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ON THE SPECTRUM
OF THE NEUMANN LAPLACIAN OF LONG RANGE HORNS:

A NOTE ON THE DAVIES-SIMON THEOREM

v. jakSiC

(Communicated by Theodore Gamelin)

Abstract. For a class of regions with cusps (e.g., ii = {{x, y) : x > 1 ,

\y\ < e\p{-xa)} , 0 < a < 1) we show that (Tac(-A^) = [0, oo) of uniform

multiplicity one, crsmg(—A$) = 0 , and opp{-A^) consists of a discrete set of

embedded eigenvalues of finite multiplicity.

1. Introduction

This note is a contribution to the study of spectral properties of Neumann

Laplacians on regions of the form

(1.1) n = {(x,y):x>l, \y\<f(x)},

where / is a strictly positive C2[l, oo) function. The Neumann Laplacian on

Q, -A" = H, is a unique selfadjoint operator in L2(Q) whose quadratic form

is given by the closure of

(1.2) q(<p,<l>)= I m2dx,
Ja

on Crj(Q). The spectral properties of H in regions (1.1) have been studied in

[2, 5, 8] and, if specialized to the case when f(x) = exp(-xa), a > 0, they

can be stated as follows (/ ~ g stands for limx_oo f(x)/g(x) = 1).

Theorem 1.1. (i) [5] H has a discrete spectrum iff a> 1.

(ii) [8] If NE(H) denotes the number of eigenvalues of H which are less than

E, then for a > 1

/oo exp(-xa)dx,

where
C(n\ = l ^V/(1~a)        r(1/(2(Q~1)))

W     4(a-l)y/n\2J T(3/2 + l/(2(a - 1))) '
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664 V. JAKSIC

(iii) [2] If a = 1, o^H) = [|, oo) of uniform multiplicity one, oSing(H) — 0.

and Opp(H) consists of a discrete set 0 = Xo < X\ < ■ ■ ■ < Xn -* oo of eigenvalues

of finite multiplicity.
(iv) [2] If 0 < a < j, the results of part (iii) remain valid except that now

o-ac(//) = [0,co).

In this paper we prove a theorem which, specialized to the above example,

covers the range \ < a < 1; namely, we will show that all the conclusions of

Theorem 1.1 (iv) are valid for 0 < a < 1. Thus, at least in the above special

case, we have a complete picture of what happens with the Neumann Laplacian

(for some recent examples of surprising spectral properties of -A$, even for

bounded regions Q, we refer to [6, 14]).

Our strategy (and our proof) follows closely the one of Davies and Simon

[2]. The major observation made in [2] is that any spectral behavior which dis-

tinguishes H from the Dirichlet case (e.g., existence of a continuous spectrum)

can come only from the subspace P consisting of functions which depend on
the x variable only and which are in the form domain of H (such functions
cannot be in the form domain of Dirichlet Laplacian). Restricted to such a

subspace, the form (1.1) acts as

/oo
\u'(x)\2f(x)dx,

and viewed as a form on L2([l, oo), 2f(x)dx) yields an operator which

is unitarily equivalent to the one-dimensional Schrodinger operator on

L2([l, oo), dx) of the form

(1.4) *__g, + KW,      r = !(£) +!(£)'.

On the subspace orthogonal to P, H acts in effect as a Dirichlet Laplacian,

and off-diagonal perturbation terms are controlled by the function

k(x) = \f'(x)\ + f'(x)2/f(x).

We say that a function g on [1, oo) is short-range if g(x) = 0(x~x~e) for

some e > 0. Davies and Simon proved the following in [2]:

Theorem 1.2. (i) ///-»0 and /c-»0 as x —> oo, H has discrete spectrum if

and only if Hy does.
(ii) If k and V are short range, we have o~ac(H) = [0, oo) of uniform multi-

plicity, o-Sing(#) = 0. and Opp(H) consists of a discrete set 0 = Xo < Xi < ■•■ <

X„ —> oo of embedded eigenvalues of finite multiplicity.

When f(x) = exp(-xa),

V(X) = ^x2^-" - a{a ~ 1}x<"-2)

and Theorem 1.2 certainly yields parts (i), (iv) of Theorem 1.1. Case a = 1 is

somewhat special since then V = \ : The argument of [2] still carries through,
with the obvious shift of the essential spectrum. With some additional technical

assumptions it was shown in [8] that in case (i) of Theorem 1.1 one has

(1.5) NE(H)~N(Hv) + ^Vol(Cl).
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Using the semiclassical formula and (1.5) we get part (ii) of Theorem 1.1.

It is now easy to understand why a = \ is the critical value: while for

0 < a < \ the potential V is short-range, for \ < a < 1 it becomes long-
range (thus the name, long-range horns), and to treat perturbations one has

to use the long-range scattering theory, which tends to be technically involved

(particularly in the case when V(x) ~ x~P, 0 < p < j, which corresponds

to the range | < a < 1). The authors of [2] used the short-range Enss theory

to treat perturbations and conjectured "that it is likely that one can modify
... [their] ... argument" to prove the analog of Theorem 1.2(h) in the long-
range case. By replacing the short-range Enss theory with the long-range one we

extend Theorem 1.2 to the case where V is long-range and dilation analytic.

The dilation analyticity assumption, although restrictive, covers the example of
Theorem 1.1 and enables a particularly simple technical treatment, thanks to
the work of Perry [10, 11].

In the sequel, H0 stands for the one-dimensional free Laplacian. Let u(6):

L2(R) -» L2(R) be a unitary mapping defined as

u(d)4>(x) = exp(d/2)(p(exp(e)x).

A potential V, defined on the whole real line, is called dilation analytic [11,

12] if V is //"o-compact and the operator-valued function

C(d) = u(8)Vu(8)-x(Ho + l)-x

extends to an analytic operator-valued function on the strip S^(a) = {z : -a <
lm(z) < a} for some a > 0.

With V as in (1.4), we define

V(x) = V(\x\ + l),        X£R.

In the sequel we assume that / is C3[l, oo) so that  V is a differentiable
function. Our main result is

Theorem 1.3. Suppose that k and V are short range and that V is dilation

analytic. Then all conclusions of Theorem 1.1 (iv) remain valid.

Since, for f(x) = exp(-xa),

V(x) = ^(|jc| + I)2'"-1' - ^2-^(1*1 + 1)a~2

is certainly dilation analytic [11] if 0 < a < 1, the above theorem applies to

the range of a not covered by Theorem 1.1.

We finally remark that all the above-mentioned results have natural exten-

sions to higher-dimensional nonsymmetric regions, as well as to manifolds with
metric cusps at infinity [2, 6, 8].

2. Proof of Theorem 1.3

Let Hy be the operator (1.4) with the Neumann boundary condition at 1

and denote by

£> = {te:^eC2[l,oo), </(l) = 0}

its domain of essential selfadjointness. Let /: L2(R) —» L2(Q) be the embed-

ding (J<p)(x) = <f>(x)/y/2f(x), and denote Q=l-JJ*.
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The first ingredient in our argument is the following result of Davies and

Simon [2].

Theorem 2.1. (i) If 4> £ D,

\\(H + l)~xl2(HJ - JHv)cf>\\ < 2 • \\f'<p\\2 + \\((f')2/f)<f>\\2 + C\<p(l)\,

where C is a positive constant.
(ii) Q(H + l)~xl2 is a compact operator in L2(Q) .

(iii) If g is a continuous function on R\J{oo), g(H)J -J g(Hv) is a compact

operator in L2(Q).

We now use the decay of V and the dilation analyticity of V to obtain

a useful decomposition of V into a short-range part and a smooth long-range

dilation analytic part [10].  V can be decomposed as

(2.1) V(x) = VL(x) + Vs(x),

where Vl(x) is a C°° dilation analytic potential with all derivatives bounded,

V'(x) = 0(\x\-x-s),

and Vs(x) is a short-range function. Both parts VE , Vs can be chosen to be

even functions around 0, and thus they induce the decomposition

V(x) = VL(x) + Vs(x),

with obvious inheritance of properties. We refer to [10] for a proof of (2.1).

Vl is defined as the Weierstrass transform of V,

Let

Hl = H0+Vl,        Hl = -~ + Vl,

where the second operator acts on L2([l, oo), dx) with the Neumann boundary

condition at 1. The third ingredient in the argument consists of Perry's propaga-

tion estimates [10, 11] on exp(-itHi) (see also [1]), which automatically yield

the propagation estimates on exp(-itHi). Let A be a scale transformation

around x — 1 [1, 10],

A = $((x-l)'P+p-(x-l)),

where p = -iD = -id/dx in the x-space representation. A is essentially
selfadjoint on Cq°(R) , o(A) — oac(A) = (-co, co), and A leaves invariant the

subspace of functions which are even around 1. By P± we denote the spectral

projections of A on ±(0, co) and by i± the spectral projections on ±(a, co).

Obviously, P+ + P_ = 1. It is a standard result [ 12] that operators HL , HL

have no (strictly) positive eigenvalues, that fjsing(///.) = 0sing(#z.) = 0, and that

^hc(Hl) = 0zc(Hl) = [0, co). Since V is even around 0, HL preserves the

subspace of functions which are in its domain and are even around 0. After

translation by 1, the restriction of HL to that subspace coincides with Hi. In
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the sequel we will use Enss' notation where F(M) stands for the characteristic

function of the set M. Pzc will denote the spectral projection on the absolutely

continuous subspace of Hl ■ Viewing Hl as a restriction of Hl (keeping the
above translation in mind) we have

Theorem 2.2. (i) Let g be a C°° function with support in [a, /?], a > 0. Then

for any 8 > 0, N > 0, and aeR,

(2.2) \\F(l <x< \t\x-d)exp(itHL)g(HL)P£\\ = 0(1*1"")

as t -> ±co.

(ii) s-lim^-too jP£ exp(-itHL) - 0.

The above theorem is a result by Perry [10, 11].

Since Hl plays the role of the "free Laplacian" in the discussion below, it is

worthwhile to rephrase part (i) of Theorem 2.1 as

\\(H + l)~xl2(JH - JHL)<t>\\ < 2 • Wf'tph + \\((f')2/f)tp\\2 + \\VLcf>\\2 + C\<p(l)\

and to note, concerning part (iii), that g(H)J - Jg(HL) is a compact operator

in L2(Q) (since g(Hv) - g(HL) is compact).
Since VL is bounded from below, without loss of generality we can assume

Vl > 0. The final technical lemma is the following

Lemma 2.3.

\\(H + l)-x'2(HJ - JHL)(HL + l)~xF(x > R)\\ = 0(R-X~e).

The proof is standard [1, Lemma 5.4], using Theorem 2.1(i) and the fact that

k, Vs are short-range.
From now on, the proof follows line-by-line the argument of Davies and

Simon [2]. We give the details in the appendix for the reader's convenience.

Appendix

Step I. s-limt^±oc(H+l)~xl2exp(itH)Jexp(-itHL)Pac exists. Let us consider

only the limit t —> co; a similar consideration applies to the other one. By
Cook's criterion, it suffices to show that

/•OO

/     \\(H + l)-x'2(HJ - JHL)exp(-itHL)g(HL)Pl\\dt < oo,
Jo

where g is as in Theorem 2.2, since Ua gR&nS(HL)P+ is dense in 3%c(Hl) .

Denote
A(t) = \\(H + l)~xl2(HJ - JHL) exp(-itHL)g(HL)Pl\\.

Choosing 8 < e in (2.2), we estimate, using Theorem 2.2 and Lemma 2.3,

A(t) < \\(H + l)-x'2(HJ - JHL)(HL + l)-xF(x > rx~s)\\

+ \\F(l <x< rx-s)exp(-itHL)(HL + l)g(HL)P?\\

<0(rx-e+s).

Step 2. The wave operators Q± = s-lim,_>=Fooexp(////)/exp(-///i£)Pac exist.

(H + l)~xl2J - J(HL + l)"1/2 is compact by Theorem 2.1, since

(H+l)-x'2J-J(HL+l)-x'2

= (H+ l)-x'2J - J(HV + l)-x'2 + J(HV + I)'1'2 - J(HL + l)~x'2.
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Thus

s- lim exp(-/?//)((i/+l)-1/2y-/(//L+l)-1/2)exp(-////L)JPac = 0.
t—»=F°°

By Step 1, fi*^ exist if <p £ Ran(HL + l)_1/2.Pac, and the last set coincides

with J%C(HL).

Step 3.  (H + 1)-1/2(Q± - J)g(HL)P± is a compact operator.

First, since (HL + l)~x/2(exp(itHL)J exp(-itHL) - J)g(HL)P± converges in

the operator norm as / —> ±co, it suffices to show that each of these operators

is compact. On the other hand, they are integrals of operators of the form

(A.l) (H+ iyxl2(HJ - JHL)exp(-itHL)g(HL)P±,

and thus it suffices to show that the operators (A.l) are compact. But that is a

consequence of part (iii) of Theorem 2.1 and of the fact that Vs is short-range.

Step 4. If (pn £ %ZC(H~)L , with \\(H + 1)0„|| bounded and (H + l)xl2(pn - 0
weakly, then \\4>n\\ ->0 as n —► co.

First, (Ti^Ytpn = 0 for all n, and thus for any Crf((0, co)) function g,

Step 3 yields

P±g(HL)J*Cpn^0.

Since P+ + P- = 1 and g(HL)J* - J*g(H) is a compact operator, we obtain

that J*g(H)4>„ -> 0. Since \\(H + l)<f>„\\ is bounded, we estimate

(A.2) \\g(H)^„-M <C-\\(g(H) - 1) •(//+ 1)-»||.

Since g is arbitrary, the left-hand side of (A.2) can be made arbitrarily
small, and thus J*4>n -» 0, and so JJ*<pn -+ 0. By Theorem 2.1, Q<p„ =
(1 - JJ*)(pn —► 0, and we conclude that 4>„ —► 0.

Step 5. CTsing(#) = 0 and in any finite interval H has only finitely many

eigenvalues. If any of the statements is not valid, we can construct an or-

thonormal sequence (j>n so that (j>n £ ^c(H)1-, \\(H + l)(pn\\ is bounded, and

(H + l)xl24>n -* 0 weakly. Step 4 implies then that 4>„ —> 0, which contradicts
the fact that the sequence 4>„ is orthonormal.

Step 6. <7ac(H) has multiplicity one. It suffices to show that RanQ+ =

<%Zc(H) • Suppose that it is not, namely, that we can find a nonzero vector tf> e
^c(H) n (Ran Q+ )x n D(H). Define 4>n = exp(-inH)(f>. Part (ii) of Theorem

2.2 yields

P±(Q±)*r>„ = P± exp(-inHL)P!lc(cl±)*(f) - 0    as n -> co.

Thus, as in Step 4, ||$„|| -+ 0, and we derive that (p = 0, a contradiction.

Step 1. There exists a discrete set of embedded eigenvalues. This is a conse-
quence of symmetry of Q with respect to the axes y = 0. Let E be the

subspace of L2(Q) consisting of those functions which are even under reflec-

tion (x, y) —> (x, -y). That subspace is invariant under Q and H, and thus
H restricted to it has a compact resolvent by Theorem 2.1.
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