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A NOTE ON BOUNDARY VALUE PROBLEMS
FOR THE HEAT EQUATION IN LIPSCHITZ CYLINDERS

RUSSELL M. BROWN AND ZHONGWEI SHEN

(Communicated by J. Marshall Ash)

ABSTRACT. We study the initial Dirichlet problem and the initial Neumann
problem for the heat equation in Lipschitz cylinders, with boundary data in
mixed norm spaces L4(0, T, LP(0Q)) .

0. INTRODUCTION

Let Q be a bounded Lipschitz domain in R”, n > 3, and, for 0< T < o0,
let Qr =Q x (0, T) be a Lipschitz cylinder. Consider the heat equation
ou

(0.1) 79_t_Au=O in Qr.

The purpose of this note is to study the solvability of the initial Dirichlet prob-
lem

(02) { ulZT =gE€ Lq(O’ T’ LP(BQ)) )

Ul=0=0
and the initial Neumann problem

ou) — g [0, T, LP(BQ
(0'3) { 3N|ZT g € ( ’ H ( ))3
Ui=0=0

where X7 = 0Q x (0, T) denotes the lateral boundary of Qr and N denotes
the outward unit normal to 2. We prove that the initial Dirichlet problem
is solvable for 2 < p < 00, 1 < g < oo (Theorem 1.1) and that the initial
Neumann problem is solvable for 1 < p < 2, 1 < g < oo (Theorem 1.2).
Moreover, the solutions can be represented by heat potentials and the ranges of
D, q are optimal.

In the case of p = g, the initial Dirichlet problem was solved in [FS] for
2 < p < o and the initial Neumann problem was solved in [B1, B2] for
1<p<2.

Our results are established by the method of layer potentials (see [B1, B2,
DK, S, V]). For the initial Neumann problem, the existence of solutions is
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reduced to the invertibility of the boundary potential operator %I + K on
Li(0, T, LP(0RQ)). In [B1, B2] it is shown that %I + K is invertible on
LP(0, T, LP(0Q)) for 1 < p < 2. To establish the invertiblity of ;I + K
on L9(0, T, LP(0K2)) we use the vector-valued Calderén-Zygmund machinery.
This leads to the study of layer potentials for the Helmholtz-type equation:
(0.4) -Au+(1+it)u=0 inQ, TeR.

We are able to show that (%I + K)~! is associated with an L(B)-valued
Calder6n-Zygmund kernel where L(B) denotes the space of bounded linear op-
erators on B = L7(9Q). A standard Calder6n-Zygmund argument then yields
that (%I+K)‘1 is bounded on L9(0, T, LP(0Q)) for 1<p <2, 1 <g<oo.
The result for the initial Dirichlet problem follows by duality.

We remark that the methods of this paper provide a simpler proof of Theorem
2.7 and its corollaries in [BS2]. In this earlier paper, we used estimates in
mixed LP-spaces in the course of studying the initial Dirichlet problem for
parabolic systems in (ordinary) L?-spaces. It was this application that led us to
the research reported here.

Our main results are stated and proved in §1. Throughout this note, C and
¢ denote constants which depend at most on n, p, g, T and the Lipschitz
constant of Q.

1. L? 9-ESTIMATES FOR THE HEAT EQUATION

Let LP-9(Zr) = L9(0, T, LP(0Q)) denote the space

{f: Alezr) = (/OT </an |f(P, t)|"dP>q/p a’t) " < oo}.

LP-9(0QxR) = LI(R, LP(9Q)) is defined in a similar manner. In this section,
we prove the following main results in this paper.

Theorem 1.1. Let g € LP:4(Z7), 2<p < oo, 1 < q < oo. Then there exists
a unique solution u on Qr satisfying (0.1), (0.2), and ||(u)*||Lr.ez;) < 0.
Moreover, the solution u can be represented in terms of a double layer potential
and satisfies
@) lr-azr) < CllgNLro(zyr)-

Theorem 1.2. Let g € LP°9(Z7), 1 < p <2, 1< q <oo. Then there exists
a unique solution u on Qr satisfying (0.1), (0.3), and ||(Vu)*||Ls.azy) < 0.
Moreover, u can be represented in terms of a single-layer potential and satisfies

* 1/2. \%
(V) |lr.azr) + 18,2 u) lzr-azr) < Cllgllr-o(zyr)-

Definition 1.3. In Theorems 1.1 and 1.2 and throughout this paper, ( )* denotes
the parabolic nontangential maximal function defined by

(u)*(P, t) = sup{|u(X, s)|: (X, s) € Qr (or Q x R)
|X — P|+ |t —s|'/? < 2dist(X, 6Q)}

for (P,t) € 8Q x (0, T) (or 8Q x R). 8*u denotes the half of a time
derivative of u defined by

1 touX,s
8t1/2u(X, t) = ﬁa, [oo ﬁds
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Remark 1.4. An example in [B1, Example 1.7, p. 344] shows that the ranges of
D, q in Theorems 1.1 and 1.2 are sharp, save possibly the end points ¢ = 1 and
oo . On the other hand, given a Lipschitz domain Q, there exists e = ¢(Q) > 0,
such that the initial Dirichlet problem is solvable for 2—e¢ < p < 0, 1 < ¢ < ©
and the initial Neumann problem is solvable for 1 <p<2+e, 1 < g < 0.
This follows from the proof of Theorems 1.1 and 1.2 and a perturbation theorem
of David and Semmes (unpublished, see [DKV] for a statement of their result).
Also, Fabes has noted that the density of caloric measure in a Lipschitz cylinder
lies in L2(8Q; L*(0, T)) ¢ L*>(Zr). Hence, the initial Dirichlet problem
is solvable in the dual space L?-!. Fabes’s observation is proven using the
comparison principle for caloric functions (see [FGS]).
Let fe LP9X7), 1<p,q<oo,and let

0

0= [ | GRmTE -0, 1-9/(Q. 5)dQds

and
F)X, 1) =/0 /BQF(X—Q, t-9)f(Q, 5)dQds

be the double-layer potential and single-layer potential for the heat equation
(0.1) respectively where I'(X, t) denotes the fundamental solution of the heat
equation given by

I :
—IX[2/4t

r(x, s ={ @uoy¢ 120,

0, t<0.

Theorem 1.5. Let 1 <p,q < oo. Then
1@ ) oz ITF D) I ar) 1B 2L s s5r) < CISf Nsery »

2P (el = (:I:%I +1<) fr D(Nls = (%I +f<') f

where + indicates the nontangential limits taken inside Qr and outside Q x R
respectively, I denotes the identity operator, K is a bounded singular integral
operator on LP-9(Zr), K = AK*A, and A: LP-9(Z7) — LP-9(Xr) is defined
by A(f)(P,t)=f(P, T_t)'

Proof. The proof can be carried out using the theorem of Coifman, McIn-
tosh, and Meyer on the Cauchy integral on Lipschitz curves [CMM], a variant
of Fefferman-Stein’s results on maximal functions [FSt], and the argument of
Fabes-Riviere [FR]. The estimates are standard but lengthy. We omit the details
here. O

By Theorem 1.5, the existence of and estimates for solutions in Theorems
1.1 and 1.2 will follow if +1I + K: LP-9(Z7) — LP-9(Zr) is invertible for
1<p<2,1<g<oco. Tostudy the invertibility of +47+ K on LF-9, we
shall use a vector-valued Calderén-Zygmund argument. To do this, we find it
convenient to consider the equation

(1.6) %lti+u—Au=o in QxR
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It is easy to see that e~'I'(X, ¢) is the fundamental solution for (1.6). Let

FUHX, 1) = / /a _eTUIN(X -0, 1-5)f(Q, 5)dQds

be the single-layer potential for the equation (1.6). Then
0 = 1 _
el lons = (435 +e7KE ).

We shall first show that +3I + e~'Ke' is invertible on LY(R, LP(8Q)) for
l1<p<2,1<g<x.

We begin with a uniqueness result. This result is proven in [B2, Theorems
5.2 and 5.4].

Lemma 1.7. Suppose that u is a solution of (1.6) in Qx (—oo, T) with (u)* +
(Vu)* € LI(—o00, T, LP(0Q)) for some T € R and 1 < p,q < co. Assume
that either ulsqx(~0o,7) = 0 0or (Ou/ON)|sax(~co,7) = 0. Then u = 0 in
Qx (-0, T).

We also have uniqueness in “Q x (—oo, T), if, in addition, we assume that
lu(X, t)] = O(|X|>") uniformly in t as |X| — oo.
Theorem 1.8. +11+e~'Ke' is invertible on LP(9Q xR) for 1 <p <2.

Proof. The proof is essentially the same as that of [B2, Theorem 5.20, p. 39].
We only give a sketch here.

Taking the partial Fourier transform in the ¢ variable of both sides of equa-
tion (1.6), we obtain

(1.9) (1-itjv—Av=0 inQ, 7€R,
where v(X) = @(X, 1) = [ge™u(X, t)dt. Let
T.(X) = / e~ (X | 1) dt
0
denote the fundamental solution for (1.9) and

ve(X) = /m T,(X — Q)h(Q)dQ for h € [P(8Q), 1< p < .

Then

ON 2
It follows from Rellich identities (see [B1, BS1, Proposition 2.2]) that

c{IVian Vel L200) + II(1 + |T|)l/2v‘t"L2(80)}
0V,
ON

Qe _ (ill +K(1)) (h) on Q.

< C{lIVian¥ill 20y + (1 + [2)) 2vell 200 }-
1209

This, together with a simple approximation argument, implies that
:I:%I + K(1): L*(0Q) — L*(09Q)

is invertible and
(1.10) (3T + K (1)l 209)-r2009) < C
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where C is independent of 7 € R. Note that
{(£31 + e 'Ke") (NP, N(2) = (£31 + K(D) (-, 1)(P).

The invertibility of +3I + e 'Ke' on L2(0Q x R) then follows easily from
(1.10) and Plancherel’s theorem.
Let Q, =Q and Q_ =°Q. Let L?(0QxR) denote the closure of the space

{v:v =1ulpaxr, u € C(R" xR)}
with respect to the norm
1/2
vl e 0axr) = I Vian? | r9xr) + 18,0 || ooaxry + V| ooxR)-

As in [B2], to establish the invertibility of +}I +e~'Ke’ on L?(8Q x R) for
1 < p < 2, we need to consider the Neumann problem on Q. x R with L?
data:

Wtu—Au=0 in Qs xR,
(1.11) 2 =gel?P(0QxR) onR,

(u)* + (Vu)* € LP(0Q x R),
and the Dirichlet problem on Q. x R with L% data:
Bty Au=0 in Q. xR,
(1.12) u=geL?OQxR) on 9Q x R,
(u)* + (Vu)* € LP(0Q x R).

It can be shown that, given g € LP(0Q x R), 1 < p < 2, there exists a unique
solution u satisfying (1.1) and we have

(1.13) (V)" llr@axr) + 1l zeaxr) < Cliglleaxr).-

Also, given g € LF(0Q x R), 1 < p < 2, there exists a unique solution u
satisfying (1.12). Moreover, the solution to (1.12) satisfies the estimates

(1.14) (Vi) Il paxr) < Cliglraaxr)-

The above results follow by interpolation from the LZ-case and estimates of
solutions with atomic data. The estimates of solutions with atomic data can be
established using the L2-estimates and estimates on Green’s functions for (1.6)
in Qi x R.

In fact, let G(X, Y, t—s) be the Green’s functions for the heat equation
(0.1) in Q xR with Neumann boundary condition. Clearly, G;(X, Y, t-s) =
e~(=9G(X, Y, t—s) is the Green’s function for the equation (1.6) in Q x R.
By well-known estimates on G(X, Y, t), we have

(1.15) IGI(X,Y,t)| < Ce™ ift>1,

C  _\x-
(1.16) IGi(X, Y, 1) < e Wit 450,

- — £.11/2\éo
(1.17) IGI(X,Yl,t_sl)_Gl(X’Yz’t__sz)lSCqYl 1|+t = ]'?)

(IX = Y| + [t = s1|1/2)n+0
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for some dyg = dp(Q) > 0, if
1
Yy = Yol + |s1 — 5o]'/% < E[IX — Y|+t = 51|21,

Now, let u be a solution to (1.11) with atomic data, i.e.,
ou
N
for some (Pp, %) € 9Q xR and r > 0, [[o.xa =0, and |la|:paxr) <
r(n+1)/2 where A(Py, r) ={Q € 8Q,|Q — Py| <r}. Then

u(X,z):/_ /aQG(X,Q,t—s)a(Q,s)des

and, if 1> ¢p,
to
u(x,t>=// [G(X,Q,t—5)~GX, Py, 1 - t0)]a(Q, 5)dQds.
to—r2 JA(Py, 1)

It follows from (1.15)-(1.17) that

Oa t S tO - r2 5
crdo

(IX = Po| + |t — to|1/2)n+d

ce”t, t>to+ 10.

=a, suppaCA(Py,r)x(to—r*, to)

(1.18) |u(X, )| < to—-r*<t<ty+10,

The required estimates on solutions with atomic data follow from (1.18) and
L2-estimates in the same fashion as in [B2, Lemma 3.1, p. 16].
Finally, let f € L?(0QxR), 1 <p<2,and u=5(f). Then
_out  du”
/=38 "N
Thus, by the solvability of (1.11), (1.12) and estimates (1.13), (1.14),

ou* ou~

< || == hufhadi

1 fllr0xr) < " aN
out

N

Lr(0Q2xR) Lr(0QxR)

+ C"“"U;(anxm
LP(0QxR)
(%I + e"Ke’) f

out
N

Hence, to show 17+e~'Ke': [P(9QxR) — LP(0Q xR) is invertible, it suffices

to prove that the range of I+ e 'Ke' is dense in LP(9Q x R). To this end,

let g € C°(R" xR). Smce lI +e'Ke' is invertible on L?(0Q x R), there

exists f € L*(0Q x R) such that .

(Ar+e'Ke')f=g.

Let u= 5”(f) and v be a solution of (1.11) in Q x R such that 0v/ON = g
and (v)* + (Vv)* € LP(0Q x R). Since u =0 on Q x (-0, Ty) for some
To € R by Lemma 1.7, we have

<C

=c‘

LP(IQxR) LP(0QxR) '

(V(u—0))*+ (u—v)* € LP(0Q x (00, T))
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forany T € R. It again follows from Lemma 1.7 that ¥ =v on QxR. Hence,
out

B_N < 00.

LP(0QxR)
Repeating the above argument in ‘Q x R, we get ||du~ [ON|raaxr) < 0.
Thus,

H L <o
oN LP(9QxR) N LP(9QxR) ’

i€, f€LP(OQ xR). Hence, 11 + e 'Ke' is invertible on L?(Q x R). The
proof of the invertibility of —}I +e~'Ke' is similar. O

| fllr0xr) <

We now study the invertibility of :I:%I + e~ 'Ke' on mixed norm spaces.

Theorem 1.19. Let 1 <p <2, 1<q <oo. Then £1I+e7'Ke': LP-9(QxR) —
LP-9(0Q x R) is invertible.
Proof. We give the proof for %I + e~'Ke'. The invertibility of —%I + e 'Ke!
follows in the same manner.

Let S =1I+e7'Ke'. Recall that

ISP, NN1) = BT + K(@D)(S(-, 1))(P)
for 7€ R and f € L2(8Q x R). Let m(r) = ;I + K(t), 7 € R. It follows
from the theorem of Coifman, McIntosh, and Meyer [CMM] that
(1.20) lm(t)llr6@)—rr90) < C for 1 <p < oo

where C is a constant independent of 7. Moreover, it is not difficult to show
that

(1.21) d

C,
ﬁMan(h)( )

for any integer o > 1, where h € LP(0Q) and Mpyq denotes the Hardy-
Littlewood maximal function on 8Q. Thus

(1.22) %m(r)

i m(t)h(P)‘

G
veQ-re  (I+]the
for any integer o > 0. From (1.10), we know

(1.23) Im~" (D)l 200)— L209) < C-
We claim that
(1.24) lm= (T)|lea)—ee < C forl<p<2

To prove the claim (1.21), let Ay, h, € C*(R"). By (1.23) and (1.22),
(m~'(7)h, hy) is a bounded continuous function of 7, where ( , ) denotes
the inner product in L?(0Q). Hence,

m (@, ) = - lim / == (=) (1), , hy) da

l(g)e~(e=D /Zeh1 —(a—t)z/Zehz)dG

7 e—>0+ f]
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where f; = (VE/V2r)e~®/2 - ¢i"hy and f, = (V&/V2m)e /2. ei"h, . Since

Sl LP(R, LP(0Q)) — LP(R, LP(0Q)) is bounded for 1 < p < 2 (Theorem
1.8), we have

} s, ﬁ)d:“ < [ 15 lonl Al o

<NIST' M) lee®, ooy Lol &, 2 oo

< Clhillpr, ooyl ol ®, 1 o)
< CVellhllwoalif2ll L ag)-

Thus, we have proved that

[(m™' (D)h1, h2)| < Cliknl| ol 2]l L (a6 -

Claim (1.24) then follows by cduality.
Now, fix pe (1, 2). Let B= LP(0Q). By (1.24) and (1.21),
Co

m O S T

drte

for any integer a > 0. Since [S™1(N]" (1) = m~ (1) f" (1), it follows from a
standard Calder6n-Zygmund argument that S~!, as an operator on functions
with values in B, is associated with an .#(B)-valued Calder6n-Zygmund ker-
nel, where .Z(B) denotes the spaces of bounded linear operators on B. But
S-1: LP(R, B) —» L?(R, B) is bounded, so by the standard Calderén-Zygmund
theory,
S~!': LYR,B) — LI(R, B)
is bounded for 1 <g<oco. O

Corollary 1.25. Let 0 < T < oo. Then +1I + K: LP-9(Zr) — LP-9(Z7) is
invertible for 1 <p <2, 1 <g<oo.

Proof. We give the proof for 17+ K. The invertibility of —3I + K follows in
the same manner.

Given g€ LP9(Xr), 1<p<2, 1<g<oo.Let g be the extension of g
by zero to 9Q x R. Clearly, e~'g € LP-9(0Q x R). Hence, by Theorem 1.19,
there exists F € LP-9(9Q x R) such that (37 +e~'Ke')(F) =e~'g on 8Q xR
and

1FllLr.eoaxr) < Clle ™ &llLr.epaxr) < CligllLe.ozr)-
Since e~'g(P,t) =0 for ¢t <0, it follows from Lemma 1.7 that F(P,t) =0
on 9Q x (-0, 0). Now, let f = e'Fl|z,. Then (I +K)f = g on Zr.
Moreover,
I fllrazr) < CrllFlle.azry < Crliglleazr)

where Cr dependson p,q,0Q,n,and T. O

Finally, we are ready to prove our main results—Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let f € LP-9(Zr) and u = Z(f). Then ulz, =
A(-iI + K)*A(f) (Theorem 1.5). By Corollary 1.25, A(-3iI + K)*A:
Lr-9(X7) — LP-9(Z7) is invertible for 2 < p < 00, 1 < ¢ < oo. The exis-
tence then follows.
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To show the uniqueness, we construct a Green’s function
GX,Y,t)=T(X-Y,t)-V(X,Y,1)

for X € Q, Y € Q, where

VX, Y, 1) = /0' [ T-0.1-9) (—%I+K)-l

x (%F(Y -, .)) (Q, 5)dQds.

Then the argument of Fabes and Riviere in [FR, Theorem 2.3, p. 188] may go
through with obvious modifications. We omit the details. O

Proof of Theorem 1.2. The existence follows from the invertibility of 17+ K
on L?P9(Zr) for 1 < p <2 and 1 < g < oo, while the uniqueness is contained
in Lemma 1.7. O
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