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Abstract. Let Xx and X2 be Banach spaces, and let Xx x X2 be equipped

with the l\ -norm. If the first space Xx is uniformly convex in every direction,

then Xx x X2 has the fixed point property for nonexpansive mappings (FPP) if

and only if R x X2 (with the l\ -norm) does. If X\ is merely strictly convex,

(R x X2) has the FPP, and C, C Xt are weakly compact and convex with the

FPP (for z = 1,2), then the fixed point set of every nonexpansive mapping

T: Cx x C2 —> C[ x C2 is a nonexpansive retract of Cx x C2 .

Introduction

Our purpose in this paper is to provide sufficient conditions for a product of

two Banach spaces Xx x X2 equipped with the /j-norm to have the fixed point
property for nonexpansive mappings (FPP) and for the fixed point sets of such

mappings to be nonexpansive retracts.

First we show that if the first space Xx is uniformly convex in every direction,
then Xx x X2 has the FPP if and only if R x X2 (with the /i-norm) does. Next
we prove that if Xx is merely strictly convex, R x X2 has the FPP, and C, c X,
are weakly compact and convex with the FPP, then the fixed point set of every

nonexpansive mapping T: Cx x C2 -* Cx x C2 is a nonexpansive retract of

Cx x C2. The same conclusion holds if both spaces are strictly convex. It turns

out that there are many spaces X2 such that Rxl2 does indeed have the FPP.
We include a list of spaces with this property. Finally, we show that if Xx has

the Schur property and X2 has the semi-Opial property, then (Xx x X2)x again

has the FPP.
For a study of the FPP in product spaces endowed with norms generated by a

strictly convex norm on the positive cone of R2 , see [26], which also contains a

comprehensive bibliography for this kind of problem. The case of the /oo-norm

is still only partially understood [13, 23, 27, 28, 36].

Existence of fixed points

Recall that if C is a nonempty subset of a Banach space (X, \\ • ||), then

T: C -* C is said to be nonexpansive if \\Tx — Ty\\ < \\x-y\\ for all x and y
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in C. We say that a nonempty weakly compact convex subset C of a Banach

space (X, || • ||) has the fixed point property for nonexpansive mappings (FPP)

if every nonexpansive self-mapping T of C has a fixed point. A Banach space

(X, || • ||) is said to have the FPP if every nonempty weakly compact convex

subset of X has the FPP.
The following lemma (due to Goebel and Karlovitz) will be very useful in

the sequel.

Lemma [12-14, 18]. Assume that C is a nonempty, weakly compact, and convex

subset of the Banach space (X, \\ • \\). If T: C —> C is nonexpansive and C
is minimal, then, for every sequence {xn} in C with lim„ ||jc„ - Fjc„|| = 0,

lim„ \\x -x„\\ — diamC for each x £ C.

Here we recall that if C is a nonempty weakly compact convex subset of the

Banach space (X, || • ||) and T: C —> C is nonexpansive, then we say that C

is a minimal set with respect to T (or simply minimal) if it contains no proper

closed convex subsets which are invariant under T.

We need one more definition. For a Banach space (X, || • ||) and a fixed

element z e X with ||z|| = 1, let the modulus of convexity of X in the

direction z £ X be the function dz: [0, 2] -* [0, 1] defined by

*,(e)=inf{l-J||x + y||:||jc||<l, ||y||<l, ||JC-y||>«

and x - y = tz for some (el).

If Sz(e) > 0 for all e > 0 and all such z, then X is called uniformly convex

in every direction [9, 10] (see also [1, 6, 7, 29]).

Theorem 1. Let (Xx, || • \\x) be a Banach space which is uniformly convex in

every direction. If (X2, || • \\2) is a Banach space such that R x X2 with the

lx-norm has the FPP, then Xx x X2 with the lx-norm also has the FPP.

Proof. Let C be a nonempty, weakly compact, and convex subset of Xx x X2 ,

and let T: C -» C be a nonexpansive mapping. We can assume that C is

minimal, diam C > 0, and 0 £ C. Let {x„} = {(xnX, xn2)} be an approximate

fixed point sequence in C (i.e., lim„ \\xn - Txn\\ = 0). By the separability

of C and the Goebel-Karlovitz Lemma we can also assume that for every

x = (xx, x2) £ C the following limits exist:

lim ||x-x„|| = diam C,    lim||xi -x„i||i,    and    lim ||jc2 -xn2\\2.
n n n

Now we show that ProjXi C is a segment. To this end, assume that

yx i = Projjr, (yi i,yn) = ProjXiVi    and   y2X = ProjXi (y2x, y22) = Proj^ y2

are two points in Proj^C such that 0, yxx, and y2x are not collinear. Then

without loss of generality we may assume that

lim ll^n -x„i||i = lim \\y2x - xnX\\x >0,
n n
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and therefore we obtain the following contradiction:

diam C = lim ||\(yx+y2)- x„\\

= lHtt[||£(>ll+y2l)-.Xnl||l + ll3(};12+>;22)-X„2||2]

< ilim[||yn -x„i||j + ||yi2 - xn2\\2]

-4- i lim[||^21 -JCnllll + 11^22-JC112II2]
n

= A lim \\yx - xn|| + A lim \\y2 - x„\\ = diam C.
*■    n n

Hence C cRxX2, and therefore it consists of one point. The proof is complete.

Nonexpansive retracts

Let (X, || • ||) be a Banach space and C be a nonempty subset of X. We say

that a nonempty subset D of C is a nonexpansive retract of C if there exists

a nonexpansive mapping r: C —> D such that r\t> is the identity mapping.

Theorem 2. Let (Xx, \\-\\x) be a strictly convex Banach space, and let (X2, || • H2)
be a Banach space such that RxX2 with the lx -norm has the FPP. Let the product

space Xx x X2 be furnished with the lx-norm. If 0 ± Cx c Xx and 0 ^ C2 c X2
are weakly compact and convex and Cx has the FPP, then the fixed point set

of every nonexpansive self-mapping T of Cx x C2 is a nonexpansive retract of

CxxC2.

Proof. We apply Bruck's method [3]. It is sufficient to prove that

Vxo £Cxx C23F £ N(Fix T) Fx0 £ Fix T = {x £ Cx x C2: Tx = x},

where

A^Fix T) — {F: Cx x C2 -+ Cx x C2: F is nonexpansive and Fix T c FixF} .

(In [24] Kirk and Martinez Yanez proved that FixF ^ 0; see also [21].) In

A^Fix T) with the partial order given by

F <G = {either F = G or \\Fx - Fy\\ < \\Gx - Gy\\ for

all x, y £ Cx x C2 with strict inequality holding

for at least one pair of points x, y £ Cx x C2},

there exists a minimal element r = (rx, r2). Fix this r and consider the sub-

family

AT'(Fix T) = {V e A^(Fix T): Vjc , y £ Cx x C2 \\r'x - r'y\\ = \\rx - ry\\)

of Af(Fix T). The subfamily A77(Fix T) is nonempty, convex, and compact

in the topology of weak pointwise convergence. In addition, we have Tr' £

Ar(Fix T) for every r' £ A7'(Fix T). Now choose and fix Xo £ Cx x C2 . Without

loss of generality we can assume that 0 £ FixF and rx(xo) ± 0. Set D =
{r'(xo): r' £ N'(FixT)}. D is weakly compact, convex, and F-invariant. To

complete the proof we claim that D c R x X2. Indeed, for r' = (r[, r2) 6

A^Fix T) we get

IM0II1 + Ik2*b||2 = lk*oll = Wxo - /0|| = \\r'x0 - r'0\\

= \\r'xo\\ = \\r'xx0\\x + \\r'2xo\\2.

Our claim now follows by the minimality of r and the strict convexity of Xx.
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In a similar way we can prove another result in this direction.

Theorem 3. If (Xx, || • ||i) and (X2, \\ • \\2) are strictly convex Banach spaces,
and 0 ^ Cx c Xx and 0 ^ C2 c X2 are weakly compact, convex, and with the

FPP, then Fix T is a nonexpansive retract of Cx x C2 for every nonexpansive

T: CxxC2^CxxC2.

Proof. In this case the set D defined in the proof of Theorem 2 is a subset of

RxR.

Examples of R x X with the FPP

First we give a few known results. In [30, 31] Landes proved that R x X

with the /i-norm has weakly normal structure and, therefore, the FPP if X has

one of the following properties:

(i) X has uniform normal structure [11].

(ii) X has a coefficient of convexity eo < 1 [5, 13].

(iii) X is uniformly convex in every direction [9, 10].

(iv) X is /c-uniformly rotund [37].
(v) X is nearly uniformly convex [13, 17].

(vi) BS(X) > 1, where BS(Ar) is the bounded sequence coefficient of X

[5].
(vii) WCS(X) > 1, where WCS(X) is the weakly convergent sequence coef-

ficient of X [5].
(viii) X has a basis with the Gossez-Lami Dozo property [4, 13, 15].

(ix) X satisfies Bynum's condition [4].

(x) X has Opial's property [14, 16, 34, 35].

Next it is easy to observe that Banach spaces with the following properties

can also play the role of X in the lx -product of R x X with the FPP:

(a) X has the Schur property [8].
(b) X has an unconditional basis {e,} with an unconditional constant X <

1(^3-3) [32], where

{oo oo ^

Ye&ei  '■   Y&e'  =1> e, = ±n.
1=1 1=1 J

(c) X is superreflexive with an unconditional basis {?,} satisfying c = 1

[32], where

c = sup{||Ff||: F c N}

and
oo

PFX = Y &ei    for x = Yj &ei e X ■
ieF ;=1

(d) X is a Banach space having an unconditional basis {e,} satisfying

c(A + 2)<4 [19].
(e) X is a Banach space that has an unconditional basis {e,} which is un-

conditionally monotone, and X has the alternate Banach-Saks property [1, 20].
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(f) X has a Schauder finite-dimensional decomposition with fip(X) < 2llp

for some p £ [1, +00) [1, 22], where

PP(X) = inf{A: (||xf + \\y\\pyip < X\\x + y\\

for every x and y £ X such that supp(x) < supp(.v)}.

We conclude the present paper by introducing a new class of Banach spaces.

As we will prove, the lx -product of a space in this class with R has the FPP.

Definition. Let (X, || • ||) be a Banach space. We say that (X, || • ||) has the

semi-Opial property if for any bounded nonconstant sequence {xn} with

lim„ \\xn -xn+x\\ = 0 there exists a subsequence {x„J such that w-lim,x„. = x

and lim, \\x - xn.\\ < diam{x„} .

The following spaces have the semi-Opial property:

(1) X has Opial's property.
(2) X has uniformly normal structure [33].

(3) X is nearly uniformly convex [17].

(4) X = Xp, where   1 < fi < 2,  Xp = (I2, \\ \\fi), and, for x £ I2,
||x||, = max(|x|2, fi\x\oo) [2, 13, 26].

(5) X is the James quasi-reflexive space [39].

Theorem 4. Let (Xx, || • || 1) be a Banach space with the Schur property, and let

(X2, || • H2) be a Banach space with the semi-Opial property. If Xx x X2 is the
product space endowed with the lx -norm, then it has the FPP.

Proof. As usual, we assume that T: C —► C is nonexpansive on a nonempty,

weakly compact, convex subset C of Xx x X2 and that C is minimal for

T. Assume that diam C > 0. Then there exists an approximate fixed point

sequence {x„} = {(x„,, xn2)} such that lim„ \\xn - xn+x\\ =0. It is obvious

that in this case diam{xn2} > 0. By the semi-Opial property of X2 and the

Schur property of Xx, there exists a subsequence {xni} of {x„} such that

w-limx„, = x = (xx, x2)
i

and

lim||x„j>2-X2||2 < diam{x„,2}-

By the Goebel-Karlovitz Lemma this yields the following contradiction:

diam C = lim \\xn. - x\\ = lim ||x„  2 - x2\\2
i i

< diam{x„j2} < diam{x„} = diamC.

The diameter of C must therefore be equal to 0, and the proof is complete.

Remark. In Theorem 4 the /i-norm can be replaced by a norm in Xx x X2

satisfying the following conditions:

(I) The restrictions of the norm on Xx x X2 to Xx and X2 are the initial
norms of Xx and X2 .

(II) The natural projection on X2 has norm 1.

Moreover, if Xx is finite dimensional, then (I) can be replaced by

(I') The restriction of the norm on Xx x X2 to X2 is the initial norm on
X2.
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