DECOMPOSITION OF PEANO DERIVATIVES

HAJRUDIN FEJZIĆ

(Communicated by Andrew Bruckner)

ABSTRACT. Let Δ' be the class of all derivatives, and let $[\Delta']$ be the vector space generated by Δ' and O'Malley's class B_1^* . In [1] it is shown that every function in $[\Delta']$ is of the form g' + hk', where g, h, and k are differentiable, and that $f \in [\Delta']$ if and only if there is a sequence of derivatives v_n and closed sets A_n such that $\bigcup_{n=1}^{\infty} A_n = \mathbf{R}$ and $f = v_n$ on A_n . The sequence of sets A_n together with the corresponding functions v_n is called a decomposition of f. In this paper we show that every Peano derivative belongs to $[\Delta']$. Also we show that for Peano derivatives the sets A_n can be chosen to be perfect.

1. Introduction

Let C be the family of all continuous functions on \mathbf{R} , Δ the family of all differentiable functions on \mathbf{R} and Δ' the family of all derivatives on \mathbf{R} . If Γ is a family of functions defined on \mathbf{R} , then by $[\Gamma]$ we denote the family of all functions f on \mathbf{R} with the following property: for every $n=1,2,\ldots$ there exist $v_n \in \Gamma$ and closed sets A_n such that $\bigcup_{n=1}^{\infty} A_n = \mathbf{R}$ and $f = v_n$ on A_n . In [1, Theorem 2] it is shown that the following four conditions are equivalent:

- (i) There are g, h, and k in Δ such that h', $k' \in [C]$ and f = g' + hk'.
- (ii) There is a $\varphi \in \Delta'$ and $\psi \in [C]$ such that $f = \varphi + \psi$.
- (iii) $f \in [\Delta']$.
- (iv) There is a dense open set T and a function $k \in \Delta$ such that f is a derivative on T and f = k' on $\mathbb{R} \setminus T$.

Statement (ii) implies that $[\Delta']$ is a vector space generated by Δ' and [C]. In [1, Theorem 3] it is shown that each approximate derivative, each approximately continuous function, and each function in $B_1^* = [C]$ belongs to the class $[\Delta']$. In [5] O'Malley showed that for approximate derivatives sets A_n from the definition of $[\Delta']$ can be chosen to be perfect. A question raised in [1] is: "Does every Peano derivative belong to $[\Delta']$?"

The main goal of this paper is to show that a kth Peano derivative is in $[\Delta']$ and that the sets A_n from the definition of $[\Delta']$ can be chosen to be perfect. We will prove even more, namely, that a kth Peano derivative is a composite derivative of the (k-1)th Peano derivative. An immediate consequence of this result is that a kth Peano derivative is an approximate derivative of the

Received by the editors March 4, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26A24.

(k-1)th Peano derivative almost everywhere. This result was first proved by Zygmund and Marcinkiewicz (see [12, p. 77]).

2. Preliminaries

In this section we will recall the definition of Peano derivatives and some known properties of Peano derivatives.

Definition 1. Let f be a continuous function defined on \mathbf{R} . We say that f has kth Peano derivative at some point x, if there are real numbers f_1, f_2, \ldots, f_k such that

(1)
$$f(x+h) = f(x) + hf_1 + \dots + h^k \frac{f_k}{k!} + h^k \varepsilon_k(h)$$
 where $\lim_{h \to 0} \varepsilon_k(h) = 0$.

The number f_k is called the kth Peano derivative of f at x, and since it depends only on a function f and a point x, it will be convenient to denote it by $f_k(x)$. Similarly the continuous function $\varepsilon_k(h)$ depends on x, so we may denote it by $\varepsilon_k(x,h)$. Also, it will be convenient to denote f(x) by $f_0(x)$. With this notation (1) becomes $f(x+h) = \sum_{j=0}^k h^j \frac{f_j(x)}{j!} + h^k \varepsilon_k(x,h)$. From Definition 1 it is easy to see that if the kth Peano derivative exists, so does the nth, for 1 < n < k.

It is known that the kth Peano derivative is Baire 1, Darboux, and has Denjoy property. For these, and some other properties of Peano derivatives, see [3, 4, 6, 8-12].

3. Formula

In this section we will derive a formula that is the crux of the proof of Theorem 2.

Theorem 1. Let f be a continuous function on \mathbb{R} , and let $x \neq x_1$ and $t \neq 0$ be points such that $f_k(x)$ and $f_k(x_1)$ exist. Then the following formula holds:

$$\begin{split} &\frac{f_{k-1}(x_1) - f_{k-1}(x)}{x_1 - x} - f_k(x) \\ &= \frac{t}{x_1 - x} \frac{k - 1}{2} f_k(x) \\ &+ \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} \frac{(x_1 - x + jt)^k}{t^{k-1}(x_1 - x)} \varepsilon_k(x, x_1 - x + jt) \\ &- \frac{t}{x_1 - x} \left\{ \frac{k - 1}{2} f_k(x_1) + \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} j^k \varepsilon_k(x_1, jt) \right\}. \end{split}$$

To prove this formula we need some lemmas.

Lemma 1. For $m \in \mathbb{N}$ we have

$$\sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} j^{i} = \begin{cases} 0 & \text{if } i = 0, 1, \dots, m-1, \\ m! & \text{if } i = m, \\ \frac{m}{2} (m+1)! & \text{if } i = m+1. \end{cases}$$

Proof. The case $0 \le i \le m$ is a well-known exercise in mathematical induction. So let us consider only the case i = m + 1. Let

$$a(m) = \sum_{j=0}^{m} (-1)^{m-j} {m \choose j} j^{m+1}.$$

Then we have the following recursive formula: a(m) = ma(m-1) + mm!, and since a(1) = 1, we have $a(m) = \frac{m}{2}(m+1)!$

Definition 2. Let f be a function defined on **R**. Then for any two points x_1 and t let

$$\Delta_{k-1} = \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} f(x_1 + jt).$$

Lemma 2. Let f be a function defined on \mathbf{R} having a kth Peano derivative at some point x_1 . Then for any t the following holds:

$$\Delta_{k-1} = t^{k-1} f_{k-1}(x_1) + t^k \frac{k-1}{2} f_k(x_1) + t^k \sum_{i=0}^{k-1} (-1)^{k-1-i} \binom{k-1}{i} j^k \varepsilon_k(x_1, jt).$$

Proof.

$$\Delta_{k-1} = \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} \left(\sum_{l=0}^{k} (jt)^{l} \frac{f_{l}(x_{1})}{l!} + (jt)^{k} \varepsilon_{k}(x_{1}, jt) \right)$$

$$= \sum_{l=0}^{k} \left(\sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} j^{l} t^{l} \frac{f_{l}(x_{1})}{l!} + t^{k} \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} j^{k} \varepsilon_{k}(x_{1}, jt).$$

The rest follows from Lemma 1.

Lemma 3. Let f be a function on \mathbb{R} , and let $x \neq x_1$ be a point such that $f_k(x)$ exists. Then

$$\begin{split} \Delta_{k-1} &= t^{k-1} f_{k-1}(x) + t^{k-1} (x_1 - x) f_k(x) + t^k \frac{k-1}{2} f_k(x) \\ &+ \sum_{i=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} (x_1 - x + jt)^k \varepsilon_k(x, x_1 - x + jt). \end{split}$$

Proof.

$$\Delta_{k-1} = \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j}$$

$$\cdot \left(\sum_{l=0}^{k} (x_1 - x + jt)^l \frac{f_l(x)}{l!} + (x_1 - x + jt)^k \varepsilon_k(x, x_1 - x + jt) \right)$$

$$= \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} \sum_{l=0}^{k} (x_1 - x + jt)^l \frac{f_l(x)}{l!}$$

$$+ \sum_{l=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} (x_1 - x + jt)^k \varepsilon_k(x, x_1 - x + jt).$$

Since

$$\begin{split} \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} \sum_{l=0}^{k} (x_1 - x + jt)^l \frac{f_l(x)}{l!} \\ &= \sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} \sum_{l=0}^{k} \sum_{i=0}^{l} \binom{l}{i} (x_1 - x)^{l-i} (jt)^i \frac{f_l(x)}{l!} \\ &= \sum_{l=0}^{k} \sum_{i=0}^{l} \binom{l}{i} (x_1 - x)^{l-i} t^i \left(\sum_{j=0}^{k-1} (-1)^{k-1-j} \binom{k-1}{j} j^i \right) \frac{f_l(x)}{l!} \,, \end{split}$$

by Lemma 1 it is equal to

$$\sum_{l=k-1}^{k} \sum_{i=k-1}^{l} {l \choose i} (x_1 - x)^{l-i} t^i \left(\sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} j^i \right) \frac{f_l(x)}{l!}.$$

Applying Lemma 1 once more it is equal to

$$t^{k-1}f_{k-1}(x) + t^{k-1}(x_1 - x)f_k(x) + t^k \frac{k-1}{2}f_k(x)$$
. \square

Proof of Theorem 1. The assertion follows directly from Lemmas 2 and 3. □

4. DECOMPOSITION

In this section we will prove the main theorem, namely, that a kth Peano derivative belongs to $[\Delta']$.

Definition 3. Suppose that a function f has a kth Peano derivative at every point of \mathbf{R} . Let

$$H(f, M, \delta) = \left\{ x : \left| \frac{k-1}{2} f_k(x) + \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} j^k \varepsilon_k(x, jt) \right| \le M \text{ for } |t| < \delta \right\}$$

where M and δ are some positive constants.

Theorem 2. $H = H(f, M, \delta)$ is closed and f_{k-1} is differentiable on H relative to H with $(f_{k-1}|_H)'(x) = f_k(x)$, also $|f_k(x)| \le 2M$ for every $x \in H$.

Proof. Let $x \in \overline{H}$. Let $1 > \varepsilon > 0$ be given. There is $0 < \eta < \delta$ such that $|\varepsilon_k(x,h)| < \varepsilon$ whenever $|h| < \eta$. Let $x_n \in H$ so that $|x_n - x| < \eta/k$. Then for $t = (x_n - x)\varepsilon^{1/k}$ we have $|t| < \delta$ and $|x_n - x + jt| < \eta$, for $j = 0, 1, \ldots, k-1$. Then the formula from Theorem 1 gives

$$\left| \frac{f_{k-1}(x_n) - f_{k-1}(x)}{x_n - x} - f_k(x) \right|$$

$$\leq \varepsilon^{1/k} \frac{k-1}{2} |f_k(x)| + \sum_{j=0}^{k-1} {k-1 \choose j} \frac{(1+j\varepsilon^{1/k})^k}{\varepsilon^{(k-1)/k}} |\varepsilon_k(x, x_n - x + jt)|$$

$$+ \varepsilon^{1/k} \left| \frac{k-1}{2} f_k(x_n) + \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} j^k \varepsilon_k(x_n, jt) \right|$$

$$\leq \varepsilon^{1/k} \frac{k-1}{2} |f_k(x)| + \sum_{j=0}^{k-1} {k-1 \choose j} (1+j\varepsilon^{1/k})^k \varepsilon^{1/k} + \varepsilon^{1/k} M.$$

Therefore as $x_n \to x$ with $x_n \in H$ we get

$$\frac{f_{k-1}(x_n) - f_{k-1}(x)}{x_n - x} - f_k(x) \to 0.$$

Now let $x \in \overline{H}$, $\{x_n\}$ a sequence in H with $x_n \to x$, and $0 \neq |t| < \delta$. Then the formula from Theorem 1 yields

$$\left| t \left(\frac{k-1}{2} f_k(x) + \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} \frac{(x_n - x + jt)^k}{t^k} \varepsilon_k(x, x_n - x + jt) \right) \right|$$

$$\leq \left| t \left(\frac{k-1}{2} f_k(x_n) + \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} j^k \varepsilon_k(x_n, jt) \right) \right|$$

$$+ |f_{k-1}(x_n) - f_{k-1}(x) - (x_n - x) f_k(x)|$$

$$\leq |t| M + |f_{k-1}(x_n) - f_{k-1}(x) - (x_n - x) f_k(x)|.$$

Letting $n \to \infty$ the left-hand side becomes

$$\left| t \left(\frac{k-1}{2} f_k(x) + \sum_{j=0}^{k-1} (-1)^{k-1-j} {k-1 \choose j} j^k \varepsilon_k(x, jt) \right) \right|,$$

while the right-hand side is |t|M. Hence $x \in H$.

That $|f_k(x)| \le 2M$ on H follows from the definition of H taking t = 0. \square

Lemma 4. $\bigcup_{M=1}^{\infty} H(f, M, 1) = \mathbb{R}$.

Proof. The assertion follows from the fact that $\varepsilon_k(x, jt)$ is a continuous function of t for $j = 0, 1, \ldots, k-1$. \square

The following corollary is an immediate consequence of Lemma 4 and Theorem 2.

Corollary 1. Let f be a continuous function on \mathbf{R} such that $f_k(x)$ exists at every point of \mathbf{R} . Then $f_k \in [\Delta']$.

Proof. The corollary follows directly from Theorem 2, Lemma 4, and the fact that for any function g defined on a closed set P, that is differentiable with respect to P, there is a function G differentiable on \mathbb{R} so that $G|_P = g$ and $G'|_P = g'$. (See Mařik [7].) \square

Definition 4. Let f be a function defined on **R**. If there exist a function g and closed sets A_n , $n = 1, 2, \ldots$, such that $\bigcup_{n=1}^{\infty} A_n = \mathbf{R}$ and $g|'_{A_n}(x) = f(x)$ for $x \in A_n$, then we say that f is a composite derivative of g.

Corollary 2. f_k is a composite derivative of f_{k-1} .

An immediate consequence of this result is the following corollary, first proved by Zygmund and Marcinkiewicz. (See Zygmund [12, p. 77].)

Corollary 3. f_k is the approximate derivative of f_{k-1} almost everywhere.

5. On
$$(k-1)$$
th Peano derivatives

It was known that for any point x there is a sequence $x_n \to x$ so that

$$\lim_{n\to\infty} (f_{k-1}(x_n) - f_{k-1}(x))/(x_n - x) = f_k(x).$$

(See Weil [11] or Mařik [6].) In this section we will prove that if f_k exists at some point x and f_{k-1} exists at some neighborhood of the point x, then there is a perfect set P of positive measure such that x is a bilateral point of accumulation of P and f_{k-1} differentiates at x along P with $f_{k-1}|_P'(x) = f_k(x)$. In order to prove the above we need a few lemmas, two of which (Lemma 5 and Lemma 7) are known. (See Corominas [3].)

Lemma 5. Let f and g be functions on \mathbb{R} such that the g-nth Peano derivatives g-nth g

$$(fg)_n(x) = \sum_{j=0}^n \binom{n}{j} f_j(x) g_{n-j}(x).$$

Lemma 6. Let f and g be functions on \mathbb{R} such that the nth Peano derivative, $f_n(x)$, and the nth ordinary derivative, $g^{(n)}(x)$, exist at some point x. Then

$$\sum_{i=0}^{n} (-1)^{j} \binom{n}{j} (fg^{(j)})_{n-j}(x) = f_{n}(x)g(x).$$

Proof. By Lemma 5

$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} (fg^{(j)})_{n-j}(x)$$

$$= \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \sum_{i=0}^{n-j} \binom{n-j}{i} f_{i}(x) (g^{(j)})_{(n-j-i)}(x)$$

$$= \sum_{j=0}^{n} (-1)^{j} \binom{n}{j} \sum_{i=0}^{n-j} \binom{n-j}{i} f_{i}(x) g^{(n-i)}(x)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} (-1)^{j} \binom{n}{j} \binom{n-j}{i} f_{i}(x) g^{(n-i)}(x)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} (-1)^{j} \binom{n-i}{j} \binom{n}{i} f_{i}(x) g^{(n-i)}(x)$$

$$= \sum_{i=0}^{n} \binom{n}{i} \sum_{j=0}^{n-i} (-1)^{j} \binom{n-i}{j} f_{i}(x) g^{(n-i)}(x)$$

$$= f_{n}(x) g(x) + \sum_{i=0}^{n-1} \binom{n}{i} (1-1)^{n-i} f_{i}(x) g^{(n-i)}(x) = f_{n}(x) g(x). \quad \Box$$

Lemma 7. Let H be a function defined in a neighborhood $\mathscr O$ of a point y. Suppose that H is n times Peano differentiable in $\mathscr O$ and that H_n is m times Peano differentiable in $\mathscr O$. Then H is (n+m) times Peano differentiable at y, and $H_{(n+m)}(y) = (H_n)_m(y)$.

Lemma 8. Let f be defined in some neighborhood \mathscr{O} of 0. Suppose that the kth Peano derivative of f at 0 exists and that the lth Peano derivative of f exists in \mathscr{O} , where k and l are positive integers with $l \le k-1$. Also suppose that $f(0) = f_1(0) = \cdots = f_k(0) = 0$. Let $g(y) = y^{-(k-l)}$. Then the function h defined by

$$h(y) = {l \choose 0} f(y)g(y) - {l \choose 1} \int_0^y f(t)g'(t) dt + \dots + (-1)^l {l \choose l} \int_0^y \int_0^{x_2} \dots \int_0^{x_{l-1}} f(t)g^{(l)}(t) dt \dots dx_2 \quad \text{for } y \neq 0,$$

and h(0) = 0 has an 1th Peano derivative on \mathcal{O} . Moreover,

$$h_l(y) = \begin{cases} f_l(y)/y^{k-l} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

Proof. By assumption, $f(y) = y^k \varepsilon_k(0, y)$. Consequently all of the above integrals are integrals of continuous functions. Hence h is well defined. Moreover,

for $y \neq 0$, $y \in \mathcal{O}$

$$H(y) = \int_0^y \int_0^{x_2} \cdots \int_0^{x_{i-1}} f(t)g^{(i)}(t) dt \cdots dx_2, \qquad i = 1, \ldots, l,$$

is i times ordinarily differentiable and $H^{(i)}(y) = f(y)g^{(i)}(y)$ for i = 1, ..., l. By Lemma 5, $fg^{(i)}$ is l times Peano differentiable at y. Therefore by Lemma 7, H is l times Peano differentiable at y and

$$H_l(y) = (H^{(i)})_{l-i}(y) = (f(y)g^{(i)}(y))_{(l-i)}.$$

Hence h is l times Peano differentiable at y and

$$h_l(y) = \sum_{j=0}^{l} (-1)^j \binom{l}{j} (fg^{(j)})_{(l-j)}(y),$$

and, by Lemma 6, $h_l(y) = f_l(y)g(y)$.

It remains to prove that $h_l(0)$ exists and that $h_l(0) = 0$. For $y \neq 0$

$$\frac{h(y)}{y^{l}} = \frac{1}{y^{l}} \left\{ \binom{l}{0} y^{l} \varepsilon_{k}(0, y) + (k - l) \binom{l}{1} \int_{0}^{y} t^{l-1} \varepsilon_{k}(0, t) dt + \dots + (k - l)(k - l + 1) \dots (k - 1) \cdot (k - 1)$$

Hence $\lim_{y\to 0}(h(y)/y^l)=0$. Therefore $h(0)=h_1(0)=\cdots=h_l(0)=0$. \square

Now suppose that f has an lth Peano derivative in some neighborhood \mathscr{O} of a point x and that $f_k(x)$ exists. Consider a function $T(y) = f(y) - f(x) - (y - x)f_1(x) - \cdots - (y - x)^k f_k(x)/k!$ and its translate G(t) = T(x + t).

Then G satisfies the hypothesis of Lemma 8 and by that lemma the function H defined by

$$H(y) = {l \choose 0} G(y)g(y) - {l \choose 1} \int_0^y G(t)g'(t) dt + \dots + (-1)^l {l \choose l} \int_0^y \int_0^{x_2} \dots \int_0^{x_{l-1}} G(t)g^{(l)}(t) dt \dots dx_2 \quad \text{for } y \neq 0$$

and H(0) = 0 has an *l*th Peano derivative on $x - \mathcal{O}$. Moreover, by the same lemma,

$$H_l(y) = \begin{cases} G_l(y)/y^{k-l} & \text{if } y \neq 0, \\ 0 & \text{if } y = 0. \end{cases}$$

But

$$G_l(t) = T_l(t+x) = f_l(t+x) - f_l(x) - t f_{l+1}(x) - \dots - t^{k-l} \frac{f_k(x)}{(k-l)!}$$

Therefore we have proved the following theorem.

Theorem 3. Suppose that a function f in some neighborhood $\mathscr O$ of a point x has an lth Peano derivative in $\mathscr O$ and a kth Peano derivative at x, where

 $0 \le l \le k$. Then the function F defined on \mathscr{O} by

$$F(y) = \begin{cases} (f_l(y) - \sum_{j=0}^{k-l} (y-x)^j (f_{l+j}(x))/j!)/(y-x)^{k-l} & \text{if } y \neq x, \\ 0 & \text{if } y = x \end{cases}$$

is an 1th Peano derivative.

Corollary 4. Suppose that a function f defined in some neighborhood $\mathscr O$ of a point x has a (k-1)th Peano derivative in $\mathscr O$ and kth Peano derivative at x. Then there exists a perfect set $P \subset \mathscr O$ of positive measure such that x is a bilateral point of accumulation of P and

$$\lim_{y \in P, y \to x} \frac{f_{k-1}(y) - f_{k-1}(x)}{y - x} = f_k(x).$$

Proof. The function F from Theorem 3, applied with l=k-1 is a (k-1)th Peano derivative and hence Baire 1, Darboux, and has Denjoy property. Therefore, there is a perfect set P of positive measure such that x is a bilateral point of accumulation of P and such that F is continuous at x with respect to P. \square

6. A_n CAN BE CHOSEN TO BE PERFECT

In this section we will prove that the sets A_n from the definition of $[\Delta']$ for Peano derivatives can be chosen to be perfect.

Let $y \in H(f, M, 1)$ be an isolated point of H(f, M, 1). Then there is a $1 > \delta(y) > 0$ so that $(y - 2\delta(y), y + 2\delta(y)) \cap H(f, M, 1) = \{y\}$. Let P_y be a perfect set containing y so that y is a bilateral point of accumulation of P_y satisfying

$$\lim_{z \in P_{v}, z \to v} \frac{f_{k-1}(z) - f_{k-1}(y)}{z - v} = f_{k}(y)$$

and

$$\left|\frac{f_{k-1}(z) - f_{k-1}(y)}{z - y} - f_k(y)\right| \le 1 \quad \text{for every } z \in P_y.$$

Corollary 4 assures the existence of P_y . If $P_y \cap (y + \frac{1}{n+1}, y + \frac{1}{n}) \neq \emptyset$, for $n \in \mathbb{Z} \setminus \{-1, 0\}$, then by the Baire category theorem there is $Q_n(y) \subset P_y \cap (y + \frac{1}{n+1}, y + \frac{1}{n})$, such that Q_n is perfect and that there is $M_n \in \mathbb{N}$ with $Q_n(y) \subset H(f, M_n, 1)$. Let

$$Q_{y} = \bigcup_{n \in \mathbb{Z} \setminus \{-1, 0\}} Q_{n}(y) \cap (y - \delta^{2}(y), y + \delta^{2}(y)) \cup \{y\},$$

and let

$$H_M = H(f, M, 1) \cup \{Q_y : y \in H(f, M, 1), y \text{ is isolated in } H(f, M, 1)\}.$$

Theorem 4. H_M is a perfect set, and f_{k-1} is differentiable on H_M relative to H_M with $(f_{k-1}|_{H_M})'(x) = f_k(x)$.

Proof. By the construction of H_M we see that no point is an isolated point. Note that each of Q_y is perfect and that $Q_y \cap Q_z = \emptyset$ if $y, z \in H(f, M, 1)$ are two different isolated points of H(f, M, 1). Suppose that H_M is not closed. Then there is a sequence $\{z_n\}$ and a point z such that $\lim_{n\to\infty} z_n = z$

and $\{z_n\} \cap H(f, M, 1) = \emptyset$, but then either there is a subsequence $\{z_{n_k}\} \subset \{z_n\}$ and $y \in H(f, M, 1)$ with y an isolated point of H(f, M, 1) so that $\{z_{n_k}\} \subset Q_y$, or there is a sequence $\{y_{n_k}\} \subset H(f, M, 1)$ so that y_{n_k} is an isolated point of H(f, M, 1) and $z_{n_k} \in Q_{y_{n_k}}$ for $k = 1, 2, \ldots$. In the first case $z \in Q_y \subset H_M$, and in the second $y_{n_k} \to z$ and hence $z \in H(f, M, 1)$.

Now if $x \in H_M$ is an isolated point of H(f, M, 1), then clearly f'_{k-1} at x relative to H_M exists and is equal to $f_k(x)$. If $x \in Q_y$ for some $y \in H(f, M, 1)$ where y is an isolated point of H(f, M, 1), then there is $n \in \mathbb{Z}$ so that $x \in Q_n(y) \subset H(f, M_n(y), 1)$, and by the fact that there are two numbers a < b so that $(a, b) \cap H_M = Q_n(y)$, we see that f'_{k-1} at x relative to H_M exists and is equal to $f_k(x)$.

Finally let $x \in H(f, M, 1)$, and x not an isolated point of H(f, M, 1). Let $\varepsilon > 0$ be given. Then there is $\varepsilon > \eta > 0$ so that

$$\left|\frac{f_{k-1}(y)-f_{k-1}(x)}{y-x}-f_k(x)\right|<\varepsilon$$

whenever $y \in H(f, M, 1)$ and $|y - x| < \eta$.

Let y be an isolated point of H(f, M, 1), and let $z \in Q_y$ with $|z - x| < \eta/2$. Since $|y - z| < \delta^2(y) < \delta(y)$ and $|y - x| > 2\delta(y)$, we have $\eta/2 > |x - z| \ge |x - y| - |y - z| > 2\delta(y) - \delta(y) = \delta(y)$. Hence $|y - x| \le |y - z| + |z - x| < \delta(y) + \eta/2 < \eta$.

Now

$$\begin{split} \left| \frac{f_{k-1}(z) - f_{k-1}(x)}{z - x} - f_k(x) \right| \\ &= \left| \left(\frac{f_{k-1}(y) - f_{k-1}(x)}{y - x} - f_k(x) \right) \frac{y - x}{z - x} \right. \\ &+ \left. \left(\frac{f_{k-1}(z) - f_{k-1}(y)}{z - y} - f_k(y) \right) \frac{z - y}{z - x} + \frac{z - y}{z - x} (f_k(y) - f_k(x)) \right| \\ &\leq \left| \frac{f_{k-1}(y) - f_{k-1}(x)}{y - x} - f_k(x) \right| \left| 1 - \frac{z - y}{z - x} \right| \\ &+ \left| \frac{f_{k-1}(z) - f_{k-1}(y)}{z - y} - f_k(y) \right| \left| \frac{z - y}{z - x} \right| + \left| \frac{z - y}{z - x} \right| (|f_k(x)| + |f_k(y)|) \\ &\leq \varepsilon \left(1 + \frac{\delta^2(y)}{\delta(y)} \right) + 1 \cdot \frac{\delta^2(y)}{\delta(y)} + \frac{\delta^2(y)}{\delta(y)} 4M \\ &\leq 2\varepsilon + \delta(y)(1 + 4M) \leq 2\varepsilon + \frac{\varepsilon}{2}(1 + 4M) \,, \end{split}$$

and since ε was arbitrary, we have that f'_{k-1} at x relative to H_M exists and equals $f_k(x)$. \square

ACKNOWLEDGMENTS

The author would to thank Professor C. E. Weil, his thesis advisor, for the generous help he offered during the preparation of this paper.

REFERENCES

- 1. S. Agronsky, R. Biskner, A. Bruckner, and J. Mařik, Representations of functions by derivatives, Trans. Amer. Math. Soc. 263 (1981), 493-500.
- A. M. Bruckner, Differentiation of real functions, Lecture Notes in Math., vol. 659, Springer, Berlin and New York, 1978.
- 3. M. E. Corominas, Contribution a la théorie de la dérivation d'order supérieur, Bull. Soc. Math. France 81 (1953), 176-222.
- 4. H. Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444-456.
- R. J. O'Malley, Decomposition of approximate derivatives, Proc. Amer. Math. Soc. 69 (1978), 243–247.
- 6. J. Mařik, On generalized derivatives, Real Anal. Exchange 3 (1977-78), 87-92.
- 7. _____, Derivatives and closed sets, Acta Math. Hungar. 43 (1984), 25-29.
- 8. S. Verblunsky, On the Peano derivatives, Proc. London Math. Soc. (3) 22 (1971), 313-324.
- 9. C. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363-376.
- 10. _____, On approximate and Peano derivatives, Proc. Amer. Math. Soc. 20 (1969), 487-490.
- 11. _____, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527-536.
- 12. A. Zygmund, Trigonometric series, 2nd ed., Cambridge Univ. Press, Cambridge, 1959.

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Current address: Department of Mathematics, California State University, San Bernardino, California 92407

E-mail address: hajrudin@math.msu.edu