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A NOTE ON BOUNDARY VALUE PROBLEMS
FOR THE HEAT EQUATION IN LIPSCHITZ CYLINDERS

RUSSELL M. BROWN AND ZHONGWEI SHEN

(Communicated by J. Marshall Ash)

Abstract. We study the initial Dirichlet problem and the initial Neumann

problem for the heat equation in Lipschitz cylinders, with boundary data in

mixed norm spaces Lq{0, T, LP{d£i)).

0. Introduction

Let Q be a bounded Lipschitz domain in R" , n > 3, and, for 0 < T < oo,

let Or = Q x (0, T) be a Lipschitz cylinder. Consider the heat equation

(0.1) |^-Aw = 0   inQr.

The purpose of this note is to study the solvability of the initial Dirichlet prob-

lem

(Q2) (ukT = g£V(0,T,L>>(dn)),

I u|f-o = 0

and the initial Neumann problem

(03) (§%kT = g£L<(0,T,L?(dn)),

where Y.T = dD, x (0, T) denotes the lateral boundary of Qr and N denotes

the outward unit normal to dQ,. We prove that the initial Dirichlet problem
is solvable for 2 < p < oo, I < q < oo (Theorem 1.1) and that the initial

Neumann problem is solvable for 1 < /> < 2, 1 < <? < oo (Theorem 1.2).

Moreover, the solutions can be represented by heat potentials and the ranges of

p, q are optimal.

In the case of p — q, the initial Dirichlet problem was solved in [FS] for

2 < p < oo and the initial Neumann problem was solved in [BI, B2] for

l<p<2.
Our results are established by the method of layer potentials (see [BI, B2,

DK, S, V]). For the initial Neumann problem, the existence of solutions is

Received by the editors March 3, 1992.

1991 Mathematics Subject Classification. Primary 35K20.
The first author was partially supported by the NSF and the Commonwealth of Kentucky through

the Kentucky EPSCoR program. The second author was partially supported by the NSF.

© 1993 American Mathematical Society
0002-9939/93 $1.00+ $.25 per page

585



586 R. M. BROWN AND ZHONGWEI SHEN

reduced to the invertibility of the boundary potential operator \l + K on

L«(0, T, Lp(dQ.)). In [BI, B2] it is shown that \l + K is invertible on

Lp(0, T, Lp(d&)) for 1 < p < 2. To establish the invertiblity of \l + K
on Lq(0, T,Lp(dQ)) we use the vector-valued Calderon-Zygmund machinery.

This leads to the study of layer potentials for the Helmholtz-type equation:

(0.4) -Am + (1 + i't)m = 0   inQ,  t e R.

We are able to show that (jl + K)~x is associated with an L(B)-valued

Calderon-Zygmund kernel where L(B) denotes the space of bounded linear op-

erators on B = LP(d£l). A standard Calderon-Zygmund argument then yields

that (\I + K)~l is bounded on I«(0, T,LP(dQ)) for l<p<2, 1 < q < oo.
The result for the initial Dirichlet problem follows by duality.

We remark that the methods of this paper provide a simpler proof of Theorem

2.7 and its corollaries in [BS2]. In this earlier paper, we used estimates in

mixed LP -spaces in the course of studying the initial Dirichlet problem for

parabolic systems in (ordinary) Lp-spaces. It was this application that led us to

the research reported here.

Our main results are stated and proved in § 1. Throughout this note, C and

c denote constants which depend at most on n, p, q, T and the Lipschitz
constant of Q.

1.   Lp'q -ESTIMATES FOR THE HEAT EQUATION

Let L?'*$.T) = L«(0, T, Lp(dil)) denote the space

If: WfWv.t'ir) = {[ (jjf(p' t)\pdPy dt\     < oo 1.

Lp'9(dQ x R) = L9(R, Lp(dQ)) is defined in a similar manner. In this section,
we prove the following main results in this paper.

Theorem 1.1. Let g £ Lp,?(Xr), 2 < p < oo, 1 < q < oo. Then there exists

a unique solution u on Qr satisfying (0.1), (0.2), and ||(m)*||lp,«(i» < oo.

Moreover, the solution u can be represented in terms of a double layer potential

and satisfies

ll(")1l^.«(ir) < c"||siu,..(Ir).
Theorem 1.2. Let g £ Lp'q(LT), I < p <2, I < q < oo. Then there exists

a unique solution u on Q.T satisfying (0.1), (0.3), and ||(Vw)*||ip.9(z7-) < oo.

Moreover, u can be represented in terms of a single-layer potential and satisfies

ll(VM)*||^.,(Ir) + ||(cV/2w)li,.,(Ir) < C||s||x,,,(Zr).

Definition 1.3. In Theorems 1.1 and 1.2 and throughout this paper, ()* denotes

the parabolic nontangential maximal function defined by

(u)*(P, t) = sup{\u(X, s)\: (X,s)£ Qr (or Q x R)

\X-P\ + \t- s\x/2 < 2dist(X, d£l)}

for (P,t) £ 3fix(0, T) (or dCl x R). d],2u denotes the half of a time

derivative of u defined by

pl/2,,^     *\ 1    ̂     f'       U(X>S)    A.
dtlu(X,t) = -/=dt]_ooJj—W2ds.
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Remark 1.4. An example in [BI, Example 1.7, p. 344] shows that the ranges of

p, q in Theorems 1.1 and 1.2 are sharp, save possibly the end points q = 1 and

oo. On the other hand, given a Lipschitz domain Q, there exists e = e(Q) > 0,

such that the initial Dirichlet problem is solvable for 2-e < /; < oo, 1 < q < oo

and the initial Neumann problem is solvable for I < p < 2 + e, 1 < q < oo.

This follows from the proof of Theorems 1.1 and 1.2 and a perturbation theorem

of David and Semmes (unpublished, see [DKV] for a statement of their result).

Also, Fabes has noted that the density of caloric measure in a Lipschitz cylinder

lies in L2(dQ; L°°(0, T)) c L2'°°(Ir). Hence, the initial Dirichlet problem
is solvable in the dual space L21. Fabes's observation is proven using the
comparison principle for caloric functions (see [FGS]).

Let / £ IS'iCLr), 1 < p, q < oo, and let

2S(f)(X,t) = J' j'   J±^r(X-Q,t-s)f{Q,s)dQds

and

&(f)(X,t)= ft   T(X-Q,t-s)f(Q,s)dQds
JO   Jdil

be the double-layer potential and single-layer potential for the heat equation

(0.1) respectively where T(X, t) denotes the fundamental solution of the heat
equation given by

f _\_e-m2/4( t > o
T(X,t) = \   (Ant)"!2" '       f>U'

10, /<0.

Theorem 1.5. Let 1 < p, q < oo. Then

\\(®(f)Y\\lS-^T) + \\(V&(f)T\\u.<Vr) + ll(d//2^(/))lz^(Ir) < Cll/llz,,.,^, ,

^(f)±\iT = (±\l + *) /,        W)±|Sr = (r\l + K^f

where ± indicates the nontangential limits taken inside £It and outside ft x R

respectively, I denotes the identity operator, K is a bounded singular integral

operator on Lp'qCLT), K = AK*A, and A: Lp'i(ZT) - LP^(1T) is defined
by A(f)(P, 0 = f(P, T - t).
Proof. The proof can be carried out using the theorem of Coifman, Mcin-
tosh, and Meyer on the Cauchy integral on Lipschitz curves [CMM], a variant

of Fefferman-Stein's results on maximal functions [FSt], and the argument of

Fabes-Riviere [FR]. The estimates are standard but lengthy. We omit the details
here.   □

By Theorem 1.5, the existence of and estimates for solutions in Theorems

1.1 and 1.2 will follow if ±\l + K: L"-«(Zr) -* LP'«(1T) is invertible for

1<P<2, 1<#<oo.To study the invertibility of ± \l + K on LP'q , we
shall use a vector-valued Calderon-Zygmund argument. To do this, we find it

convenient to consider the equation

(1.6) |^ + w-A« = 0   inQxR.
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It is easy to see that e~'T(X, t) is the fundamental solution for (1.6). Let

&(f)(X, t) = f    j   e~^T(X -Q,t- s)f(Q, s) dQ ds
J-oo Jan

be the single-layer potential for the equation (1.6). Then

^LCOIanxR = (±^f + e-'K(e'f)^ .

We shall first show that ±\l + e-'Ke' is invertible on Lq(R, Lp(dQ.)) for
1 <p < 2, 1 < # < oo.

We begin with a uniqueness result. This result is proven in [B2, Theorems

5.2 and 5.4].

Lemma 1.7. Suppose that u is a solution of (1.6) in Qx(-oo, T) with («)* +

(Vw)* £ L«(-oo, T, Lp(dQ)) for some T £ R and 1 < p, q < oo. Assume

that either u\do.^(-oo t) = 0 or (du/dN^gcix^-oc^) = 0. Then u = 0 in

Qx(-oo, T).

We also have uniqueness in CQ x (-oo, T), if, in addition, we assume that

\u(X, t)\ = 0(\X\2~") uniformly in t as \X\ -> oo.

Theorem 1.8.  ±{I + e-'Ke' is invertible on LP(dQ. x R) for 1 < p < 2.

Proof. The proof is essentially the same as that of [B2, Theorem 5.20, p. 39].

We only give a sketch here.

Taking the partial Fourier transform in the / variable of both sides of equa-

tion (1.6), we obtain

(1.9) (l-h)v-Av = 0   inii, reR,

where v(X) = it(X, t) = JReinu(X, t)dt. Let

/•OO

Tr(X)= /    e^x+^T(X,t)dt
Jo

denote the fundamental solution for (1.9) and

vt(X)= f   Tx(X-Q)h(Q)dQ   for h £ Lp(dQ),  1 < p < oo.
Jon

Then

^=(±1/+ *(!))(/*)   ondci.

It follows from Rellich identities (see [BI, BS1, Proposition 2.2]) that

c{||VttnUt||L*(8ri) + 11(1 + \A)XI2^\\mea)}

<    ̂  ^QUVtan^ll^^ + IKl + lTl)1/2^!!^^}.

This, together with a simple approximation argument, implies that

±\I + K(t): L2(dQ) -» L2(dQ.)

is invertible and

(i-io) ll(±^+is:(T))-1||L2(an)_L2(a0) < c
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where C is independent of z £ R. Note that

{(±\l + e-'Ke')(f)(P, -)}a(t) = (±\l + K(x))(r(-,x))(P).

The invertibility of ±\I + e~~'Ke' on L2(dQ x R) then follows easily from

(1.10) and PlanchereFs theorem.

Let Q+ = Q and Q_ = CQ. Let Lp(dQ.x R) denote the closure of the space

{v:v = u\aa^,  u £ CC00(R" x R)}

with respect to the norm

llwllz.f(anxR) = l|VtanV||Lc(aoxR) + \\dt   v\\ij,(aciXR) + ||f||z^(anxR)-

As in [B2], to establish the invertibility of ±\l + e-'Ke' on L»(dQ. x R) for
1 < p < 2, we need to consider the Neumann problem on ft± x R with LP

data:

' |f + m-Am = 0 inft± xR,

(1.11) I  §% = g£Lp(d£lxR) onR,

. (u)* + (Vu)* £Lp(dQ.xR),

and the Dirichlet problem on Q± x R with Lp data:

' |f + u-Au = 0 in«± xR,

(1.12) I u = g £ Lp(dQ. x R) ondQxR,

, (u)* + (Vu)* £Lp(dClxR).

It can be shown that, given g £ Lp(dQ x R), 1 < p < 2, there exists a unique

solution u satisfying (1.1) and we have

(1.13) ||(Vu)*||i,(8oXR) + II"IIl{(mixr) < C\\g\\u(Bnx*).

Also, given g £ Lp(dQ x R), 1 < p < 2, there exists a unique solution u

satisfying (1.12). Moreover, the solution to (1.12) satisfies the estimates

(1.14) IKVwni^nxR) < C||s||L,(afixR).

The above results follow by interpolation from the L2-case and estimates of

solutions with atomic data. The estimates of solutions with atomic data can be

established using the L2-estimates and estimates on Green's functions for (1.6)
in Q± x R.

In fact, let G(X, Y, t - s) be the Green's functions for the heat equation

(0.1) in QxR with Neumann boundary condition. Clearly, G\(X, Y, t-s) =

e~(-'~s)G(X ,Y,t-s) is the Green's function for the equation (1.6) in QxR.

By well-known estimates on G(X, Y, t), we have

(1.15) \Gi(X, Y, t)\ < Ce~'   ift>l,

(1.16) \Gi(X, Y, 0| < -^e-^-^l",       t > 0,

ct\Y, - y,i + \t, -h\li2)Sa
(1.17) \Gi(X,Yx,t-Si)-Gi(X,Y2,t-s2)\<^xx_Y2[+^J}2)J+So
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for some 80 = So(Q) > 0, if

|T, - Y2\ + \si - s2\x'2 < ±[\X -Yi\ + \t- si\1'2].

Now, let u be a solution to (1.11) with atomic data, i.e.,

du
— = a,        suppa c A(F0, r) x (t0 - r2, t0)

for some (P0, t0) £ dQxR and r > 0, JJdClxKa = 0, and ||a||z.2(9£JxR) <

r(i+i)/2 where A(P0, r) = {Q £ <3Q, |<2 - P0\ < r} . Then

u(X,t)= [     f   G(X,Q,t-s)a(Q,s)dQds

and, if t > to,

u(X,t)= f°    [       [G(X,Q,t-s)-G(X,P0,t-to)]a(Q,s)dQds.
Jt0-riJ&(Pa,r)

It follows from (1.15)-(1.17) that

'0, t<t0-r2,

0-18)    l"(*,')l<|  {lx_PolX-to\xl2)»^>       to-r2<t<t0+lO,

. ce~', t > t0+ 10.

The required estimates on solutions with atomic data follow from (1.18) and

L2-estimates in the same fashion as in [B2, Lemma 3.1, p. 16].
Finally, let / £ LP(dQ. x R), 1 < p < 2, and u = S?(f). Then

du+     du~

■* ~ dN      dN'

Thus, by the solvability of (1.11), (1.12) and estimates (1.13), (1.14),

ii iii /    du+ du~
11/ llii-(OOxR) <     -p-fT +    -~T7

uly    LPidQxR) uiy     W(daxVt)

^    du+ /-n  ii
<      ^T? +C||M||z?(arjxR)

aJV   z^(anxR)

<C  % -C   (\l + e-KAf
OIy     Lf(aOxR) \Z / LP(aOxR)

Hence, to show \l + e~'Ke': LP(dQ.xR)-» LP(dClx R) is invertible, it suffices

to prove that the range of \I + e-'Ke' is dense in LP(dQ. xR). To this end,

let g £ C^(Rn x R). Since \l + e~'Ke' is invertible on L2(dQ. x R), there

exists / 6 L2(dQ x R) such that

(\l + e-'Ke')f=g.

Let u = S'(f) and v be a solution of (1.11) in Q x R such that dv/dN = g
and (v)* + (Vv)* £ Lp(d£l x R). Since u = 0 on ft x (-oo, T0) for some

To £ R by Lemma 1.7, we have

(V(w - v))* + (u- v)* £ Lp(d£l x (-oo, T))
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for any T £ R. It again follows from Lemma 1.7 that u = v on Q x R. Hence,

du+

~dN <0°-oiy   z/(anxR)

Repeating the above argument in CQ x R, we get \\du~ /dN\\u,^axK) < °o.

Thus,

ll/ll^(aoxR) <   jTf +   JW <00'
uiy   i>(anxR)       uiy   z/(anxR)

i.e., / 6 LP(dQ. x R). Hence, \l + e~'Ke' is invertible on LP(dQ. x R). The

proof of the invertibility of -\l + e~'Ke' is similar.   □

We now study the invertibility of ±\l + e~'Ke' on mixed norm spaces.

Theorem 1.19. Let I < p <2, I < q < oo. Then ±^I+e~'Ke': L"'q(ilxR) -*
Lp'q(d£lxR) is invertible.

Proof. We give the proof for \l + e~'Ke'. The invertibility of -jl + e-'Ke'

follows in the same manner.

Let S = \I + e-'Ke'. Recall that

[S(f)(P, «)]A(t) = (i/ +*(T))(/A(-, x))(P)

for t 6 R and / £ L2(dQ xR). Let m(x) = \l + K(x), x 6 R. It follows
from the theorem of Coifman, Mcintosh, and Meyer [CMM] that

(1.20) IN(T)||z/(an)-i/(ao) < C   for 1 < p < oo

where C is a constant independent of x . Moreover, it is not difficult to show

that

d.21) \^m(x)h(P)\ < _^L_J^(*)(I0

for any integer a > 1, where h £ Lp(dQ) and Maa denotes the Hardy-

Littlewood maximal function on <9Q. Thus
da C

(!-22) -j—mix) < .,     , ,.
d*a wa^isva)- (1 + M)a

for any integer a > 0. From (1.10), we know

(1-23) \\m~x(x)\\L2{dc1)^L2{da) < C.

We claim that

(1.24) \\m-x(x)\\u(dil)^(da) < C   forl</;<2.

To prove the claim (1.21), let hx, h2 £ Q°(R"). By (1.23) and (1.22),
(m~x(x)hi, h2) is a bounded continuous function of x, where ( , ) denotes

the inner product in L2(dQ). Hence,

(m~x(x)hi ,h2) = - lim 4= [ e^-^l2e(m'x(x)hx, h2)da
n «->o+ ve JR

= - lim 4= f (m-x(o)e-^-^2/2ehi, e^a-T)2'2sh2)d(7
n £-.0+ y/e JR

= X-lim-L[(S-x(f),f2)dt
n e-»o y/e jr
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where /, = (Je/y/2n)e-E'2/2 ■ eitThi and f2 = (Ve/V2H)e-e'2/2 • e"xh2 . Since

S~x: Lp(R, LP(dSl)) -» Lp(R, Lp(dQ)) is bounded for 1 < p < 2 (Theorem
1.8), we have

\\[(S-X(fi),f2)dt   < [ WS-'^WvwWMis'OCDdt
\\Jr jr

< \\s~ (/i)llz^(R,z^(ao))ll/2llLP'(R,//'(an))

< C\\fl\\LP(R,D'(dn))\\f2\\Lp'{R,D>'{d£l))

< Cv/£||/zi||LP(an)||^2|lz/'(an)-

Thus, we have proved that

\(m-\x)hi, h2)\ < CP,||i/(an)||A2||L,'(an)-

Claim (1.24) then follows by duality.
Now, fix p £ (1, 2). Let B = Lp(dQ.). By (1.24) and (1.21),

Ha C
^-rn-x(x) < „  C°

for any integer a > 0. Since [S~x(f)]A(x) = m~x(x)fA(x), it follows from a

standard Calderon-Zygmund argument that S~l, as an operator on functions

with values in B, is associated with an ^(B)-valued Calderon-Zygmund ker-

nel, where -^(B) denotes the spaces of bounded linear operators on B. But

S~x: LP(R, B) -> ^(R, B) is bounded, so by the standard Calderon-Zygmund

theory,
S~x:Lq(R,B)^Lq(R,B)

is bounded for 1 < q < oo .   □

Corollary 1.25. Let 0 < T < oo. Then ±\I + K: Z/-*(Zr) -> Lp'q(ZT) is
invertible for 1 < p < 2,  1 < q < oo.

Proof. We give the proof for \l + K . The invertibility of -^I + K follows in
the same manner.

Given g £ LP'qCLT), I <p <2, 1 < q < oo . Let g be the extension of g
by zero to dQxR. Clearly, e~'g £ LP>q(dQ. x R). Hence, by Theorem 1.19,

there exists F £ Lp>q(dQ x R) such that (±1+ e~'Ke')(F) = e~'g on dQ. x R
and

H-FllL^'ianxR) < C\\e~'g\\Lp,<,(dciXK) < C\\g\\u,.i(s.T)-

Since e~'g(P, t) = 0 for t < 0, it follows from Lemma 1.7 that F(P, t) = 0

on dCi x (-oo, 0). Now, let / = e'F\Zr. Then (\l + K)f = j on Er.
Moreover,

II/]|l*.«(Z7-) < CtWFWlp.^-Zt) < CT\\g\\w^rzT)

where Ct depends on p, q, dQ, n , and /.   D

Finally, we are ready to prove our main results—Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let / £ Lp-q(ZT) and u = 3(f). Then u\zT =
A(-i/ + K)*A(f) (Theorem 1.5). By Corollary 1.25, A(-±/ + K)*A:
LP.4(LT) -> Lp'q(LT) is invertible for 2 < p < oo, 1 < q < oo. The exis-

tence then follows.
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To show the uniqueness, we construct a Green's function

G(X, Y,t) = T(X-Y,t)-V(X, Y,t)

for X £ Q, Y £ Q, where

V(X,Y,t)= J j   r(X-Q,t-s)(~I + K\

x[^T(Y--,^(Q,s)dQds.

Then the argument of Fabes and Riviere in [FR, Theorem 2.3, p. 188] may go

through with obvious modifications. We omit the details.   □

Proof of Theorem 1.2. The existence follows from the invertibility of \l + K
on Lp'q(LT) for 1 < p < 2 and 1 < q < oo , while the uniqueness is contained

in Lemma 1.7.   □
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