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Abstract. Let / be an ideal in a Noetherian local ring (R, m). It is shown

that for n > 0 the reduction number rj(In) of /" with respect to a minimal

reduction J is not only independent from the choice of J but also is stable. If

/ is an m-primary ideal, we give a criterion for the Rees algebra R[I" t] with

n » 0 to be Cohen-Macaulay.

1. Introduction

Let (R, m) denote a local Noetherian ring with an infinite residue field R/m.
If / is an ideal in R, recall that an ideal J C I is called a reduction of / if

/"+> = //" for some nonnegative integer n . A reduction / is called a minimal

reduction if it does not properly contain a reduction of /. These concepts were

introduced and studied by Northcott and Rees [11]. If / is a minimal reduction
of /, we define the reduction number of / with respect to J, denoted by rj(I),

to be the least nonnegative integer n such that /"+1 = //". The reduction
number of / is defined by r(I) = min{rj(I); J C I is a minimal reduction of

The reduction number was introduced by Sally [14] in order to study Cohen-

Macaulayness of the associated graded ring G(I) - @n>0In/In+1 of R with

respect to /. For the usefulness of this notion see [3, 4, 6, 8-10, 15, 17, 19].
In general it is hard to calculate r(I). More recently, the question, due to

Sally [15], when is rj(I) independent from J, attained much attention. Some

partial solutions of this problem were given in [8, 9, 17, 19]. The crucial point

of Trung's approach in [19] is a relationship between the reduction number

rj(I) and certain cohomologically defined invariants of G(I)—among them

the Castelnuovo-Mumford regularity (see the inequalities (*)).

The main goal of this paper is to study the asymptotic property of rj(In).

By combining Trung's approach and an idea of Herrmann, Ribbe, and Zarzuela

(see [6, Proposition 2.6]) we get a surprising result (Theorem 2.1). This theorem

states that for any ideal I of R the reduction number rj(I") is not only

independent from J but also stable if n » 0. Moreover, we can compute the
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asymptotic value of rj(I"). As a byproduct we give a criterion for the Rees
algebra R[Int] = R®Int®I2nt2®- • • of I" to be a Cohen-Macaulay (abbr. C-M)

ring for n > 0, where / is an m-primary ideal (Theorem 3.1). Of course, we

can apply a general Cohen-Macaulayness criterion of [10] to R[Int]; however,
we must then calculate local cohomology modules of G(In) for each n . Our

result is free from that and therefore is of interest.

The paper is divided into three sections. In §2 we give the proof of the main

Theorem 2.1 and its consequences. Section 3 is devoted to Cohen-Macaulayness
of R[Int].

Finally I would like to thank the referee for some suggestions.

2. Reduction numbers

A Noetherian graded ring A = ©„>0 An is called a (standard) graded R-

algebra if Aq = R and A is generated-by Ax over R. In this paper R will

also be regarded as a graded .R-algebra concentrated in degree 0. For a graded

^-module M = ©„6Z M„ we denote by [M]n the nth graded piece of M,
i.e., [M]„ — M„ . M(p) denotes the same module M shifted by p, i.e.,

[M(p)]„ = Mn+P. The local cohomology module HA (M), i £ Z, of M

with support in A+ = 0„>o An are also graded v4-modules. Concerning local

cohomology theory of graded modules see [5]. We set

at(M) = sup{n 6 Z;  [HA+(M)]n ? 0}

and
ei(M) = inf{« £ Z ;  [HA+ (M)]n ± 0} .

(Convention: if HA (M) =0 we set a,-(Af) = -oo and e,-(Af) = +oo.) If

R = K is a field and dim M = d then aj(M) is just the so-called a-invariant

of M introduced in [5] and plays an important role in the study of Gorenstein
rings (see, e.g., [5, 6]). The number

regM = max{ai(M) + i;  i £ Z}

is called the Castelnuovo-Mumford regularity of M (see [2, 12]).

Now let I Cm be an arbitrary ideal of R. We shall also denote by G and
G' the associated graded rings G(I) and G(In), respectively. Set s - s(I) =

dimCr(7) ® R/m the analytic spread of I [11]. It is well known that s(I) is

equal to the minimum number of generators of every minimal reduction of /.

Let / be a minimal reduction of /. Then we get from [19, Proposition 3.2]

the following relationship between rj(I) and a,(c7(/)):

(*) as(G(I)) + s<rj(I)<regG(I).

Our aim in this section is to prove the following main result.

Theorem 2.1. Let I Cm be an arbitrary ideal of R. Then rj(In) is independent

of J andstableifn » 0. Namely, for all n > max{|a,(C7(/))|; a,(C7(/)) ̂  -oo}
we have

r(In) = ls ifas(G(I))>0,
A   }    \s-l   ifas(G(I))<0,

where J is any minimal reduction of I" .

We shall need some auxiliary results. Let A be a graded i?-algebra and

M be a graded /1-module. The following result was essentially proven in [12,

Theorem 2].
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Lemma 2.2. Assume that d = sup{/'; H'A+(M) ̂  0} > 0 and [H^(M)]n = 0

for an integer n . Then [HA (M)]m = 0 for all m> n .

The following result is perhaps known. We prove it for the sake of complete-
ness.

Lemma 2.3. s(I) = sup{/; HG{I)+(G(I)) ? 0} .

Proof. By induction on 5 := s(I) one can easily show that the number on the

right side is less than or equal to 5. One has still to show that HG (G) ^ 0.

From the exact sequence of (/-modules

0-naG-*G-*G/mG-+0,

we get an epimorphism

HG+(G)^HG+(G/mG)^0.

Since s = dim(G/mG) and (G/mG)+ is the maximal homogeneous ideal of

G/mG, we have HsG+(G/mG) £ Hs{G/mG)+(G/mG) #0. Hence HSG+(G) #0.

Note that s(I") = s(I). The following lemma is a key result.

Lemma 2.4. Assume that s = s(I) > 1. Then we have, for all i < s and n > 1,

(i) ai(G(I"))<[ai(G(I))/n],
(ii) ei(G(I"))>[ei(G(I))/n],and

(iii) as(G(I»)) = [as(G(I))/n],

where [a] = max{m £ Z; m < a}.

Remark. This lemma is related to a result of Herrmann et al. Let / be an

m-primary ideal, i.e., s = d. Then ad(G) and ad(G') are the a-invariants of
G and G', respectively. In this case the equality (iii) was established in [6,

Proposition 2.6] under the assumption that G is C-M. By using Lemma 2.2 we

do not need here the C-M assumption on G.

Recall that the Veronesian embedding of a graded i?-algebra A is defined as
A^ = Q)n>0Ank (k is a positive integer). If M is a graded ^-module, then

the Veronesian embedding M^ = 0„eZ Mnk of M is a graded A^-modu\e.

Proof of Lemma 2.4. The proof of (i) and (ii) is essentially the same as the ones

of [6, Proposition 2.6]. It follows from a cohomological exact sequence derived

from the following short exact sequence of R[Int]-modales

0 -+ p-t+lQ! _+ jn-tQ _+ (G(„ _ ,))(«) _, 0;

where t — \,...,n (we take here the local cohomology with support in R[I"t]+).

Note that for the first part the argument in the proof of [6, Proposition 2.6] did

not really use that G is C-M.

To finish the proof one needs still to show that as(G') > [as/n], where

as - as(G). To this end consider the above exact sequence with t = n. Note
that IG' can be also considered as a G'-module. We have

H*RlI„t]+(G')^HG,(G')   and   #$,,]+(/<?') = HGtJ(IG') = 0.

By [5, Theorem 3.1.1]

"W(G(")) = (Hki"t]+(G)){n) = (HG>(G)){n) ■
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Hence we get an epimorphism

[HG,+ (G')]j->[HG+(G)]nj->0.

Let j = [as/n]. Then nj < as. Since [HG (G)]0s ^ 0 (by the definition of as),

we get from Lemma 2.2 that [HG+(G)]nj +^ 0. Hence [HSG, (G')]j # 0, which

gives as(G') > [as/n], as required.

Proof of Theorem 2.1. The case 5 = 0 is trivial. Let 5 > 1 and n > max{|a,-(C7)|;
at(G) ^ -oo} . By Lemma 2.3, as(G) # -oo . From Lemma 2.4(i) and (iii) we

then get aj(G') < 0 for i = 0,..., s—1 and

as(G') = l°      if*^°>
s{   '     1-1    ifa,(G)<0.

Hence
r>        ,r<u       Is tia,(G)>0,

rc&G=as(G) + s = {s_l   ifflj((?)<0

Now the theorem follows from (*).

Example 2.5. Let (R, m) be a d-dimensional generalized C-M ring, i.e., a ring

with l(Hlm(R)) < oo for all i < d (see, e.g., [18]). Let xx,...,xd be a
standard system of parameters of R, i.e., a system of parameters satisfying

(xx, ..., xd)Hlm(R/(xx, ... , Xj)R) = 0 for all i, ;' with i + j<d (see, e.g.,
[1, 18]). Set / = (xx, ... , xd)R. Then ad(G) = -d or -(d + 1) and for any
minimal reduction / of /" (n > 2) we have rj(I") — [ad(G)/n] + d. If, in
addition, R is C-M then ad(G) = -d. In particular, if R is a regular ring then
r(mn) < 1 if and only if n — 1 or d — 2 or (d, n) = (3, 2) (cf. [13, Example
2.3]).

Proof We have s(I) = d. It is known that HG+(G) Si Hi(R)(i) for i =

0, ... , d - 1 and [H*(G)]j = 0 for ; > -d (see [18, Theorem 5.4]). That

means at(G) = -i or -oo for / = 0, ... , d - 1 and ad(G) < -d. We will
show that ad(G) >—d — \. Let x\ be the initial form of Xi in G. As in the
proof of [18, Theorem 5.4] we may assume that depth/? > 0. Then x\ is a

non-zero-divisor of C7. Using the exact sequence

0 -» C7(-l) -^ G -» G/x*xG s G((x2,..., xd)(R/xiR)) -> 0

and Lemma 2.2 we can show by induction that ad(G) >-d-\ (resp. ad(G) >

-d in the C-M case). Hence ad(G) = -d or -d - 1. Now applying Lemma

2.4 and (*) we get rj(In) = [ad(G)/n] + d for n > 2.

An ideal / with r(I) < 1 deserves special interest. It is related to various no-

tions of stable ideals (see, e.g., [13, 16]). In some sense the following immediate

consequence of Theorem 2.1 generalizes [16, Theorem 2.9].

Corollary 2.6. Assume that s(I) < 1. Then r(In) < 1 for « » 0.

This corollary can also be obtained from the following lemma.

Lemma 2.7. r(In) < ]4Zl±iz£ffi[ +srj) _ 11 where ]a[ = min{w £Z, m>a).

Proof. Set r = r(In), s = s(I), and p = ](r + 1 - s)/n[ + s - 1. The case

5 = 0 is trivial (in this case we get even the equality).   Let s > 1.   Then
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q := n(p + 1) - (s(n - 1) + 1) > r. Let xx, ... , xs be a minimal basis of a

minimal reduction of / such that Ir+i = (xx, ... , xs)Ir.

Claim. For all s > 1 and k > 0 we have that

(x,,...,Xsyk+l c(xf+1,...,x[+l)(Xx,...,xsyk~k.

Proof. We have

jy. „      Nifc+l       _      (  y.Sk+1 y.Sk   y. vSk+l\
VA1 > • • • ) As,/ — 1,^1        > -*i  -*2 > • •" ) A5       ^ •

Since the total degree of each monomial on the right side is sk + 1, at least one
Xj has the degree > k + 1. Hence

^ai , ... , a,s) ^ ^-a.j      , ... , a.j     ;VA1 > • • • > AW >

as required.
Now we have

(I")p+l = I"(p+1) = (xi,..., jc,),<"-,>+,/«

C (x?.x,")(xi,..., x,)5'"-1)-^1/9   [by the claim]

C(x?,...,x?)(Inyc(Iny+1.

Hence r(In) <p.

As another consequence of this lemma we get: let / be an ideal with s(I) <
2. If r(I) < 1 then r(I") < 1 for all n > 0. Since s(I) < dimR, this gives an
extension of [13, Corollary 4.3].

3. Rees algebras

In this section let (R ,m) be a ^-dimensional local ring and / an m-primary
ideal.

Theorem 3.1. (i) Assume that G(I) is a generalized C-M ring with at(G(I)) < 0

for all i = 0,...,d. Then R[I"t] is C-M for all « » 0.
(ii) If R[I"t] is C-M for some n > 0 then G(I) is a generalized C-M ring

with ad(G(I)) <0.

Proof. Note that s(I) = d = dimG and HG+(G) £ H},(G), where P = m/I®G+

denotes the maximal homogeneous ideal of G.

(i) Since G is generalized C-M, we have [H'G (G)]j — 0 for j -c 0 and

/ = 0, ... , d - 1, i.e., eo(G) > -oo, ... , ed_x(G) > -oo . Let

n0 = max{-ad(G), -e0(G), ... , -ed_x(G)}.

From the assumption a,((7) < 0 and from Lemma 2.4 we get for all n > «o
that

[HG,+ (G% = 0   ftirj^-l,  i = 0, ...,</-1

and

[HG,+ (G')]j = 0   for;>0.

By [10, Theorem 1.1] R[I"t] is a C-M ring.
(ii) Assume that R[Int] is C-M. Since R[Int] 2 (R[It])W , it follows from

[1, Lemma 6.5] that R[It] is generalized C-M. Hence, by [10, Proposition 3.3],
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we get that G is a generalized C-M ring. Further, in the proof of Lemma 2.4
we have the following epimorphism:

[H*,+(G%->[Hi(G)]nj-+0.

Let j = 0. Since R[I"t] is C-M, again by [10, Theorem 1.1], [H%, (G')]0 = 0.

Hence [H^+(G)]0 = 0. By Lemma 2.2 we must have ad(G) < 0.

Corollary 3.2. Assume that G(I) is C-M. Then the following conditions are equiv-

alent:

(i) R[I"t] is a C-M ring for some n > 0.
(ii) R[Int] is a C-M ring for all « > 0.

(iii) ad(G(I))<0.

Proof, (ii) => (i) is trivial, (i) => (iii) follows from Theorem 3.1. Assume (iii).

Then by [10, Theorem 1.1] R[It] is C-M. Hence R[Int] B (R[It])W is C-M
for all n > 0.

Example 3.3 (cf. [7, Proposition 3.1]). Let K be an infinite field and A —
K[xi, ... , xn] be a graded ^-dimensional ^-algebra. Let

F: o - 05(-^) -»•••-» 05(-dw) - 5 -> A - 0

be a minimal graded free resolution of A, where S = ATXi,..., Xn]. Suppose
that A is C-M. Let (R, m) denote the v4+-adic completion of A. We set

dg — ma\i{dgi}. Then R[mqt] is C-M for some q > 0 (or for all <? > 0) if
and only if dg < n - 1. This gives the correct form for [7, Proposition 3.1] and

was in fact proven there (there was a little confusion in its proof: the reduction
number of m defined in [7] is not equal but one greater than the maximal degree

of the homogeneous socle elements of A/(ax, ... , ad)A, where ax, ... , ad is

a system of parameters of 1-forms).

Indeed, in this case C7(m) = A is a C-M ring. Hence, by Corollary 3.2, one
has only to show that ad(G) < 0 if and only if dg < n-1. But this is immediate
from the relation n = d + g and from the following result of Eisenbud and

Goto [2]: dg - g = regA = regfJ = ad + d (since G is C-M).

Next we give a sharpening of a result of Goto and Shimoda [4].

Proposition 3.4. If R[m"t] is C-M then R satisfies Serre's condition (S2), i.e.,

depth Rp > min(2, htp) for all p £ Speci?.

Proof. By [10, Lemma 4.1] R is a generalized C-M ring. Hence R is a locally

C-M ring, i.e., Rp is C-M for all p ^ m; therefore, it suffices to show that
depths > 2. Since R[mnt] is C-M, it is known that depth/? > 0 (see, e.g., [10,
Corollary 3.4]). Let (ax,... , ad)R be a minimal reduction of m. ax,... , ad
forms, of course, a system of parameters of R. Then ax is a nonzero divisor

of R (see, e.g., [3, Lemma 2.4]). Assume that a2x = axy for some x, y £ m.

Analyzing the proof of Lemma 2.7 we get that (al, ... , ad)R is a minimal

reduction of m" . Hence the sequence ax,a2- a"t, ... ,ad - ad_xt, a^t is a

system of parameters of R[m"t]. Since x, y £ m, we have

x(a2 - af t) = ax (y - a1~lxt) £ axR[mnt].
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From Cohen-Macaulayness of R[m"t] it then follows that x £ axR. This means

ax, a2 is a regular sequence of R, as required.

Finally we will derive some consequences for the case of 2-dimensional local
rings.

Corollary 3.5. Assume that (R,m) is a 2-dimensional C-M ring. Then R[I"t]

is C-M for n > 0 if and only if a2(G(I)) < 0.

Proof. The necessary part follows from Theorem 3.1. Assume that a2(G) < 0.

Since s(I) - 2, by Theorem 2.1 we get that r(In) =1 for n » 0. For such a
number n  R[Int] is C-M (by [10, Proposition 7.2]).

Example 3.6. Let

R = K[[u4, u*v, u2v2, wi>3, v4]]   and   I = (u4, u3v, uv3, v4)R.

Then R is a C-M ring, HG+(G) * K, HG+(G) & tf(-l), and [H2+(G)]n = 0

for n > 0. By [10, Theorem 1.1] it then follows that R[It] is not C-M, but
R[I"t] is C-M for all n>2. This example also shows that the converse of (i)
of Theorem 3.1 is not true.

We denote by edimi? and e(R) the embedding dimension and the multi-
plicity of R, resp. The following result extends [4, Proposition 1.4].

Corollary 3.7. Let (R,m) be a 2-dimensional ring. Then R[m"t] is C-M for

some n > 0 (or for all n > 0) if and only if R is a C-M ring with edimi? =
e(R) + 1.

Proof. Proposition 1.4 of [4] states that R[mt] is C-M (hence so is R[m"t] for
all n > 0) if and only if i? is a C-M ring with edimi? = e(R) +1. Therefore, it
suffices to show that the last condition also follows from Cohen-Macaulayness of
R[mnt] for some n > 0. Indeed, by Proposition 3.4, R is C-M. By Corollary

3.5 and Theorem 2.1, r(m*) =1 for k » 0. Hence it follows from [13,
Corollary 4.4] that edimi? = e(R) + 1 .
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