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Abstract. Let Y be a Hausdorff topological space, let V be a system of

weights on Y, and let LVq{Y) and LVb{Y) be the weighted locally con-

vex spaces of cross-sections with a topology generated by seminorms which are

weighted analogues of the supremum norm. In the present paper, we charac-

terise the multiplication operators on the spaces LV0{Y) and LVb(Y) induced

by the scalar-valued, the vector-valued, and the operator-valued mappings. A

(linear) dynamical system on the weighted spaces of cross-sections is obtained

as an application of the theory of the multiplication operators. Many examples

are given to illustrate the theory.

1. Introduction

Let Y be a nonempty set, and let (Y, (Fy)y€Y) be a vector-fibration over

Y, where each Fy is an algebra over the field K (where K = R or C). We

denote by (T(Fy))y£y a family of vector spaces of linear transformations from

Fy to itself. The Cartesian product Flyer ^y °f the family (Fy)yey is a vec-

tor space under pointwise operations. Any element of the Cartesian product

Flyer Fy Is known as a cross-section over Y. Let L(Y) be a topological vector

space of cross-sections over Y. Let n be a complex-valued function on Y,

ip be a cross-section over Y, and n: Y -> Uyer(^(^>')) De a mapping such
that n(y) € T(Fy) for each y £ Y. Then the scalar multiplication, the vector

multiplication, and the composition of mappings give rise to three linear trans-

formations Mn,M¥, and Mn from L(Y) to the linear space Flyer Fy of all

cross-sections over Y, defined as Mnf = nf, Mvf = y/f, and Mnf = r\f,
where the product of functions is defined pointwise. In case Mn , M¥ , and M„

take L(Y) into itself and they are continuous, they are called the multiplication

operators on L(Y) induced by the mappings n, y/ , and r\, respectively. These
operators have been the subject of study for a long time on different function

spaces, especially on //-spaces and //^-spaces, and they have played a very
important role in the study of operators on Hilbert spaces. For more details

about these operators we refer to Abrahamse [1].
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We initiated the study of these operators on the weighted function spaces in

[7]. This paper is a continuation of our earlier papers [8, 9] in which we stud-

ied the multiplication operators on the weighted spaces of vector-valued func-

tions. In this note we endeavour to study the multiplication operators on the

weighted spaces of cross-sections induced by the scalar-valued, vector-valued,

and operator-valued mappings. The study of these operators on these function

spaces comes in contact with topological dynamics. Section 2 of this paper con-

tains preliminaries, and in the third section we characterise the functions which
induce the multiplication operators on the weighted spaces of cross-sections.

We illustrate the theory in §4 by giving examples of the functions which induce

or do not induce the multiplication operators on the weighted locally convex

spaces of cross-sections. Finally, we end this paper with §5 by obtaining a

(linear) dynamical system on the weighted function spaces of cross-sections.

2. PRELIMINARIES

Let Y be a Hausdorff topological space. A vector-fibration over Y is a pair

(Y, (Fy)yey), where each Fy is a vector space over the field K (where K = R

or C). A cross-section over Y is then any element of the Cartesian product

Flyer Fy • The Cartesian product Flyer Fy is made a vector space in the usual

way, and a vector space of cross-sections over Y is, by definition, any vector

subspace of Y[y€YFy.
By a 'weight' on Y we mean a function v on Y such that v(y) is a semi-

norm on Fy for each y £ Y. For our convenience, we shall use the notation

vy for the seminorm v(y) for each y 6 Y. By v < u we mean that vy < uy

for every y £ Y . A set V of weights on Y is said to be directed if, for every

pair u,v £ V and X > 0, there exists w £ V such that Xu < w and Xv < w .

Hereafter we assume that each set of weights is directed. We write V > 0, if
given v £ Y and x £ Fy, there is some v e V for which vy(x) > 0. A set

V of weights on Y which additionally satisfies V > 0 will be referred to as

a system of weights on Y. If / is a cross-section over Y and v is a weight

on Y, then we will denote by v[f] the positive-valued function on Y which

takes y into vy[f(y)]. We denote by L(Y) a vector space of cross-sections

over Y. Now the weighted spaces of cross-sections over Y with respect to the

system of weights V are introduced as follows:

LVo(Y) = {f £ L(Y): v[f] is upper semicontinuous and vanishes

at infinity on Y for each v £ V]

and

LVh(Y) = {f £ L(Y): v[f] is a bounded function on Y for each v £ V].

Obviously, LV0(Y) and LVh(Y) are vector spaces and LV0(Y) C LVh(Y).
Now, for v £ V and / e L(Y), if we put ||/||„ = sup{vy[f(y)]: y £ Y],
then || • ||v can be regarded as a seminorm on either LI/b(F) or LVq(Y) , and

the family of seminorms {|| • |l«: u £ F} defines a Hausdorff locally convex

topology on each of these spaces. This topology is denoted by xy, and the

vector spaces endowed with xy are called the weighted locally convex spaces

of cross-sections. Since V is a directed set of weights, xy has a basis of closed

absolutely convex neighborhoods of the origin of the form

Bv = {f£LVb(Y):\\f\\v<l}.
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For illustrations and details about these weighted spaces of cross-sections we

refer to [2-6].

3. Functions inducing the multiplication operators
on the weighted spaces of cross-sections

In this section we characterise the scalar-valued, vector-valued, and operator-

valued mappings which induce the multiplication operators on LVQ(Y) and

LVh(Y). We shall generalise some of the results obtained in [8, 9] to the

weighted spaces of cross-sections.
In the following theorem we characterise the scalar-valued mappings k : Y -*

C which induce the multiplication operators on LV0(Y).

Theorem 3.1. Let n: Y -> C be a mapping. Then Mn: FF0(F) -> LV0(Y) is a
multiplication operator if and only if for every v £ V there exists u £ V such
that

\n(y)\vy(x) < uy(x)   for every y £Y and x £ Fy.

Proof. First of all, suppose that for every v £ V there exists u £ V such that

\n(y)\vy(x) < uy(x)   for every y £ Y and x £ Fy .

We shall show that Mn: LVq(Y) -> LV0(Y) is a continuous linear operator.

Clearly, Mn is a linear operator on LVq(Y) . To show that Mn is a continuous

operator on LVo(Y), it is enough to show that Mn is continuous at the origin.

Let {fa} be a net in LVq(Y) such that ||/a||i, -> 0 for every v £ V. Then

\\nfa\\v = sup{Vy[7t(j;)/a(y)]: y £ Y}

< sup{Wy[/a(y)]: V £ Y} = \\fa\\u ^ 0.

This proves that Mn is continuous at the origin, and hence Mn is a continuous

linear operator on LV0(Y).
Conversely, if Mn: LV0(Y) -» LV0(Y) is a multiplication operator, then for

v £ V there exists u £ V such that Mn(Bu) c Bv . We claim that

\n(y)\vy(x) < uy(x)    for every y £ Y and x £ Fy .

Fix yo £ Y and xo £ Fya. Set uyo(xo) = e. In case e > 0, we define the

function g: Y ->\Jy€YFy as

/ e~xx0,   y = y0,

g(y) = i ft ,10, y^yo-

Clearly, g is a cross-section and g £ LVq(Y) . Also, g £ Bu and ng £ Bv.

From this it follows that vy[n(y)g(y)] < 1 for every y e Y. Further, it implies

that |rc(y)|tv[g(y)] < 1 for every y e Y. Thus \n(y0)\vyo(xo) < uyo(x0). Since
yo and xo are arbitrary, in this case our claim is established. In case «y0(^o) =

0, we have to prove that |^(yo)|Vy0(^o) = 0. Suppose that \n(yo)\vyo(xo) > 0,

and put
„ _ \x(yo)\Vyo(Xo)

2
Define the function g: Y -> Uyer Fy as

, x     f e-'x0,    y = y0,

10, y^y0-
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Then g £ Bu , and hence ng £ Bv . From this it follows that

\n(y)\vy[g(y)] < !    for every y £ Y.

Hence

l«WKW<"W^W,
which is impossible, and hence in this case, too, our claim is established. This
completes the proof of the theorem.

Corollary 3.2. If n: Y —> C is a bounded mapping, then Mn: LVo(Y) -> LV0(Y)
is a multiplication operator.

Proof. The proof follows from Theorem 3.1.

In the next theorem we characterise the vector-valued mappings which induce

the multiplication operators on LV0(Y). In the following theorem we shall

consider the vector-fibration as a pair (Y, (Fy)yeY), where (Fy)y€Y is a family

of (topological) algebras over the same field K.

Theorem 3.3. Let n: Y —> \JyeYFy be a mapping such that n(y) £ Fy for every

y £Y. Then Mn: LVq(Y) —► LVq(Y) is a multiplication operator if and only if
for every v £V there exists u £ V such that

vy(n(y)x) < uy(x)   for every y e Y and x £ Fy.

Proof. Suppose the condition of the theorem holds, and suppose {fa} is a net

in LV0(Y) such that ||/a||„ -> 0 for every v £V. Then

\\nfa\U = sup{vy[n(y)fa(y)]: y £ Y)

<sup{uy[fa(y)]:y£Y} = \\fa\\u^0.

This proves the continuity of MK at the origin and hence on LV0(Y).

Conversely, suppose Mn is a multiplication operator on LVo(Y). We need

to show that for every v £ V there exists u £ V such that vy(n(y)x) < uy(x)

for every y £ Y and x £ Fy. This inequality can be established in the same

way as we did in the converse part of Theorem 3.1.

In the next theorem we characterise the operator-valued mappings inducing
multiplication operators on LV0(Y).

Theorem 3.4. Let n: Y -► \JyeY(F(Fy)) be a mapping such that ny (= n(y))

belongs to T(Fy) for every y £ Y. Then M„: FFo(y) -* LV0(Y) is a multipli-
cation operator if and only if for every v £ V there exists u£V such that

vy(ny(x)) < uy(x)   for every y e F and x £ Fy .

Proof. Suppose that the condition of the theorem holds. To show that Mn :

LVo(Y) -> LV0(Y) is a multiplication operator, it is enough to show that MK

is continuous at the origin. To show this, let {fa} be a net in LV0(Y) such
that H^llt; —* 0 for every v £ V. Then

||jr/a||„ = sup{Uy[7ty(/a(y))]: y e 7}

< sup{My[/Q(y)]: y e Y} = \\fa\\u -> 0.

This proves the continuity of Mn at the origin and hence on LV0(Y).
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Conversely, if Mn is a multiplication operator on LV0(Y), then we can easily

establish that for every v £ V there exists u £ V such that

vy(ny(x)) < uy(x)   for every y £ Y and x £ Fy.

With this the proof of the theorem is completed.

Remark 3.5. If we replace the weighted space LV0(Y) of cross-sections by the

weighted space LVb(Y) of cross-sections, even then all the results obtained so

far go through.
Now we shall give some examples of the mappings which induce or do not

induce the multiplication operators on the weighted space LVb(Y) of cross-

sections in the following section.

4. Examples

Example 4.1. Let ti: N -» C be the mapping defined as n(n) = l/n for every
n £ N. Let (N, (F„)„€n) be the vector-fibration over N, where, for every

n £ N, Fn — C with the usual norm. Now we define the function v on N as

vn = || • || „ . Then clearly v is a weight on N, and the set V = {Xv: X > 0} is a

system of weights on N. Since the mapping n is bounded, in view of Corollary

3.2 we conclude that Mn is a multiplication operator on Llb(N).

On the other hand, if we define n: N -> C as n(n) = n2 for every n £ N,

then Mjt is not a multiplication operator on LVb(N). In this case Mn is not

even an into map. To see this, we define the function g: N -» UneN"--" as

g(n) = (0,0,..., i) e C". Then clearly g £ LVb(N), but ng </. FFb(N)
because v[n • g] is an unbounded function on N.

Example 4.2. For each n £ N let Cb(R") be the normed linear space of all

bounded continuous complex-valued functions on W with the supnorm defined

as \\f\\„ = sup{|/(f)|: t £ R"} . Consider the vector-fibration (N, (Cb(R"))„€N).
For each n £ N, let <pn: R" —> R" be a continuous mapping. It can easily be

seen that each tpn induces the composition operator C^»: Cb(R") -» Cb(R"),

defined as C0»/=/o0" for every fe Cb(R"). Let {F(Cb(R"))}„6N be the
family of vector spaces of bounded linear operators on Cb(R"). For each n £ N
we define the function oonN such that vn = ||»||„ , where ||«||„ is the supnorm

on Cb(R"). Then v is a weight on N, and the set V — {Xv: X > 0} is a system

of weights on N. Now we define the mapping n: N —► UneN{^(^b(R"))} as

n(n) — C^n for every n £ N. Since vn(n„(f)) < v„(f) for every n £ N and

/ e Cb(R"), in light of Theorem 3.4 we conclude that Mn is a multiplication

operator on LVb(N).

Now we give an example of an operator-valued mapping which does not

induce a multiplication operator on LVb(N). For each n £ N we define the
function ip": R" -» C as y/"(t) = n for every t £ W. Each ip" induces

the multiplication operator Mv* on Cb(R"). Now we define the mapping

n: N -» U„eN{nCb(K"))} as n(n) = M¥n for every n £ N. One can easily
check that Mn is not a multiplication operator on LVb(N). In fact, Mn is

not even an into map. If we define the function F: N -> UneN^b(R") as

F(n) = 1„ for every n £ N, where 1„ is the constant function defined by

l„(t) = 1 for every t £ W , then F £ LFb(N); but rcF £ FFb(N), since
i>[tz • F] is unbounded.
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Example 4.3. Consider the vector-fibration (N, (F„)„eN), where F„ = Cb(R")

for every n £ N. Define the vector-valued function n: N —► lJ/ieNCb(R") as

n(n) = lyn for every n £ N, where li/„ is the constant function defined

on R" by lx/n(t) = ± for every leR". Then by Theorem 3.3 Mn is a

multiplication operator on LVb(N). In case n(n)(t) = n for every t £ Rn,

the function 7t does not induce a multiplication operator on LVb(N). The

linear transformation Mn does not take LVb(N) into itself. If we take the

cross-section F defined as F(n) = l„ for every n £ N, then F 6 Z-J'b(N) and

tt • F £ F^b(N) since v[7c • F] is an unbounded function.

5. Dynamical systems induced by the multiplication operators

Throughout this section we take Y to be the real line R (with the usual

topology). Consider the vector-fibration (R, (Ft)ten) , where each Ft is a Ba-

nach space over the field C with the norm denoted by || • ||,. By B(Ft) we

denote the Banach algebra of all bounded linear operators on Ft with the op-

erator norm denoted as ||| • |||,. Let Fb(R) be the normed linear space of all

bounded functions on R with supnorm. Fix g £ Fb(R), and for each t £ R

define the linear transformation At: Ft -* Ft as

My) = S(t)y   for every y £Ft.

Then

\\My)\\, = U(t)y\\t = |*(0IIMI« < M\\v\\t   for every y£Ft,

where M = \\g\\oo . Thus for each (6l, At is a bounded linear operator on

Ft, and hence At £ B(Ft). Also, |||^4t|||t < M for every t £ R. Let w be the
function on R defined by w(t) = || • ||,. Then w is a weight on R. Consider
the set V — {Xw: X > 0} . Then V is a system of weights on R. We denote

by L(R) a vector space of cross-sections over R. It readily follows that the
weighted space LFo(R) is a normed linear space with respect to the system of

weights V on R.
Fix sel and define the operator-valued mapping

¥s:R^\J(B(Ft))
f€R

as

y/s(t) = esAt   for every /el.

To prove that each y/s induces a multiplication operator on LVo(R), in view

of Theorem 3.4, it is enough to show that for every v £ V there exists u £ V

such that

Vt(Vs(t)y) < ut(y)   for every t £ R and y £ Ft.

Let v £ V. Then v - Xw , X > 0. For t £ R and y £ Ft, we have

vt(¥s(t)y) = A||^'Cv)||, < ^|M||y||r = ut(y),

where u = Xe^Mw.   This proves that MVs is a multiplication operator on

FF0(R).
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Theorem 5.1. Let g £ Fb(R), and let n?:lx LV0(R) -> L(R) be the function
defined by Ug(s, f) = M¥J for s £ R and f £ LF0(R). Then Ug is a
dynamical system on LFo(R).

Proof. Since for each 5 6 R, M¥s is a multiplication operator on LV0(R),

we can conclude that Ug(s,f) belongs to LVo(R) whenever s £ R and

f £ LV0(R). Thus Ylg is a function from R x LF0(R) -> FF0(R). Also, it
readily follows that n^(0, f) = f for every / e LV0(R), and Ilg(s + t, f) =
Ug(s, Ug(t, f)) for every s, t £R and / £ FF0(R). To show that Ug is a
dynamical system, it suffices to prove that Ug is continuous. Let (s„ , f„) be

a sequence in R x FF0(R) such that (s„, f„) -> (s, f). Let v £ V. Then
v = Xw , X > 0.

\\ng(sn,fn)-ng(s,f)\\v

= SUp{X\\y/Sn(t)fn(t) - Ws(t)fn(t) + Vs(t)fn(t) ~ Vs(t)f(t)\\t: t £ R}

< sup{elslM(els"~s\M - l)v,[f„(t)]: t £ R}

+ sup{e\s\Mv,[fn(t)-f(t)]:t£R}

= e^^'-W - l)\\fn\\v + e^M\\f„ - f\\v -+ 0

as \s„ - s\ -* 0 and ||/„ - f\\v -» 0. This proves the continuity of Ylg, and
hence Ylg is a (linear) dynamical system on FFo(R). This completes the proof
of the theorem.

Remark 5.2. Consider the family {M¥s: s £ R} of the multiplication operators

on the weighted space LFo(R) of cross-sections. We observe the following:

(i) M¥s+,f = M¥s(M¥,f) for every / 6 FF0(R) and 5, t £ R.

(ii) M¥of = f for all /eLFo(R).
(iii) lim(^o M¥J = f for all / £ LV0(R).

Thus the family {M¥s: s £ R} is a Co-group of the multiplication operators on

LFo(R) which turns out to be locally equicontinuous. To show this, we need

to establish that for any fixed s £ R the subfamily {M¥l: - s < t < s} is
equicontinuous on LVQ(R). Let 5 e R be fixed. Then the family {M¥l: — s <

t <s} is a bounded set in B(LVo(R)) since the mapping t -> M¥t is continuous,
where B(LV0(R)) is the locally convex space of all continuous linear operators

on LVo(R) with the strong operator topology. Also, for each / e FFo(R) the

set {M¥lf: - s < t < s} is bounded in FFo(R), and hence by a corollary
of the Banach-Steinhaus Theorem [10, Theorem 2.6] it follows that the family

{M¥l: - s < t < s] is equicontinuous, and hence the Co-group {M¥l: t £ R}
is locally equicontinuous.
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