0.04)1.05[/':Q].

In the late 1980s Berge and Martinet [BM1, BM2] generalized Remak and
Silverman's method to the relative case. Given an extension L/K of number

fields their idea was to equate the ratio of regulators Reg(L)/Reg(A^) with

the covolume of a lattice produced from the units of I. In their approach

the absolute norm N(3?L/K) of the relative discriminant of L/K appeared

naturally and they were able to bound Reg(L)/ Reg(AT) from below by a power

of iog(N(rL/A-)).
While Berge and Martinet's results can be used quite effectively [BM3] if

N(^l/a:) is large, they are otherwise not so strong. This makes it difficult to

obtain inequalities in which K is allowed to vary, say only fixing [L : Q],

as there will be in general infinitely many L/K with N(&L/K) = 1. Our

results for totally real fields [CF] suggest that this problem could be overcome
by modifying Berge and Martinet's lattice. We use the lattice associated to

the relative units EL/K. By definition, EL/K consists of those units of L

whose norm to K is a root of unity. Since the covolume of EL/K under

the logarithmic embedding is readily related to Reg(L)/Reg(AT), we can apply

Remak's geometric method to bound the absolute discriminant of Q(EL/K)
from above in terms of Reg(L)/Reg(A^). It turns out that Q(EL/K) = L,
except when one of the following three conditions holds:

(i) L = K.
(ii) The field L is CM (and K is any subfield of L).

(iii) There is a CM field M with maximal totally real subfield k such that
AT is a quadratic extension of k, K ^ M, and L — MK.

We call the extension L/K unit-weak if it satisfies (i), (ii) or (iii) above.

Theorem. Let EL/K denote, as above, the relative units of an extension L/K of

number fields. Assume that \Di\ > 3NN, where Di is the discriminant of L/Q
and N = [L : Q]. Then

[     ] Reg(K) > N2'\ 0g\NNj)    '

where r - rank(EL/K) — r^-rK is the difference of the unit ranks of L andK,

Reg is the regulator, and C > 0 is a computable absolute constant. The non-

negative integer m is positive if L/K is not unit-weak (see the above definition).

In general, m = m(L/K) — r- maxf <zL{rarMELjK n F)}, where the maximum

is taken as F runs over all proper subfields of L.

We actually prove the somewhat stronger inequality (3.7) in which

Reg(L)/Reg(K) is replaced by the regulator of EL/K. The exponent m of
log(|DL|) in (1.2) is likely to be best possible. In any case, m can be computed



RATIOS OF REGULATORS IN EXTENSIONS OF NUMBER FIELDS 383

by easy linear algebra, without knowledge of any unit, as long as one knows all

the subfields of L (see the end of §3). In contrast, we do not calculate C here,

as we do not obtain a good value. Our proof does yield that one can take C = 1

and m — r, provided we assume that every proper subfield of L is actually a

subfield of K.
When L/K is unit-weak m vanishes and (1.2) becomes almost useless, how-

ever, in this case the ratio of regulators Reg(L)/ Reg(A^) is essentially that of a
proper subextension. Unit-weak extensions can thus be treated inductively and

represent no essential complication to the problem of bounding Reg(L)/ Reg(A^)
from below. We treat unit-weak extensions briefly at the end of §§2 and 3.

A consequence of (1.2) is

Corollary. Given an integer N and a real number y, there are at most finitely

many extensions L/K such that [L : Q] < N, Reg(L) / Reg(K) < y, and L/K
is not unit-weak.

If L is totally real even more is true: Given any real number y there are

finitely many pairs of totally real fields L and K, with K ^ L, such that
Reg(L) / Reg(K) < y [CF]. We do not know yet if this extends to all non-unit-
weak L/K, totally real or not.

2. The field generated by the relative units

Recall that the group of relative units ELjK of an extension L/K of number

fields is defined by

EL/k = {a£ EL\NormL/K(a) £ WK},

where EL denotes the units of L and WK the torsion subgroup of Ek ■ The

(free) rank of EL/K is r = rL/K — r^-r^, where rj, is the rank of El ■ Let

S"l denote the set of embeddings of L into C. We embed EL/WL into R^L

by the map & = 5fL: EL -> R5* defined by

(2.1) (^(a))CT = (^(a))ff = log|<7(a)|,        a £ S?L.

We endow R*^ with the Euclidean inner product

(2.2) ((xa), (ya)) = J2 x°y° ■

Then 3l(El/k) is perpendicular to JZl(Ek) ■ A dimension count shows that

the Q-spans Q^l(EL/k) and Q^fL(EK) of these two lattices are orthogonal

complements of each other inside Q£?(EL).

Our first goal is to characterize the extensions L/K for which Q(EL/K) is a

proper subfield of L. Slightly more generally, we prove

Proposition 1. Let L/K be an extension of number fields and let EL/K be its

group of relative units. Let E be a subgroup of finite index in EL/K and suppose

that E is contained in a proper subfield of L. Then at least one of(i), (ii), or

(iii) below holds:

(i) L = K.
(ii) L is CM (and K c L is arbitrary).

(iii) There is a CM field M with maximal totally real subfield k such that
K is a quadratic extension of k, K ^ M, and L — MK.
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Conversely, if (iii), (ii), or (i) holds (with L ^ Q), then EL/K contains a

subgroup E as above.

Proof. The last statement is obvious in cases (i) and (ii). If (iii) holds, let

H ^ K, H ^ M be the third field lying strictly between k and L. A short
computation shows that E := EHjk c H has the same rank as EL/K and

EH/k c ELjK , proving the converse claim.

We now prove the first part of the proposition. Given a subfield F c L and

an archimedean place w of L, let eF(co) = eL/F(co) = 2 if <a ramifies in

L/F ; otherwise, let eF(co) = 1. Let aoF denote the set of archimedean places

of F. Then

(2-3) rF +l = —1_ £ eF(co),
* <u€oo/,

because

rF + l=  ^  1=  E JlTf]   E   eF^=\ITF] E eF{0}h

(o\v

Let H = Q(E). Then H ^ L, by assumption. Since £ c £/;, we have

rH > rLjK — rL- r& . From this and (2.3) we obtain

[ETh] E ^)+[T7a1 E '*(«)> E !•

The compositum //AT c L contains E and F*. Modulo torsion, these are

disjoint (perpendicular!) subgroups of EL/WL of rank rL-rK and r% ; hence,

the units of HK have rank r/,. If HK ^ L, then L must be a CM field, in
which case the proof is done. We may therefore assume HK = L. Then we

cannot simultaneously have e//(<y) = 2 and ex(co) = 2 for <y e ool . Hence,

(24) (iL^] + [L^j) E 1+max(rTT7^rTT7n) E^E1-

By assumption, [L : H] > 2. Thus, either [L : H] = 2 or [L : K] = 2 (we
dismiss the trivial case L = K).

We first assume [L : K] = 2. Let t be the nontrivial element of Gal(L/K) =

Z/2Z. For a 6 F c Fl/a; , we have NoTmL/K(a) € PF* ; therefore, x(a) =

na~', n £ Wk . By passing, as we may, to a subgroup of finite index in E, we

can assume x(a) = a~l; hence, x induces a nontrivial field automorphism of

H = Q(E). Let Hx be its fixed field so that [H : Hx] = 2. Since HT c LT = K,
we must have either Hn AT = Hx or Hr\K = H. In the latter case we would

have E c K. But then E c K n ELjK = H^. Since E has finite index in
El/k > this could only happen if L is CM. We may thus assume H r\K = Hx.

Then E c H n ELjK = EHjH^K c £/,/*". Since E has finite index in EL/K ,

fH/Hc\K = fL/K ■ From this and (2.3) we find

[lTh] E e*^-[L:injq E <**(«)- E 1-5 E <*(")•

Since [L : # n AT] = 2[L : H], we have

(2-5) [LTW]  E (2^(w) - ennK((o)) =  £ (2 " <*(w)) ■
J  0)600;, (0€<XL



RATIOS OF REGULATORS IN EXTENSIONS OF NUMBER FIELDS 385

Observe that if co ramifies in L/K, then o) ramifies in L/H n K but not in

L/H (since L = HK). Thus, if efc(co) = 2, then 2eu(oS) - e#njc(<w) = 0.
If etc(o)) = 1, then 2en(oi) - ennK(oi) < 2. It now follows from (2.5) that
[L : H] = 2 and that eH((o) = 2 if and only if eK(co) = 1. Hence [L : H] =
2 = [H : H n K] - [K : H n K] and all archimedean places of L ramify in

either L/K or L/H, but none in both extensions. It follows that L/K satisfies

condition (iii) in the proposition (let k — K n H and let M ^ K, M ^ H,

be the third field lying strictly between k and L). This proves Proposition 1
when [L : K] = 2.

If [L : K] > 2, then (2.4) implies [L : H] = 2. The strategy now is to
reverse the roles of H and K and thereby reduce the proof to the quadratic

case that we just handled. Recall that if F is any subfield of L, then the Q-

spans of J2?(EL/F) and Sf(EF) are orthogonal with respect to the (R-valued)

inner product (2.2). By construction, Sf(E) C 5?(En). Since E has finite

index in EL/K , Q&(E) = Q5?(EL/K). Hence

(2.6) Q&{EL/H) = Q^(Eh)1- c Q^(El/k)± = QJ?(EK),

where -1 denotes the orthogonal complement inside Q^f(EL). Since the kernel

WL of Jz? is finite, (2.6) shows that EnL,H c EK for some positive integer n .

Thus E' :- El/H has finite index in EL/H, [L : H] - 2, and Q(F') c K, a

proper subfield of L; but this is the quadratic case of the proposition, so the
proof is done.

We conclude this section with a brief discussion of the unit-index uL/K of a

unit-weak extension L/K. We assume first that K ^ L and that L is not CM.
Let k and M be as in (iii) above. Denote by K and H the two remaining

fields lying strictly between k and L. Let xh , xk , and xm — xhXk be the
nontrivial automorphisms of L/H, L/K, and L/M. Since we assume that
L is not CM, at least one archimedean place of k ramifies in H; hence, at

least one archimedean place of K ramifies in L. Thus WK = {±1} and

-1 is not a norm in L/K, whence Normi,/A:(FL/A:) = {+1}. Equivalently,

xK(a) = a-1 for a e EL/K . Hence, NormL/M(a) = axH(xK(a)) =» a/xH(a).

Therefore, NormL/M(a) = 1 if and only if a € Fl/a: n jt7 = Eu/k . In short,

NormL/ji/ induces an injection of ELjK/EHjk into WM = EMfk . As Wjfa —
NormL/A/(W/m) c Normz./M(Hi) and WM is cyclic, we have uLjK := [EL/K :

WLEH/k] = l or 2.
So far we have assumed that L is not CM. If L is CM, let H be its maximal

totally real subfield. It is well known that [El : WlEh] = 1 or 2 [R2]. It follows

that uL/k := [EL/k ■ WLEHlk\ =1 or 2, where k = HnK. Finally, if L = K

we let H - k = Q and uL/k = 1 ■
We have thus defined, whenever L/K is unit-weak, a subextension H/k

and a unit-index uL/k '■= [El/k '■ ̂ LEn/k] =1 or 2. When L is CM and
K = Q, mL/q is just the usual unit-index of L. In the next section we relate

the regulators of EL/K and EH/k using uL/k ■ Notice that H/k itself is not

unit-weak unless rL/K = 0.

3. Proof of Theorem

We begin with the definition of the regulator of relative units Reg(EL/K) ■

Pick a\, a2, ... , ar to be independent generators of EL/k/Wl , the relative
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units modulo torsion. Let M be the matrix M = (log Ha/Ha,), where 1 < I < r,

oj runs over the set ooj, of archimedean places of L, and || ||<y denotes the

normalized absolute value at w (so that || ||a> = | I2, if &) is complex, and

I lU = I \(o otherwise). For each place v £ oo^ , fix a place cov £ ool lying above

v . Then Reg(EL/K) is the absolute value of the determinant of the submatrix

of M, which results when we delete from M the rows corresponding to the

etf„'s. In [CF, Theorem 1] we showed, for L/K of any signature,

(3.1) Reg(EL/K) = [EK:WKKormL/K(EL)]Reg(K) '

We also related [CF, Lemma 2.1] Reg(EL/K) to the r-dimensional volume

Vl(EL/k) °f a fundamental domain for £?(EL/k) (see (2.1)),

(3.2) Vl(Elik) = [L : Ki'^+nm^m-^Lm Reg(EL/K),

where (rx, r2) denotes the number of (real, complex) places. The Euclidean

structure (which normalizes volume) is given by ||(x<j)||2 = ((xa), (xa)), as in

(2.2). For a£EL we write ||a|| instead of ||Jz?(a)||. Thus,

(3-3) N|2:= ]T(log|<7(a)|)2,

where S*L denotes the set of all embeddings of L into C. We will need the

lower bound [F, (3.21)]

(3-4) M>7wkw^
where a £ EL , a £ WL, N = [L : Q], and C > 0 is a computable absolute

constant (inequality (3.4) follows easily from Dobrowolsky's lower bound for
heights [D]).

Let the successive minima of || || on the lattice S?(Eljk) be attained at

e\,e2, ... ,er. Thus [GK, pp. 195, 197] the subgroup E :- (e\,e2, ... , er) of
El/k generated by the e, has finite index in EL/k and

(3.5) 0<||«,||<|N|<...<||«r||,
r

(3-6) tlM^^VUEL/g),
i=\

where yr denotes Hermite's constant in dimension r = rL/K ■

Lemma. Let e\, e2,... ,er be as above and assume that L/K is not unit-weak
(see §1). Let HQ = Q and Hj = //,-i(e). Then there is an integer T such that

HT±L, HT+i =L, 0 < F <r,and

1 1        T+l i-

^Tq| log \DL\ < log([L : Q]) + ~^=^ E My/lBt: ^,-i]2 - 1,

where DL denotes the absolute discriminant of L and || || is given by (3.3).

Proof. Proposition 1 implies that there is at least T < r so that L =

Q(£i, 62, ... , eT+\) ■ The inequality then follows from [F, (3.3), (3.14) and
Lemma 3.5].
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Theorem. Let L/K be an extension of number fields and assume that Dl >

3NN, where Dl is the absolute discriminant of L and N = [L : Q]. Then

(3.7) Reg{EL/K)>^^^y.

Here Reg(EL/n) is the regulator of relative units given by (3.1),  C > 0 is a

computable absolute constant, and r = rL-rK = rank(EL/K) is the difference of

the unit ranks of L and K. The nonnegative integer m is positive if L/K is not

unit-weak (see §1). In general, m — m(L/K) — r - max/rci,{rank(FL/A: n F)},

where F runs over all proper subfields of L.

The slightly simplified version of the theorem given in §1 follows from (3.1)

and (3.7).

Proof. We first assume that L/K is not unit-weak. From the Lemma and (3.5)
we have

(3.8) I log ($j!) i^fjil,: «,-,? - 1 < !*♦,!,/?,

since Ul=ilHi '■ #1-1] = #• From (3.5), (3.6), and (3.4)

If we put this together with (3.2) and (3.8) and use \og(\DL\/NN) > 0, we find

(3 10) v      v       ''
y       ' (([L:An/2)(''W+r>W)/'2([*: Ql^OD)/^^

"-(NC'l^(\ogNW-Reg(^^} •

If [L : K] > 3, then (2.3) yields

r = rL-rK=  £   (^ - J >  E   3 * "l-"

Hence, for [L : K] > 2,

/XT - ^\(r>(K)+r2(K))/r       /fr . rn6/[L:/f]

(3.11) (1^*1) Z\TT^ <1003-

Note that

(3.12) [A": Q] - r2(L) < r,(L) + r2(L) - rx(K) - r2(K) = r

and that, for r > 2, yr < r/2.1. (Proof. Use the inequalities quoted in [CF,

(2.9)]). We then have in (3.10)

(3.13) H1^1) 2^:«-^»/'^J     <1,
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for all r > 0 (do e = 1 or 2 separately). Since T <r < N, (3.10) and (3.13)
yield

(3.14) Reg{EL/K)>^(log^yT ,

with C > 0 a computable absolute constant. To prove (3.7) we must still

show that in (3.14) we can replace  T by p :— maxirc/,{rank(FL/A; n F)}.

Since we assume Dl > 3NN, it suffices to show T < p. By the lemma,

HT is a proper subfield of L containing the T independent relative units

e\, e2, ... , ej £ EL/k '■> hence, T < p. Proposition 1 implies that m — r-p > 0

which concludes the proof when L/k is not unit-weak.

If L/K is unit-weak then m — r-p — Q in (3.7). In this case (3.7) follows
from

Proposition 2. Let L/K be an extension of number fields. Then

(3.15) Reg(EL/K) > {Nr0£m„2 ■

Here Reg(EL/K) is the regulator of relative units given by (3.1), c > 0 is a

computable absolute constant, N = [L : Q], and r = rL- rK is the difference of

the unit ranks of L and K. (If r = 0, (3.15) means the trivial 1 > 1.)

Proof. From (3.4), (3.6), and (3.2) we obtain

Reg(EL/K) > (^7Vyr(logiV)6([L : K]/2)ir^)+r2(K))/r2(lK :Qi-n(t))/r J     •

Now use (3.11), (3.12), and yr < r to obtain (3.15), with c = CV6.006.

Corollary. Let L/K (and all notation) be as in the theorem. Suppose further

that all proper subfields of L are actually subfields of K. Then

(3.16) Reg^^-L^^y.

Proof. We first dispose of the trivial cases. If L/K is unit-weak, the hypothesis
on K implies that case (iii) in Proposition 1 cannot hold. If (ii) holds, so L is

CM, then K must be its maximal totally real subfield. Then r - 0 and (3.16)
is trivial. Since case (i) (L = K) is equally trivial, we may assume that L/K

is not unit weak. Consider, in the notation of the lemma, H\ = Q(£i). By

assumption, either H\ c K or H\ — L. But H\ c K implies e\ £ EL/k n K,
which is impossible since £i is not a root of unity. Thus, H\-L and so T = 0

in the lemma. The corollary now follows from (3.13) and (3.10).

The computation of m — m(L/K) in the theorem turns out to be elementary.

Let 2l be the logarithmic embedding (2.1). If M c ^l(El) C R51 is a lattice,
denote its R-span by RM. Thus, rank(M) = dimR(RAf). If F is a subfield
of L, observe that

rmk(EL/K) + rank(Ff) - rank(EL/K n F)

= rL-rK + rF- rank(EL/K n EF)

= rank(EL/KEF) = dimR(R2L(EL/KEF))

= dimR(R51(FL/J0 + RSl(Ef)) .
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Dirichlet's unit theorem gives an R-basis of RSl(Ef) • It also gives one for

R2l(El/k) as the orthogonal complement of R2?l(Ek) (inside R51(FL)). It
follows that

m := rank(EL/K) - max{rank(FL//i: n F)}
F<gL

can be calculated by linear algebra from a knowledge of all the subfields of L,

without knowing a single unit. To be precise, one has to know, for each subfield

F of L, the mapping J?i -» 5^F obtained by restricting the embeddings of L
to embeddings of F .

We conclude with a comment on Reg(EL/K) and Reg(L)/Reg(A?) for L/K

unit-weak. We defined in §2 a subextension H/k and a unit index

uL/k ■= [EL/k ■ WLEH/k] = 1 or 2.

On examining the ramification of the archimedean places in L/K and H/k
one finds, directly from the definition of Reg(EL/K) as a determinant,

(3.17) Reg(Fi/JC) = 2r»* Reg(EH/k)/uL/K ■

If we let L/K range over the infinitely many unit-weak extensions associated

to the same H/k, it is clear from (3.17) that Reg(EL/K) assumes at most two

values. It follows, mainly from (3.1), that Reg(L)/Reg(AT) assumes at most

2t":<M values.
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