DECOMPOSITION OF PEANO DERIVATIVES

HAJRUDIN FEJZIĆ

(Communicated by Andrew Bruckner)

Abstract

Let Δ^{\prime} be the class of all derivatives, and let [Δ^{\prime}] be the vector space generated by Δ^{\prime} and O^{\prime} Malley's class B_{1}^{*}. In [1] it is shown that every function in $\left[\Delta^{\prime}\right]$ is of the form $g^{\prime}+h k^{\prime}$, where g, h, and k are differentiable, and that $f \in\left[\Delta^{\prime}\right]$ if and only if there is a sequence of derivatives v_{n} and closed sets A_{n} such that $\bigcup_{n=1}^{\infty} A_{n}=\mathbf{R}$ and $f=v_{n}$ on A_{n}. The sequence of sets A_{n} together with the corresponding functions v_{n} is called a decomposition of f. In this paper we show that every Peano derivative belongs to [Δ^{\prime}]. Also we show that for Peano derivatives the sets A_{n} can be chosen to be perfect.

1. Introduction

Let C be the family of all continuous functions on \mathbf{R}, Δ the family of all differentiable functions on \mathbf{R} and Δ^{\prime} the family of all derivatives on \mathbf{R}. If Γ is a family of functions defined on \mathbf{R}, then by $[\Gamma]$ we denote the family of all functions f on \mathbf{R} with the following property: for every $n=1,2, \ldots$ there exist $v_{n} \in \Gamma$ and closed sets A_{n} such that $\bigcup_{n=1}^{\infty} A_{n}=\mathbf{R}$ and $f=v_{n}$ on A_{n}. In [1, Theorem 2] it is shown that the following four conditions are equivalent:
(i) There are g, h, and k in Δ such that $h^{\prime}, k^{\prime} \in[C]$ and $f=g^{\prime}+h k^{\prime}$.
(ii) There is a $\varphi \in \Delta^{\prime}$ and $\psi \in[C]$ such that $f=\varphi+\psi$.
(iii) $f \in\left[\Delta^{\prime}\right]$.
(iv) There is a dense open set T and a function $k \in \Delta$ such that f is a derivative on T and $f=k^{\prime}$ on $\mathbf{R} \backslash T$.
Statement (ii) implies that [Δ^{\prime}] is a vector space generated by Δ^{\prime} and [C]. In [1, Theorem 3] it is shown that each approximate derivative, each approximately continuous function, and each function in $B_{1}^{*}=[C]$ belongs to the class $\left[\Delta^{\prime}\right]$. In [5] O'Malley showed that for approximate derivatives sets A_{n} from the definition of $\left[\Delta^{\prime}\right]$ can be chosen to be perfect. A question raised in [1] is: "Does every Peano derivative belong to [$\left.\Delta^{\prime}\right]$?"

The main goal of this paper is to show that a k th Peano derivative is in [Δ^{\prime}] and that the sets A_{n} from the definition of [Δ^{\prime}] can be chosen to be perfect. We will prove even more, namely, that a k th Peano derivative is a composite derivative of the $(k-1)$ th Peano derivative. An immediate consequence of this result is that a k th Peano derivative is an approximate derivative of the
($k-1$)th Peano derivative almost everywhere. This result was first proved by Zygmund and Marcinkiewicz (see [12, p. 77]).

2. Preliminaries

In this section we will recall the definition of Peano derivatives and some known properties of Peano derivatives.
Definition 1. Let f be a continuous function defined on \mathbf{R}. We say that f has k th Peano derivative at some point x, if there are real numbers $f_{1}, f_{2}, \ldots, f_{k}$ such that
(1) $f(x+h)=f(x)+h f_{1}+\cdots+h^{k} \frac{f_{k}}{k!}+h^{k} \varepsilon_{k}(h) \quad$ where $\lim _{h \rightarrow 0} \varepsilon_{k}(h)=0$.

The number f_{k} is called the k th Peano derivative of f at x, and since it depends only on a function f and a point x, it will be convenient to denote it by $f_{k}(x)$. Similarly the continuous function $\varepsilon_{k}(h)$ depends on x, so we may denote it by $\varepsilon_{k}(x, h)$. Also, it will be convenient to denote $f(x)$ by $f_{0}(x)$. With this notation (1) becomes $f(x+h)=\sum_{j=0}^{k} h^{j} \frac{f_{j}(x)}{j!}+h^{k} \varepsilon_{k}(x, h)$. From Definition 1 it is easy to see that if the k th Peano derivative exists, so does the n th, for $1 \leq n<k$.

It is known that the k th Peano derivative is Baire 1, Darboux, and has Denjoy property. For these, and some other properties of Peano derivatives, see [3, 4, 6, 8-12].

3. Formula

In this section we will derive a formula that is the crux of the proof of Theorem 2.
Theorem 1. Let f be a continuous function on \mathbf{R}, and let $x \neq x_{1}$ and $t \neq 0$ be points such that $f_{k}(x)$ and $f_{k}\left(x_{1}\right)$ exist. Then the following formula holds:

$$
\begin{aligned}
& \frac{f_{k-1}\left(x_{1}\right)-f_{k-1}(x)}{x_{1}-x}-f_{k}(x) \\
& = \\
& \quad \frac{t}{x_{1}-x} \frac{k-1}{2} f_{k}(x) \\
& \quad+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \frac{\left(x_{1}-x+j t\right)^{k}}{t^{k-1}\left(x_{1}-x\right)} \varepsilon_{k}\left(x, x_{1}-x+j t\right) \\
& \quad-\frac{t}{x_{1}-x}\left\{\frac{k-1}{2} f_{k}\left(x_{1}\right)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}\left(x_{1}, j t\right)\right\}
\end{aligned}
$$

To prove this formula we need some lemmas.
Lemma 1. For $m \in \mathbf{N}$ we have

$$
\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} j^{i}= \begin{cases}0 & \text { if } i=0,1, \ldots, m-1, \\ m! & \text { if } i=m, \\ \frac{m}{2}(m+1)! & \text { if } i=m+1 .\end{cases}
$$

Proof. The case $0 \leq i \leq m$ is a well-known exercise in mathematical induction. So let us consider only the case $i=m+1$. Let

$$
a(m)=\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} j^{m+1}
$$

Then we have the following recursive formula: $a(m)=m a(m-1)+m m!$, and since $a(1)=1$, we have $a(m)=\frac{m}{2}(m+1)$!

Definition 2. Let f be a function defined on \mathbf{R}. Then for any two points x_{1} and t let

$$
\Delta_{k-1}=\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} f\left(x_{1}+j t\right)
$$

Lemma 2. Let f be a function defined on \mathbf{R} having a kth Peano derivative at some point x_{1}. Then for any t the following holds:

$$
\Delta_{k-1}=t^{k-1} f_{k-1}\left(x_{1}\right)+t^{k} \frac{k-1}{2} f_{k}\left(x_{1}\right)+t^{k} \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}\left(x_{1}, j t\right)
$$

Proof.

$$
\begin{aligned}
\Delta_{k-1}= & \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j}\left(\sum_{l=0}^{k}(j t)^{l} \frac{f_{l}\left(x_{1}\right)}{l!}+(j t)^{k} \varepsilon_{k}\left(x_{1}, j t\right)\right) \\
= & \sum_{l=0}^{k}\left(\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{l}\right) t^{l} \frac{f_{l}\left(x_{1}\right)}{l!} \\
& +t^{k} \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}\left(x_{1}, j t\right) .
\end{aligned}
$$

The rest follows from Lemma 1.

Lemma 3. Let f be a function on \mathbf{R}, and let $x \neq x_{1}$ be a point such that $f_{k}(x)$ exists. Then

$$
\begin{aligned}
\Delta_{k-1}= & t^{k-1} f_{k-1}(x)+t^{k-1}\left(x_{1}-x\right) f_{k}(x)+t^{k} \frac{k-1}{2} f_{k}(x) \\
& +\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j}\left(x_{1}-x+j t\right)^{k} \varepsilon_{k}\left(x, x_{1}-x+j t\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\Delta_{k-1}= & \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \\
& \cdot\left(\sum_{l=0}^{k}\left(x_{1}-x+j t\right)^{l} \frac{f_{l}(x)}{l!}+\left(x_{1}-x+j t\right)^{k} \varepsilon_{k}\left(x, x_{1}-x+j t\right)\right) \\
= & \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \sum_{l=0}^{k}\left(x_{1}-x+j t\right)^{l} \frac{f_{l}(x)}{l!} \\
& +\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j}\left(x_{1}-x+j t\right)^{k} \varepsilon_{k}\left(x, x_{1}-x+j t\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \sum_{l=0}^{k}\left(x_{1}-x+j t\right)^{l} \frac{f_{l}(x)}{l!} \\
& \quad=\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \sum_{l=0}^{k} \sum_{i=0}^{l}\binom{l}{i}\left(x_{1}-x\right)^{l-i}(j t)^{i} \frac{f_{l}(x)}{l!} \\
& \quad=\sum_{l=0}^{k} \sum_{i=0}^{l}\binom{l}{i}\left(x_{1}-x\right)^{l-i} t^{i}\left(\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{i}\right) \frac{f_{l}(x)}{l!}
\end{aligned}
$$

by Lemma 1 it is equal to

$$
\sum_{l=k-1}^{k} \sum_{i=k-1}^{l}\binom{l}{i}\left(x_{1}-x\right)^{l-i} t^{i}\left(\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{i}\right) \frac{f_{l}(x)}{l!}
$$

Applying Lemma 1 once more it is equal to

$$
t^{k-1} f_{k-1}(x)+t^{k-1}\left(x_{1}-x\right) f_{k}(x)+t^{k} \frac{k-1}{2} f_{k}(x)
$$

Proof of Theorem 1. The assertion follows directly from Lemmas 2 and 3.

4. Decomposition

In this section we will prove the main theorem, namely, that a k th Peano derivative belongs to $\left[\Delta^{\prime}\right]$.
Definition 3. Suppose that a function f has a k th Peano derivative at every point of R. Let

$$
\begin{aligned}
& H(f, M, \delta) \\
& \quad=\left\{x:\left|\frac{k-1}{2} f_{k}(x)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}(x, j t)\right| \leq M \text { for }|t|<\delta\right\}
\end{aligned}
$$

where M and δ are some positive constants.

Theorem 2. $H=H(f, M, \delta)$ is closed and f_{k-1} is differentiable on H relative to H with $\left(\left.f_{k-1}\right|_{H}\right)^{\prime}(x)=f_{k}(x)$, also $\left|f_{k}(x)\right| \leq 2 M$ for every $x \in H$.
Proof. Let $x \in \bar{H}$. Let $1>\varepsilon>0$ be given. There is $0<\eta<\delta$ such that $\left|\varepsilon_{k}(x, h)\right|<\varepsilon$ whenever $|h|<\eta$. Let $x_{n} \in H$ so that $\left|x_{n}-x\right|<\eta / k$. Then for $t=\left(x_{n}-x\right) \varepsilon^{1 / k}$ we have $|t|<\delta$ and $\left|x_{n}-x+j t\right|<\eta$, for $j=$ $0,1, \ldots, k-1$. Then the formula from Theorem 1 gives

$$
\begin{aligned}
& \left|\frac{f_{k-1}\left(x_{n}\right)-f_{k-1}(x)}{x_{n}-x}-f_{k}(x)\right| \\
& \quad \leq \varepsilon^{1 / k} \frac{k-1}{2}\left|f_{k}(x)\right|+\sum_{j=0}^{k-1}\binom{k-1}{j} \frac{\left(1+j \varepsilon^{1 / k}\right)^{k}}{\varepsilon^{(k-1) / k}}\left|\varepsilon_{k}\left(x, x_{n}-x+j t\right)\right| \\
& \quad+\varepsilon^{1 / k}\left|\frac{k-1}{2} f_{k}\left(x_{n}\right)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}\left(x_{n}, j t\right)\right| \\
& \quad \leq \varepsilon^{1 / k} \frac{k-1}{2}\left|f_{k}(x)\right|+\sum_{j=0}^{k-1}\binom{k-1}{j}\left(1+j \varepsilon^{1 / k}\right)^{k} \varepsilon^{1 / k}+\varepsilon^{1 / k} M
\end{aligned}
$$

Therefore as $x_{n} \rightarrow x$ with $x_{n} \in H$ we get

$$
\frac{f_{k-1}\left(x_{n}\right)-f_{k-1}(x)}{x_{n}-x}-f_{k}(x) \rightarrow 0
$$

Now let $x \in \bar{H},\left\{x_{n}\right\}$ a sequence in H with $x_{n} \rightarrow x$, and $0 \neq|t|<\delta$. Then the formula from Theorem 1 yields

$$
\begin{aligned}
& \left|t\left(\frac{k-1}{2} f_{k}(x)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} \frac{\left(x_{n}-x+j t\right)^{k}}{t^{k}} \varepsilon_{k}\left(x, x_{n}-x+j t\right)\right)\right| \\
& \quad \leq\left|t\left(\frac{k-1}{2} f_{k}\left(x_{n}\right)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}\left(x_{n}, j t\right)\right)\right| \\
& \quad \quad+\left|f_{k-1}\left(x_{n}\right)-f_{k-1}(x)-\left(x_{n}-x\right) f_{k}(x)\right| \\
& \quad \leq|t| M+\left|f_{k-1}\left(x_{n}\right)-f_{k-1}(x)-\left(x_{n}-x\right) f_{k}(x)\right| .
\end{aligned}
$$

Letting $n \rightarrow \infty$ the left-hand side becomes

$$
\left|t\left(\frac{k-1}{2} f_{k}(x)+\sum_{j=0}^{k-1}(-1)^{k-1-j}\binom{k-1}{j} j^{k} \varepsilon_{k}(x, j t)\right)\right|
$$

while the right-hand side is $|t| M$. Hence $x \in H$.
That $\left|f_{k}(x)\right| \leq 2 M$ on H follows from the definition of H taking $t=0$.
Lemma 4. $\bigcup_{M=1}^{\infty} H(f, M, 1)=\mathbf{R}$.
Proof. The assertion follows from the fact that $\varepsilon_{k}(x, j t)$ is a continuous function of t for $j=0,1, \ldots, k-1$.

The following corollary is an immediate consequence of Lemma 4 and Theorem 2.

Corollary 1. Let f be a continuous function on \mathbf{R} such that $f_{k}(x)$ exists at every point of \mathbf{R}. Then $f_{k} \in\left[\Delta^{\prime}\right]$.
Proof. The corollary follows directly from Theorem 2, Lemma 4, and the fact that for any function g defined on a closed set P, that is differentiable with respect to P, there is a function G differentiable on \mathbf{R} so that $\left.G\right|_{P}=g$ and $\left.G^{\prime}\right|_{P}=g^{\prime}$. (See Mařik [7].)

Definition 4. Let f be a function defined on \mathbf{R}. If there exist a function g and closed sets $A_{n}, n=1,2, \ldots$, such that $\bigcup_{n=1}^{\infty} A_{n}=\mathbf{R}$ and $\left.g\right|_{A_{n}} ^{\prime}(x)=f(x)$ for $x \in A_{n}$, then we say that f is a composite derivative of g.

Corollary 2. f_{k} is a composite derivative of f_{k-1}.
An immediate consequence of this result is the following corollary, first proved by Zygmund and Marcinkiewicz. (See Zygmund [12, p. 77].)

Corollary 3. f_{k} is the approximate derivative of f_{k-1} almost everywhere.

5. On $(k-1)$ th Peano derivatives

It was known that for any point x there is a sequence $x_{n} \rightarrow x$ so that

$$
\lim _{n \rightarrow \infty}\left(f_{k-1}\left(x_{n}\right)-f_{k-1}(x)\right) /\left(x_{n}-x\right)=f_{k}(x)
$$

(See Weil [11] or Mařik [6].) In this section we will prove that if f_{k} exists at some point x and f_{k-1} exists at some neighborhood of the point x, then there is a perfect set P of positive measure such that x is a bilateral point of accumulation of P and f_{k-1} differentiates at x along P with $\left.f_{k-1}\right|_{P} ^{\prime}(x)=$ $f_{k}(x)$. In order to prove the above we need a few lemmas, two of which (Lemma 5 and Lemma 7) are known. (See Corominas [3].)

Lemma 5. Let f and g be functions on \mathbf{R} such that the nth Peano derivatives $f_{n}(x)$ and $g_{n}(x)$ exist at some point x. Then the function $f g$ has an nth Peano derivative at x and

$$
(f g)_{n}(x)=\sum_{j=0}^{n}\binom{n}{j} f_{j}(x) g_{n-j}(x)
$$

Lemma 6. Let f and g be functions on \mathbf{R} such that the nth Peano derivative, $f_{n}(x)$, and the nth ordinary derivative, $g^{(n)}(x)$, exist at some point x. Then

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(f g^{(j)}\right)_{n-j}(x)=f_{n}(x) g(x)
$$

Proof. By Lemma 5

$$
\begin{aligned}
\sum_{j=0}^{n} & (-1)^{j}\binom{n}{j}\left(f g^{(j)}\right)_{n-j}(x) \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \sum_{i=0}^{n-j}\binom{n-j}{i} f_{i}(x)\left(g^{(j)}\right)_{(n-j-i)}(x) \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \sum_{i=0}^{n-j}\binom{n-j}{i} f_{i}(x) g^{(n-i)}(x) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j}\binom{n}{j}\binom{n-j}{i} f_{i}(x) g^{(n-i)}(x) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n-i}(-1)^{j}\binom{n-i}{j}\binom{n}{i} f_{i}(x) g^{(n-i)}(x) \\
& =\sum_{i=0}^{n}\binom{n}{i} \sum_{j=0}^{n-i}(-1)^{j}\binom{n-i}{j} f_{i}(x) g^{(n-i)}(x) \\
& =f_{n}(x) g(x)+\sum_{i=0}^{n-1}\binom{n}{i}(1-1)^{n-i} f_{i}(x) g^{(n-i)}(x)=f_{n}(x) g(x) .
\end{aligned}
$$

Lemma 7. Let H be a function defined in a neighborhood \mathcal{O} of a point y. Suppose that H is n times Peano differentiable in \mathcal{O} and that H_{n} is m times Peano differentiable in \mathcal{O}. Then H is $(n+m)$ times Peano differentiable at y, and $H_{(n+m)}(y)=\left(H_{n}\right)_{m}(y)$.

Lemma 8. Let f be defined in some neighborhood \mathcal{O} of 0 . Suppose that the k th Peano derivative of f at 0 exists and that the lth Peano derivative of f exists in \mathcal{O}, where k and l are positive integers with $l \leq k-1$. Also suppose that $f(0)=f_{1}(0)=\cdots=f_{k}(0)=0$. Let $g(y)=y^{-(k-l)}$. Then the function h_{i} defined by

$$
\begin{aligned}
h(y)= & \binom{l}{0} f(y) g(y)-\binom{l}{1} \int_{0}^{y} f(t) g^{\prime}(t) d t \\
& +\cdots+(-1)^{l}\binom{l}{l} \int_{0}^{y} \int_{0}^{x_{2}} \cdots \int_{0}^{x_{l-1}} f(t) g^{(l)}(t) d t \cdots d x_{2} \quad \text { for } y \neq 0
\end{aligned}
$$

and $h(0)=0$ has an lth Peano derivative on \mathcal{O}.
Moreover,

$$
h_{l}(y)= \begin{cases}f_{l}(y) / y^{k-l} & \text { if } y \neq 0 \\ 0 & \text { if } y=0\end{cases}
$$

Proof. By assumption, $f(y)=y^{k} \varepsilon_{k}(0, y)$. Consequently all of the above integrals are integrals of continuous functions. Hence h is well defined. Moreover,
for $y \neq 0, y \in \mathscr{O}$

$$
H(y)=\int_{0}^{y} \int_{0}^{x_{2}} \cdots \int_{0}^{x_{i-1}} f(t) g^{(i)}(t) d t \cdots d x_{2}, \quad i=1, \ldots, l
$$

is i times ordinarily differentiable and $H^{(i)}(y)=f(y) g^{(i)}(y)$ for $i=1, \ldots, l$. By Lemma 5, $f g^{(i)}$ is l times Peano differentiable at y. Therefore by Lemma 7, H is l times Peano differentiable at y and

$$
H_{l}(y)=\left(H^{(i)}\right)_{l-i}(y)=\left(f(y) g^{(i)}(y)\right)_{(l-i)} .
$$

Hence h is l times Peano differentiable at y and

$$
h_{l}(y)=\sum_{j=0}^{l}(-1)^{j}\binom{l}{j}\left(f g^{(j)}\right)_{(l-j)}(y)
$$

and, by Lemma 6, $h_{l}(y)=f_{l}(y) g(y)$.
It remains to prove that $h_{l}(0)$ exists and that $h_{l}(0)=0$. For $y \neq 0$

$$
\begin{aligned}
& \frac{h(y)}{y^{l}}=\frac{1}{y^{l}}\left\{\binom{l}{0} y^{l} \varepsilon_{k}(0, y)+(k-l)\binom{l}{1} \int_{0}^{y} t^{l-1} \varepsilon_{k}(0, t) d t\right. \\
&+\cdots+(k-l)(k-l+1) \cdots(k-1) \\
&\left.\cdot\binom{l}{l} \int_{0}^{y} \int_{0}^{x_{2}} \cdots \int_{0}^{x_{l-1}} \varepsilon_{k}(0, t) d t \cdots d x_{2}\right\}
\end{aligned}
$$

Hence $\lim _{y \rightarrow 0}\left(h(y) / y^{l}\right)=0$. Therefore $h(0)=h_{1}(0)=\cdots=h_{l}(0)=0$.
Now suppose that f has an lth Peano derivative in some neighborhood θ of a point x and that $f_{k}(x)$ exists. Consider a function $T(y)=f(y)-f(x)-$ $(y-x) f_{1}(x)-\cdots-(y-x)^{k} f_{k}(x) / k!$ and its translate $G(t)=T(x+t)$.

Then G satisfies the hypothesis of Lemma 8 and by that lemma the function H defined by

$$
\begin{aligned}
H(y)= & \binom{l}{0} G(y) g(y)-\binom{l}{1} \int_{0}^{y} G(t) g^{\prime}(t) d t \\
& +\cdots+(-1)^{l}\binom{l}{l} \int_{0}^{y} \int_{0}^{x_{2}} \cdots \int_{0}^{x_{l-1}} G(t) g^{(l)}(t) d t \cdots d x_{2} \text { for } y \neq 0
\end{aligned}
$$

and $H(0)=0$ has an l th Peano derivative on $x-\theta$.
Moreover, by the same lemma,

$$
H_{l}(y)= \begin{cases}G_{l}(y) / y^{k-l} & \text { if } y \neq 0 \\ 0 & \text { if } y=0\end{cases}
$$

But

$$
G_{l}(t)=T_{l}(t+x)=f_{l}(t+x)-f_{l}(x)-t f_{l+1}(x)-\cdots-t^{k-l} \frac{f_{k}(x)}{(k-l)!}
$$

Therefore we have proved the following theorem.
Theorem 3. Suppose that a function f in some neighborhood of a point x has an lth Peano derivative in \mathcal{O} and a kth Peano derivative at x, where
$0 \leq l \leq k$. Then the function F defined on \mathcal{O} by

$$
F(y)= \begin{cases}\left(f_{l}(y)-\sum_{j=0}^{k-l}(y-x)^{j}\left(f_{l+j}(x)\right) / j!\right) /(y-x)^{k-l} & \text { if } y \neq x \\ 0 & \text { if } y=x\end{cases}
$$

is an lth Peano derivative.
Corollary 4. Suppose that a function f defined in some neighborhood \mathscr{O} of a point x has $a(k-1)$ th Peano derivative in \mathcal{O} and k th Peano derivative at x. Then there exists a perfect set $P \subset \mathcal{O}$ of positive measure such that x is a bilateral point of accumulation of P and

$$
\lim _{y \in P, y \rightarrow x} \frac{f_{k-1}(y)-f_{k-1}(x)}{y-x}=f_{k}(x) .
$$

Proof. The function F from Theorem 3, applied with $l=k-1$ is a ($k-1$)th Peano derivative and hence Baire 1, Darboux, and has Denjoy property. Therefore, there is a perfect set P of positive measure such that x is a bilateral point of accumulation of P and such that F is continuous at x with respect to P.
6. A_{n} CAN BE CHOSEN TO BE PERFECT

In this section we will prove that the sets A_{n} from the definition of [Δ^{\prime}] for Peano derivatives can be chosen to be perfect.

Let $y \in H(f, M, 1)$ be an isolated point of $H(f, M, 1)$. Then there is a $1>\delta(y)>0$ so that $(y-2 \delta(y), y+2 \delta(y)) \cap H(f, M, 1)=\{y\}$. Let P_{y} be a perfect set containing y so that y is a bilateral point of accumulation of P_{y} satisfying

$$
\lim _{z \in P_{y}, z \rightarrow y} \frac{f_{k-1}(z)-f_{k-1}(y)}{z-y}=f_{k}(y)
$$

and

$$
\left|\frac{f_{k-1}(z)-f_{k-1}(y)}{z-y}-f_{k}(y)\right| \leq 1 \quad \text { for every } z \in P_{y}
$$

Corollary 4 assures the existence of P_{y}. If $P_{y} \cap\left(y+\frac{1}{n+1}, y+\frac{1}{n}\right) \neq \varnothing$, for $n \in \mathbf{Z} \backslash\{-1,0\}$, then by the Baire category theorem there is $Q_{n}(y) \subset P_{y} \cap$ $\left(y+\frac{1}{n+1}, y+\frac{1}{n}\right)$, such that Q_{n} is perfect and that there is $M_{n} \in \mathbf{N}$ with $Q_{n}(y) \subset H\left(f, M_{n}, 1\right)$. Let

$$
Q_{y}=\bigcup_{n \in \mathbf{Z} \backslash\{-1,0\}} Q_{n}(y) \cap\left(y-\delta^{2}(y), y+\delta^{2}(y)\right) \cup\{y\},
$$

and let

$$
H_{M}=H(f, M, 1) \cup\left\{Q_{y}: y \in H(f, M, 1), y \text { is isolated in } H(f, M, 1)\right\}
$$

Theorem 4. H_{M} is a perfect set, and f_{k-1} is differentiable on H_{M} relative to H_{M} with $\left(\left.f_{k-1}\right|_{H_{M}}\right)^{\prime}(x)=f_{k}(x)$.
Proof. By the construction of H_{M} we see that no point is an isolated point. Note that each of Q_{y} is perfect and that $Q_{y} \cap Q_{z}=\varnothing$ if $y, z \in H(f, M, 1)$ are two different isolated points of $H(f, M, 1)$. Suppose that H_{M} is not closed. Then there is a sequence $\left\{z_{n}\right\}$ and a point z such that $\lim _{n \rightarrow \infty} z_{n}=z$
and $\left\{z_{n}\right\} \cap H(f, M, 1)=\varnothing$, but then either there is a subsequence $\left\{z_{n_{k}}\right\} \subset$ $\left\{z_{n}\right\}$ and $y \in H(f, M, 1)$ with y an isolated point of $H(f, M, 1)$ so that $\left\{z_{n_{k}}\right\} \subset Q_{y}$, or there is a sequence $\left\{y_{n_{k}}\right\} \subset H(f, M, 1)$ so that $y_{n_{k}}$ is an isolated point of $H(f, M, 1)$ and $z_{n_{k}} \in Q_{y_{n_{k}}}$ for $k=1,2, \ldots$. In the first case $z \in Q_{y} \subset H_{M}$, and in the second $y_{n_{k}} \rightarrow z$ and hence $z \in H(f, M, 1)$.

Now if $x \in H_{M}$ is an isolated point of $H(f, M, 1)$, then clearly f_{k-1}^{\prime} at x relative to H_{M} exists and is equal to $f_{k}(x)$. If $x \in Q_{y}$ for some $y \in$ $H(f, M, 1)$ where y is an isolated point of $H(f, M, 1)$, then there is $n \in$ \mathbf{Z} so that $x \in Q_{n}(y) \subset H\left(f, M_{n}(y), 1\right)$, and by the fact that there are two numbers $a<b$ so that $(a, b) \cap H_{M}=Q_{n}(y)$, we see that f_{k-1}^{\prime} at x relative to H_{M} exists and is equal to $f_{k}(x)$.

Finally let $x \in H(f, M, 1)$, and x not an isolated point of $H(f, M, 1)$. Let $\varepsilon>0$ be given. Then there is $\varepsilon>\eta>0$ so that

$$
\left|\frac{f_{k-1}(y)-f_{k-1}(x)}{y-x}-f_{k}(x)\right|<\varepsilon
$$

whenever $y \in H(f, M, 1)$ and $|y-x|<\eta$.
Let y be an isolated point of $H(f, M, 1)$, and let $z \in Q_{y}$ with $|z-x|<$ $\eta / 2$. Since $|y-z|<\delta^{2}(y)<\delta(y)$ and $|y-x|>2 \delta(y)$, we have $\eta / 2>$ $|x-z| \geq|x-y|-|y-z|>2 \delta(y)-\delta(y)=\delta(y)$. Hence $|y-x| \leq|y-z|+$ $|z-x|<\delta(y)+\eta / 2<\eta$.

Now

$$
\begin{aligned}
& \left.\left|\begin{array}{l}
\left|\frac{f_{k-1}(z)-f_{k-1}(x)}{z-x}-f_{k}(x)\right| \\
= \\
\quad \mid \\
\left.\quad \left\lvert\, \frac{f_{k-1}(y)-f_{k-1}(x)}{y-x}-f_{k}(x)\right.\right) \frac{y-x}{z-x} \\
\\
\left.\quad+\left(\frac{f_{k-1}(z)-f_{k-1}(y)}{z-y}-f_{k}(y)\right) \frac{z-y}{z-x}+\frac{z-y}{z-x}\left(f_{k}(y)-f_{k}(x)\right) \right\rvert\, \\
\leq
\end{array} \quad\right| \frac{f_{k-1}(y)-f_{k-1}(x)}{y-x}-f_{k}(x)| | 1-\frac{z-y}{z-x} \right\rvert\, \\
& \quad+\left|\frac{f_{k-1}(z)-f_{k-1}(y)}{z-y}-f_{k}(y)\right|\left|\frac{z-y}{z-x}\right|+\left|\frac{z-y}{z-x}\right|\left(\left|f_{k}(x)\right|+\left|f_{k}(y)\right|\right) \\
& \leq \varepsilon\left(1+\frac{\delta^{2}(y)}{\delta(y)}\right)+1 \cdot \frac{\delta^{2}(y)}{\delta(y)}+\frac{\delta^{2}(y)}{\delta(y)} 4 M \\
& \leq
\end{aligned}
$$

and since ε was arbitrary, we have that f_{k-1}^{\prime} at x relative to H_{M} exists and equals $f_{k}(x)$.

Acknowledgments

The author would to thank Professor C. E. Weil, his thesis advisor, for the generous help he offered during the preparation of this paper.

References

1. S. Agronsky, R. Biskner, A. Bruckner, and J. Mařik, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
2. A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer, Berlin and New York, 1978.
3. M. E. Corominas, Contribution a la théorie de la dérivation d'order supérieur, Bull. Soc. Math. France 81 (1953), 176-222.
4. H. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
5. R. J. O'Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), 243-247.
6. J. Mařik, On generalized derivatives, Real Anal. Exchange 3 (1977-78), 87-92.
7. \qquad , Derivatives and closed sets, Acta Math. Hungar. 43 (1984), 25-29.
8. S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324.
9. C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
10. \qquad , On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487-490.
11. __, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527-536.
12. A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Current address: Department of Mathematics, California State University, San Bernardino, California 92407

E-mail address: hajrudin@math.msu.edu

