RATIOS OF REGULATORS IN EXTENSIONS OF NUMBER FIELDS

ANTONE COSTA AND EDUARDO FRIEDMAN

(Communicated by William W. Adams)

ABSTRACT. Let L/K be an extension of number fields. Then

$$\operatorname{Reg}(L)/\operatorname{Reg}(K) > c_{[L:\mathbf{O}]}(\log |D_L|)^m$$
,

where Reg denotes the regulator, D_L is the absolute discriminant of L, and $c_{[L:\mathbb{Q}]}>0$ depends only on the degree of L. The nonnegative integer m=m(L/K) is positive if L/K does not belong to certain precisely defined infinite families of extensions, analogous to CM fields, along which $\mathrm{Reg}(L)/\mathrm{Reg}(K)$ is constant. This generalizes some inequalities due to Remak and Silverman, who assumed that K is the rational field \mathbb{Q} , and modifies those of Bergé-Martinet, who dealt with a general extension L/K but used its relative discriminant where we use the absolute one.

1. Introduction

Remak [R1] laid down the principle that a number field ought to have a large regulator if and only if it has a large discriminant. In one direction this follows from work of Landau [L, Sie], who proved that $\sqrt{|D_L|}(\log |D_L|)^{[L:Q]-1}$ is an upper bound for $\operatorname{Reg}(L)$. To obtain an inequality in the opposite sense, Remak considered the field $\mathbf{Q}(E_L)$ generated by the units E_L of L. The geometry of numbers tells us that $\mathbf{Q}(E_L)$ can be generated by integral elements (units) whose size at every embedding is bounded in terms of $\operatorname{Reg}(L)$. It follows that $|D_{\mathbf{Q}(E_L)}|$ can be bounded above by a function of $\operatorname{Reg}(L)$. Remak then observed that $\mathbf{Q}(E_L) = L$ unless L is a CM field (a totally imaginary quadratic extension of a totally real field). Thus he proved [R1]

(1.1)
$$\operatorname{Reg}(L) > C_N \log \left(\frac{|D_L|}{N^N} \right),$$

where L is assumed non-CM, $N = [L : \mathbf{Q}]$, and $C_N > 0$ depends explicitly on N. In 1984 Silverman [Sil] improved the dependence on $\log |D_L|$ in (1.1) to

$$\operatorname{Reg}(L) > 2^{-4N^2} \left(\log \left(\frac{|D_L|}{N^{N\log_2(8N)}} \right) \right)^{r_L - \rho},$$

Received by the editors September 25, 1991 and, in revised form, February 18, 1992.

1991 Mathematics Subject Classification. Primary 11R27, 11R29.

Key words and phrases. Regulator, discriminant, unit-weak extensions.

The first author was partially supported by NSA grant MDA90-H-1019.

Research was supported by the Max Planck Institut für Mathematik and the NSF.

where $|D_L| > N^{N^{\log_2(8N)}}$ is assumed, r_L is the unit rank of L, and $\rho = \max_{F \subseteq L} \{r_F\}$.

It follows from (1.1) that given an integer N and a real number y there are only finitely many non-CM number fields L such that $[L:\mathbf{Q}] \leq N$ and $\mathrm{Reg}(L) < y$. CM fields must be excluded since the regulator, being essentially that of a proper subfield, can have the same value for infinitely many CM fields. We can, however, drop all restrictions on the degree $[L:\mathbf{Q}]$ by using Zimmert's [Z] bound

$$Reg(L) > (0.04)1.05^{[L:Q]}$$
.

In the late 1980s Bergé and Martinet [BM1, BM2] generalized Remak and Silverman's method to the relative case. Given an extension L/K of number fields their idea was to equate the ratio of regulators $\operatorname{Reg}(L)/\operatorname{Reg}(K)$ with the covolume of a lattice produced from the units of L. In their approach the absolute norm $\operatorname{N}(\mathcal{D}_{L/K})$ of the relative discriminant of L/K appeared naturally and they were able to bound $\operatorname{Reg}(L)/\operatorname{Reg}(K)$ from below by a power of $\operatorname{log}(\operatorname{N}(\mathcal{E}_{L/K}))$.

While Bergé and Martinet's results can be used quite effectively [BM3] if $N(\mathcal{D}_{L/K})$ is large, they are otherwise not so strong. This makes it difficult to obtain inequalities in which K is allowed to vary, say only fixing $[L:\mathbf{Q}]$, as there will be in general infinitely many L/K with $N(\mathcal{D}_{L/K})=1$. Our results for totally real fields [CF] suggest that this problem could be overcome by modifying Bergé and Martinet's lattice. We use the lattice associated to the relative units $E_{L/K}$. By definition, $E_{L/K}$ consists of those units of L whose norm to K is a root of unity. Since the covolume of $E_{L/K}$ under the logarithmic embedding is readily related to Reg(L)/Reg(K), we can apply Remak's geometric method to bound the absolute discriminant of $\mathbf{Q}(E_{L/K})$ from above in terms of Reg(L)/Reg(K). It turns out that $\mathbf{Q}(E_{L/K})=L$, except when one of the following three conditions holds:

- (i) L=K.
- (ii) The field L is CM (and K is any subfield of L).
- (iii) There is a CM field M with maximal totally real subfield k such that K is a quadratic extension of k, $K \neq M$, and L = MK.

We call the extension L/K unit-weak if it satisfies (i), (ii) or (iii) above.

Theorem. Let $E_{L/K}$ denote, as above, the relative units of an extension L/K of number fields. Assume that $|D_L| > 3N^N$, where D_L is the discriminant of L/\mathbb{Q} and $N = [L:\mathbb{Q}]$. Then

(1.2)
$$\frac{\operatorname{Reg}(L)}{\operatorname{Reg}(K)} > \frac{C}{N^{2r}} \left(\log \left(\frac{|D_L|}{N^N} \right) \right)^m,$$

where $r = \operatorname{rank}(E_{L/K}) = r_L - r_K$ is the difference of the unit ranks of L and K, Reg is the regulator, and C > 0 is a computable absolute constant. The nonnegative integer m is positive if L/K is not unit-weak (see the above definition). In general, $m = m(L/K) = r - \max_{F \subsetneq L} \{\operatorname{rank}(E_{L/K} \cap F)\}$, where the maximum is taken as F runs over all proper subfields of L.

We actually prove the somewhat stronger inequality (3.7) in which $\operatorname{Reg}(L)/\operatorname{Reg}(K)$ is replaced by the regulator of $E_{L/K}$. The exponent m of $\log(|D_L|)$ in (1.2) is likely to be best possible. In any case, m can be computed

by easy linear algebra, without knowledge of any unit, as long as one knows all the subfields of L (see the end of $\S 3$). In contrast, we do not calculate C here, as we do not obtain a good value. Our proof does yield that one can take C=1 and m=r, provided we assume that every proper subfield of L is actually a subfield of K.

When L/K is unit-weak m vanishes and (1.2) becomes almost useless, however, in this case the ratio of regulators $\operatorname{Reg}(L)/\operatorname{Reg}(K)$ is essentially that of a proper subextension. Unit-weak extensions can thus be treated inductively and represent no essential complication to the problem of bounding $\operatorname{Reg}(L)/\operatorname{Reg}(K)$ from below. We treat unit-weak extensions briefly at the end of §§2 and 3.

A consequence of (1.2) is

Corollary. Given an integer N and a real number y, there are at most finitely many extensions L/K such that $[L:\mathbf{Q}] \leq N$, $\operatorname{Reg}(L)/\operatorname{Reg}(K) < y$, and L/K is not unit-weak.

If L is totally real even more is true: Given any real number y there are finitely many pairs of *totally real* fields L and K, with $K \subsetneq L$, such that $\operatorname{Reg}(L)/\operatorname{Reg}(K) < y$ [CF]. We do not know yet if this extends to all non-unitweak L/K, totally real or not.

2. The field generated by the relative units

Recall that the group of relative units $E_{L/K}$ of an extension L/K of number fields is defined by

$$E_{L/K} = \{ \alpha \in E_L | \operatorname{Norm}_{L/K}(\alpha) \in W_K \},$$

where E_L denotes the units of L and W_K the torsion subgroup of E_K . The (free) rank of $E_{L/K}$ is $r = r_{L/K} = r_L - r_K$, where r_L is the rank of E_L . Let \mathscr{S}_L denote the set of embeddings of L into \mathbb{C} . We embed E_L/W_L into $\mathbb{R}^{\mathscr{S}_L}$ by the map $\mathscr{L} = \mathscr{L}_L \colon E_L \to \mathbb{R}^{\mathscr{S}_L}$ defined by

$$(\mathcal{L}_L(\alpha))_{\sigma} = (\mathcal{L}(\alpha))_{\sigma} = \log |\sigma(\alpha)|, \qquad \sigma \in \mathcal{S}_L.$$

We endow $\mathbf{R}^{\mathcal{S}_L}$ with the Euclidean inner product

(2.2)
$$\langle (x_{\sigma}), (y_{\sigma}) \rangle = \sum_{\sigma \in \mathcal{S}_t} x_{\sigma} y_{\sigma}.$$

Then $\mathscr{L}(E_{L/K})$ is perpendicular to $\mathscr{L}(E_K)$. A dimension count shows that the Q-spans $Q\mathscr{L}(E_{L/K})$ and $Q\mathscr{L}(E_K)$ of these two lattices are orthogonal complements of each other inside $Q\mathscr{L}(E_L)$.

Our first goal is to characterize the extensions L/K for which $\mathbf{Q}(E_{L/K})$ is a proper subfield of L. Slightly more generally, we prove

Proposition 1. Let L/K be an extension of number fields and let $E_{L/K}$ be its group of relative units. Let E be a subgroup of finite index in $E_{L/K}$ and suppose that E is contained in a proper subfield of L. Then at least one of (i), (ii), or (iii) below holds:

- (i) L = K.
- (ii) L is CM (and $K \subset L$ is arbitrary).
- (iii) There is a CM field M with maximal totally real subfield k such that K is a quadratic extension of k, $K \neq M$, and L = MK.

Conversely, if (iii), (ii), or (i) holds (with $L \neq \mathbf{Q}$), then $E_{L/K}$ contains a subgroup E as above.

Proof. The last statement is obvious in cases (i) and (ii). If (iii) holds, let $H \neq K$, $H \neq M$ be the third field lying strictly between k and L. A short computation shows that $E := E_{H/k} \subset H$ has the same rank as $E_{L/K}$ and $E_{H/k} \subset E_{L/K}$, proving the converse claim.

We now prove the first part of the proposition. Given a subfield $F \subset L$ and an archimedean place ω of L, let $e_F(\omega) = e_{L/F}(\omega) = 2$ if ω ramifies in L/F; otherwise, let $e_F(\omega) = 1$. Let ∞_F denote the set of archimedean places of F. Then

$$(2.3) r_F + 1 = \frac{1}{[L:F]} \sum_{\omega \in \infty_I} e_F(\omega),$$

because

$$r_F + 1 = \sum_{\nu \in \infty_F} 1 = \sum_{\nu \in \infty_F} \frac{1}{[L:F]} \sum_{\substack{\omega \in \infty_L \\ \omega \mid \nu}} e_F(\omega) = \frac{1}{[L:F]} \sum_{\substack{\omega \in \infty_L}} e_F(\omega).$$

Let $H = \mathbf{Q}(E)$. Then $H \subsetneq L$, by assumption. Since $E \subset E_H$, we have $r_H \geq r_{L/K} = r_L - r_K$. From this and (2.3) we obtain

$$\frac{1}{[L:H]} \sum_{\omega \in \infty_L} e_H(\omega) + \frac{1}{[L:K]} \sum_{\omega \in \infty_L} e_K(\omega) > \sum_{\omega \in \infty_L} 1.$$

The compositum $HK \subset L$ contains E and E_K . Modulo torsion, these are disjoint (perpendicular!) subgroups of E_L/W_L of rank $r_L - r_K$ and r_K ; hence, the units of HK have rank r_L . If $HK \neq L$, then L must be a CM field, in which case the proof is done. We may therefore assume HK = L. Then we cannot simultaneously have $e_H(\omega) = 2$ and $e_K(\omega) = 2$ for $\omega \in \infty_L$. Hence,

$$(2.4) \left(\frac{1}{[L:H]} + \frac{1}{[L:K]}\right) \sum_{\omega \in \infty_L} 1 + \max\left(\frac{1}{[L:H]}, \frac{1}{[L:K]}\right) \sum_{\omega \in \infty_L} 1 > \sum_{\omega \in \infty_L} 1.$$

By assumption, $[L:H] \ge 2$. Thus, either [L:H] = 2 or [L:K] = 2 (we dismiss the trivial case L=K).

We first assume [L:K]=2. Let τ be the nontrivial element of $\operatorname{Gal}(L/K)\cong \mathbb{Z}/2\mathbb{Z}$. For $\alpha\in E\subset E_{L/K}$, we have $\operatorname{Norm}_{L/K}(\alpha)\in W_K$; therefore, $\tau(\alpha)=\eta\alpha^{-1}$, $\eta\in W_K$. By passing, as we may, to a subgroup of finite index in E, we can assume $\tau(\alpha)=\alpha^{-1}$; hence, τ induces a nontrivial field automorphism of $H=\mathbb{Q}(E)$. Let H_{τ} be its fixed field so that $[H:H_{\tau}]=2$. Since $H_{\tau}\subset L_{\tau}=K$, we must have either $H\cap K=H_{\tau}$ or $H\cap K=H$. In the latter case we would have $E\subset K$. But then $E\subset K\cap E_{L/K}=W_K$. Since E has finite index in $E_{L/K}$, this could only happen if L is CM. We may thus assume $H\cap K=H_{\tau}$. Then $E\subset H\cap E_{L/K}=E_{H/H\cap K}\subset E_{L/K}$. Since E has finite index in $E_{L/K}$, $r_{H/H\cap K}=r_{L/K}$. From this and (2.3) we find

$$\frac{1}{[L:H]}\sum_{\omega\in\infty_L}e_H(\omega)-\frac{1}{[L:H\cap K]}\sum_{\omega\in\infty_L}e_{H\cap K}(\omega)=\sum_{\omega\in\infty_L}1-\frac{1}{2}\sum_{\omega\in\infty_L}e_K(\omega).$$

Since $[L: H \cap K] = 2[L: H]$, we have

(2.5)
$$\frac{1}{[L:H]} \sum_{\omega \in \infty_L} (2e_H(\omega) - e_{H \cap K}(\omega)) = \sum_{\omega \in \infty_L} (2 - e_K(\omega)).$$

Observe that if ω ramifies in L/K, then ω ramifies in $L/H \cap K$ but not in L/H (since L = HK). Thus, if $e_K(\omega) = 2$, then $2e_H(\omega) - e_{H\cap K}(\omega) = 0$. If $e_K(\omega) = 1$, then $2e_H(\omega) - e_{H\cap K}(\omega) \le 2$. It now follows from (2.5) that [L:H] = 2 and that $e_H(\omega) = 2$ if and only if $e_K(\omega) = 1$. Hence $[L:H] = 2 = [H:H\cap K] = [K:H\cap K]$ and all archimedean places of L ramify in either L/K or L/H, but none in both extensions. It follows that L/K satisfies condition (iii) in the proposition (let $k = K \cap H$ and let $M \ne K$, $M \ne H$, be the third field lying strictly between k and k. This proves Proposition 1 when k and k an

If [L:K]>2, then (2.4) implies [L:H]=2. The strategy now is to reverse the roles of H and K and thereby reduce the proof to the quadratic case that we just handled. Recall that if F is any subfield of L, then the Q-spans of $\mathscr{L}(E_{L/F})$ and $\mathscr{L}(E_F)$ are orthogonal with respect to the (**R**-valued) inner product (2.2). By construction, $\mathscr{L}(E) \subset \mathscr{L}(E_H)$. Since E has finite index in $E_{L/K}$, $Q\mathscr{L}(E) = Q\mathscr{L}(E_{L/K})$. Hence

(2.6)
$$\mathbf{Q}\mathscr{L}(E_{L/H}) = \mathbf{Q}\mathscr{L}(E_H)^{\perp} \subset \mathbf{Q}\mathscr{L}(E_{L/K})^{\perp} = \mathbf{Q}\mathscr{L}(E_K),$$

where $^{\perp}$ denotes the orthogonal complement inside $\mathbf{Q}\mathscr{L}(E_L)$. Since the kernel W_L of \mathscr{L} is finite, (2.6) shows that $E_{L/H}^n \subset E_K$ for some positive integer n. Thus $E' := E_{L/H}^n$ has finite index in $E_{L/H}$, [L:H] = 2, and $\mathbf{Q}(E') \subset K$, a proper subfield of L; but this is the quadratic case of the proposition, so the proof is done.

We conclude this section with a brief discussion of the unit-index $u_{L/K}$ of a unit-weak extension L/K. We assume first that $K \neq L$ and that L is not CM. Let k and M be as in (iii) above. Denote by K and H the two remaining fields lying strictly between k and L. Let τ_H , τ_K , and $\tau_M = \tau_H \tau_K$ be the nontrivial automorphisms of L/H, L/K, and L/M. Since we assume that L is not CM, at least one archimedean place of k ramifies in H; hence, at least one archimedean place of K ramifies in L. Thus $W_K = \{\pm 1\}$ and -1 is not a norm in L/K, whence $\operatorname{Norm}_{L/K}(E_{L/K}) = \{+1\}$. Equivalently, $\tau_K(\alpha) = \alpha^{-1}$ for $\alpha \in E_{L/K}$. Hence, $\operatorname{Norm}_{L/M}(\alpha) = \alpha \tau_H(\tau_K(\alpha)) = \alpha/\tau_H(\alpha)$. Therefore, $\operatorname{Norm}_{L/M}(\alpha) = 1$ if and only if $\alpha \in E_{L/K} \cap H = E_{H/k}$. In short, $\operatorname{Norm}_{L/M}$ induces an injection of $E_{L/K}/E_{H/k}$ into $W_M = E_{M/k}$. As $W_M^2 = \operatorname{Norm}_{L/M}(W_m) \subset \operatorname{Norm}_{L/M}(W_L)$ and W_M is cyclic, we have $u_{L/K} := [E_{L/K}: W_L E_{H/k}] = 1$ or 2.

So far we have assumed that L is not CM. If L is CM, let H be its maximal totally real subfield. It is well known that $[E_L:W_LE_H]=1$ or 2 [R2]. It follows that $u_{L/K}:=[E_{L/K}:W_LE_{H/k}]=1$ or 2, where $k=H\cap K$. Finally, if L=K we let $H=k=\mathbf{Q}$ and $u_{L/K}=1$.

We have thus defined, whenever L/K is unit-weak, a subextension H/k and a unit-index $u_{L/K} := [E_{L/K} : W_L E_{H/k}] = 1$ or 2. When L is CM and $K = \mathbf{Q}$, $u_{L/\mathbf{Q}}$ is just the usual unit-index of L. In the next section we relate the regulators of $E_{L/K}$ and $E_{H/k}$ using $u_{L/K}$. Notice that H/k itself is not unit-weak unless $r_{L/K} = 0$.

3. Proof of Theorem

We begin with the definition of the regulator of relative units $\text{Reg}(E_{L/K})$. Pick $\alpha_1, \alpha_2, \ldots, \alpha_r$ to be independent generators of $E_{L/K}/W_L$, the relative

units modulo torsion. Let M be the matrix $M=(\log \|\alpha_i\|_{\omega})$, where $1\leq i\leq r$, ω runs over the set ∞_L of archimedean places of L, and $\|\ \|_{\omega}$ denotes the normalized absolute value at ω (so that $\|\ \|_{\omega}=|\ |_{\omega}^2$ if ω is complex, and $\|\ \|_{\omega}=|\ \|_{\omega}$ otherwise). For each place $\nu\in\infty_k$, fix a place $\omega_{\nu}\in\infty_L$ lying above ν . Then $\operatorname{Reg}(E_{L/K})$ is the absolute value of the determinant of the submatrix of M, which results when we delete from M the rows corresponding to the ω_{ν} 's. In [CF, Theorem 1] we showed, for L/K of any signature,

(3.1)
$$\operatorname{Reg}(E_{L/K}) = \frac{1}{[E_K : W_K \operatorname{Norm}_{L/K}(E_L)]} \frac{\operatorname{Reg}(L)}{\operatorname{Reg}(K)}.$$

We also related [CF, Lemma 2.1] $\operatorname{Reg}(E_{L/K})$ to the r-dimensional volume $V_L(E_{L/K})$ of a fundamental domain for $\mathcal{L}(E_{L/K})$ (see (2.1)),

$$(3.2) V_L(E_{L/K}) = [L:K]^{(r_1(K)+r_2(K))/2} 2^{(r_2(K)-r_2(L))/2} \operatorname{Reg}(E_{L/K}),$$

where (r_1, r_2) denotes the number of (real, complex) places. The Euclidean structure (which normalizes volume) is given by $\|(x_\sigma)\|^2 = \langle (x_\sigma), (x_\sigma) \rangle$, as in (2.2). For $\alpha \in E_L$ we write $\|\alpha\|$ instead of $\|\mathscr{L}(\alpha)\|$. Thus,

(3.3)
$$\|\alpha\|^2 := \sum_{\sigma \in \mathcal{S}_I} (\log |\sigma(\alpha)|)^2,$$

where \mathcal{S}_L denotes the set of all embeddings of L into \mathbb{C} . We will need the lower bound [F, (3.21)]

$$\|\alpha\| > \frac{C'}{\sqrt{N}(\log N)^3},$$

where $\alpha \in E_L$, $\alpha \notin W_L$, $N = [L : \mathbf{Q}]$, and C' > 0 is a computable absolute constant (inequality (3.4) follows easily from Dobrowolsky's lower bound for heights $[\mathbf{D}]$).

Let the successive minima of $\| \|$ on the lattice $\mathcal{L}(E_{L/K})$ be attained at ε_1 , ε_2 , ..., ε_r . Thus [GK, pp. 195, 197] the subgroup $E := \langle \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r \rangle$ of $E_{L/K}$ generated by the ε_i has finite index in $E_{L/K}$ and

$$(3.5) 0 < \|\varepsilon_1\| \le \|\varepsilon_2\| \le \cdots \le \|\varepsilon_r\|,$$

$$(3.6) \qquad \prod_{i=1}^r \|\varepsilon_i\| \le \gamma_r^{r/2} V_L(E_{L/K}),$$

where γ_r denotes Hermite's constant in dimension $r = r_{L/K}$.

Lemma. Let ε_1 , ε_2 , ..., ε_r be as above and assume that L/K is not unit-weak (see §1). Let $H_0 = \mathbf{Q}$ and $H_i = H_{i-1}(\varepsilon)$. Then there is an integer T such that $H_T \neq L$, $H_{T+1} = L$, $0 \leq T < r$, and

$$\frac{1}{[L:\mathbf{Q}]}\log |D_L| \leq \log([L:\mathbf{Q}]) + \frac{1}{\sqrt{3[L:\mathbf{Q}]}} \sum_{i=1}^{T+1} \|\varepsilon_i\| \sqrt{[H_i:H_{i-1}]^2 - 1},$$

where D_L denotes the absolute discriminant of L and $\| \|$ is given by (3.3). Proof. Proposition 1 implies that there is at least T < r so that $L = \mathbf{Q}(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{T+1})$. The inequality then follows from [F, (3.3), (3.14) and Lemma 3.5]. **Theorem.** Let L/K be an extension of number fields and assume that $D_L > 3N^N$, where D_L is the absolute discriminant of L and $N = [L : \mathbf{Q}]$. Then

(3.7)
$$\operatorname{Reg}(E_{L/K}) \ge \frac{C}{N^{2r}} \left(\log \left(\frac{|D_L|}{N^N} \right) \right)^m.$$

Here $\operatorname{Reg}(E_{L/K})$ is the regulator of relative units given by (3.1), C>0 is a computable absolute constant, and $r=r_L-r_K=\operatorname{rank}(E_{L/K})$ is the difference of the unit ranks of L and K. The nonnegative integer m is positive if L/K is not unit-weak (see §1). In general, $m=m(L/K)=r-\max_{F\subsetneq L}\{\operatorname{rank}(E_{L/K}\cap F)\}$, where F runs over all proper subfields of L.

The slightly simplified version of the theorem given in $\S 1$ follows from (3.1) and (3.7).

Proof. We first assume that L/K is not unit-weak. From the Lemma and (3.5) we have

$$(3.8) \frac{1}{N} \log \left(\frac{|D_L|}{N^N} \right) \leq \frac{\|\varepsilon_{T+1}\|}{\sqrt{3N}} \sum_{i=1}^{T+1} \sqrt{[H_i: H_{i-1}]^2 - 1} \leq \|\varepsilon_{T+1}\| \sqrt{\frac{N}{3}},$$

since $\prod_{i=1}^{T+1} [H_i: H_{i-1}] = N$. From (3.5), (3.6), and (3.4)

(3.9)
$$\|\varepsilon_{T+1}\|^{r-T} \le \prod_{i=T+1}^r \|\varepsilon_i\| \le \frac{\gamma_r'^2 V_L(E_{L/K})}{(C'/\sqrt{N}(\log N)^3)^T}.$$

If we put this together with (3.2) and (3.8) and use $\log(|D_L|/N^N) > 0$, we find

(3.10)
$$\frac{1}{N^{2r}} \left(\log \left(\frac{|D_L|}{N^N} \right) \right)^{r-T} \\ \leq \frac{\left(([L:K]/2)^{(r_1(K) + r_2(K))/r} 2^{([K:Q] - r_2(L))/r} \gamma_r / 3N)^{r/2}}{(NC'/\sqrt{3}(\log N)^3)^T} \operatorname{Reg}(E_{L/K}).$$

If $[L:K] \ge 3$, then (2.3) yields

$$r = r_L - r_K = \sum_{\omega \in \infty} \left(1 - \frac{e_K(\omega)}{[L:K]} \right) \ge \sum_{\omega \in \infty} \frac{1}{3} \ge \frac{[L:\mathbf{Q}]}{6}.$$

Hence, for $[L:K] \ge 2$,

(3.11)
$$\left(\frac{[L:K]}{2}\right)^{(r_1(K)+r_2(K))/r} \le \left(\frac{[L:K]}{2}\right)^{6/[L:K]} < 3.003.$$

Note that

$$(3.12) [K:\mathbf{Q}] - r_2(L) \le r_1(L) + r_2(L) - r_1(K) - r_2(K) = r$$

and that, for r > 2, $\gamma_r \le r/2.1$. (*Proof*. Use the inequalities quoted in [CF, (2.9)]). We then have in (3.10)

(3.13)
$$\left(\left(\frac{[L:K]}{2} \right)^{(r_1(K) + r_2(K))/r} 2^{([K:Q] - r_2(L))/r} \frac{\gamma_r}{3N} \right)^{r/2} \le 1,$$

for all r > 0 (do e = 1 or 2 separately). Since T < r < N, (3.10) and (3.13) yield

(3.14)
$$\operatorname{Reg}(E_{L/K}) > \frac{C}{N^{2r}} \left(\log \left(\frac{|D_L|}{N^N} \right) \right)^{r-T},$$

with C>0 a computable absolute constant. To prove (3.7) we must still show that in (3.14) we can replace T by $\rho:=\max_{F\subsetneq L}\{\operatorname{rank}(E_{L/K}\cap F)\}$. Since we assume $D_L>3N^N$, it suffices to show $T\leq \rho$. By the lemma, H_T is a proper subfield of L containing the T independent relative units $\varepsilon_1,\,\varepsilon_2,\,\ldots,\,\varepsilon_T\in E_{L/K}$; hence, $T\leq \rho$. Proposition 1 implies that $m=r-\rho>0$ which concludes the proof when L/k is not unit-weak.

If L/K is unit-weak then $m = r - \rho = 0$ in (3.7). In this case (3.7) follows from

Proposition 2. Let L/K be an extension of number fields. Then

(3.15)
$$\operatorname{Reg}(E_{L/K}) \ge \frac{c^r}{(Nr(\log N)^6)^{r/2}}.$$

Here $\text{Reg}(E_{L/K})$ is the regulator of relative units given by (3.1), c > 0 is a computable absolute constant, $N = [L : \mathbf{Q}]$, and $r = r_L - r_K$ is the difference of the unit ranks of L and K. (If r = 0, (3.15) means the trivial $1 \ge 1$.) Proof. From (3.4), (3.6), and (3.2) we obtain

$$\operatorname{Reg}(E_{L/K}) \geq \left(\frac{C'^2}{N \gamma_r (\log N)^6 ([L:K]/2)^{(r_1(K) + r_2(K))/r} 2^{([K:Q] - r_2(L))/r}}\right)^{r/2}.$$

Now use (3.11), (3.12), and $\gamma_r \le r$ to obtain (3.15), with $c = C'\sqrt{6.006}$.

Corollary. Let L/K (and all notation) be as in the theorem. Suppose further that all proper subfields of L are actually subfields of K. Then

(3.16)
$$\operatorname{Reg}(E_{L/K}) \ge \frac{1}{N^{2r}} \left(\log \left(\frac{|D_L|}{N^N} \right) \right)^r.$$

Proof. We first dispose of the trivial cases. If L/K is unit-weak, the hypothesis on K implies that case (iii) in Proposition 1 cannot hold. If (ii) holds, so L is CM, then K must be its maximal totally real subfield. Then r=0 and (3.16) is trivial. Since case (i) (L=K) is equally trivial, we may assume that L/K is not unit weak. Consider, in the notation of the lemma, $H_1 = \mathbf{Q}(\varepsilon_1)$. By assumption, either $H_1 \subseteq K$ or $H_1 = L$. But $H_1 \subseteq K$ implies $\varepsilon_1 \in E_{L/K} \cap K$, which is impossible since ε_1 is not a root of unity. Thus, $H_1 = L$ and so T = 0 in the lemma. The corollary now follows from (3.13) and (3.10).

The computation of m=m(L/K) in the theorem turns out to be elementary. Let \mathscr{L}_L be the logarithmic embedding (2.1). If $M\subset \mathscr{L}_L(E_L)\subset \mathbf{R}^{\mathscr{L}_L}$ is a lattice, denote its **R**-span by $\mathbf{R}M$. Thus, $\mathrm{rank}(M)=\dim_{\mathbf{R}}(\mathbf{R}M)$. If F is a subfield of L, observe that

$$\begin{aligned} \operatorname{rank}(E_{L/K}) + \operatorname{rank}(E_F) - \operatorname{rank}(E_{L/K} \cap F) \\ &= r_L - r_K + r_F - \operatorname{rank}(E_{L/K} \cap E_F) \\ &= \operatorname{rank}(E_{L/K}E_F) = \dim_{\mathbb{R}}(\mathbb{R}\mathscr{L}_L(E_{L/K}E_F)) \\ &= \dim_{\mathbb{R}}(\mathbb{R}\mathscr{L}_L(E_{L/K}) + \mathbb{R}\mathscr{L}_L(E_F)). \end{aligned}$$

Dirichlet's unit theorem gives an **R**-basis of $\mathbf{R}\mathscr{L}_L(E_F)$. It also gives one for $\mathbf{R}\mathscr{L}_L(E_{L/K})$ as the orthogonal complement of $\mathbf{R}\mathscr{L}_L(E_K)$ (inside $\mathbf{R}\mathscr{L}_L(E_L)$). It follows that

$$m:=\mathrm{rank}(E_{L/K})-\max_{F\subsetneq L}\{\mathrm{rank}(E_{L/K}\cap F)\}$$

can be calculated by linear algebra from a knowledge of all the subfields of L, without knowing a single unit. To be precise, one has to know, for each subfield F of L, the mapping $\mathscr{S}_L \to \mathscr{S}_F$ obtained by restricting the embeddings of L to embeddings of F.

We conclude with a comment on $Reg(E_{L/K})$ and Reg(L)/Reg(K) for L/K unit-weak. We defined in §2 a subextension H/k and a unit index

$$u_{L/K} := [E_{L/K} : W_L E_{H/k}] = 1 \text{ or } 2.$$

On examining the ramification of the archimedean places in L/K and H/k one finds, directly from the definition of $Reg(E_{L/K})$ as a determinant,

(3.17)
$$\operatorname{Reg}(E_{L/K}) = 2^{r_{H/k}} \operatorname{Reg}(E_{H/k}) / u_{L/K}.$$

If we let L/K range over the infinitely many unit-weak extensions associated to the same H/k, it is clear from (3.17) that $\text{Reg}(E_{L/K})$ assumes at most two values. It follows, mainly from (3.1), that Reg(L)/Reg(K) assumes at most $2^{[H:Q]}$ values.

REFERENCES

- [BM1] A.-M. Bergé and J. Martinet, Sur les minorations géométriques des régulateurs, Séminaire de Théorie des Nombres de Paris 1987-1988 (C. Goldstein, ed.), Birkhäuser Verlag, Boston, MA, 1990, pp. 23-50.
- [BM2] _____, Notions relatives de régulateur et de hauteur, Acta Arith. 54 (1989), 155-170.
- [BM3] _____, Minorations de hauteurs et petits régulateurs relatifs, Séminaire de Théorie des Nombres de Bordeaux 1987-1988, Univ. de Bordeaux, 1989.
- [CF] A. Costa and E. Friedman, Ratios of regulators in totally real extensions of number fields, J. Number Theory 37 (1991), 288-297.
- [D] E. Dobrowolsky, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
- [F] E. Friedman, Analytic formulas for the regulator of a number field, Invent. Math. 98 (1989), 599-622.
- [GK] P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, North-Holland, Amsterdam, 1987.
- [L] E. Landau, Abschätzungen von Charaktersummen, Einheiten und Klassenzahlen, Nachr. Kgl. Ges. Wiss. Göttingen Math.-Phys. Kl. (1918), 79-97; Collected works, vol. 7, Thales Verlag, Essen, 1985, pp. 114-132.
- [R1] R. Remak, Über Größenbezienhungen zwischen Diskriminanten und Regulator eines algebraischen Zahlkörpers, Compositio Math. 10 (1952), 245–285.
- [R2] ____, Über algebraische Zahlkörper mit schwachem Einheitsdefekt, Compositio Math. 12 (1954), 35-80.
- [Sie] C.-L. Siegel, Abschätzungen von Einheiten, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. 9 (1969), 71-86; Gesammelte Abhandlungen, vol. 4, Springer-Verlag, Berlin, 1979, pp. 66-81.

- [Sil] J. Silverman, An inequality connecting the regulator and discriminant of a number field, J. Number Theory 19 (1984), 437-442.
- [Z] R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62 (1981), 367-380.

Department of Mathematics, American University, Washington, District of Columbia 20016

Current address: Department of Mathematics, George Washington University, Washington, DC 20052

E-mail address: costa@math.gwu.edu

Max Planck Institut für Mathematik, Gottfried Claren Strasse 26, 5300 Bonn 3, Germany