A REPRESENTATION LATTICE ISOMORPHISM FOR THE PERIPHERICAL SPECTRUM ### JOSEP MARTÍNEZ (Communicated by Palle E. T. Jorgensen) ABSTRACT. In this paper we construct a representation isometric lattice isomorphism for the peripherical spectrum of a positive operator on a Banach lattice. By a representation lattice homomorphism, we mean that the peripherical spectrum of the operator is identified with the spectrum of the induced isometric lattice homomorphism. A simple proof of a "zero-two" law follows easily from our representation technique. ### 1. The representation lattice homomorphism We develop our technique in the context of Banach lattices with p-additive norm. Following Zaanen [Zaa], 1.1. **Definition.** Let $1 \le p < \infty$. A Banach lattice E for which $||x + y||^p = ||x||^p + ||y||^p$ whenever $x \land y = 0$ is called an abstract \mathcal{L}^p -space (or an AL_p -space). In fact, the norm of an AL_p -space $(1 \le p < \infty)$ is p-superadditive for all positive elements. In other words, if E is an AL_p -space, then $$||x + y||^p \ge ||x||^p + ||y||^p \quad \forall x, y \ge 0.$$ As a straightforward consequence of the p-superadditivity of the norm, we get the following basic property of AL_p -spaces: (1) If T is a contraction on E that verifies $0 \le x \le Tx$ for some $x \in E$, then Tx = x. Now let E be an AL_p -space $(1 \le p < \infty)$, and let $\mathscr F$ denote a free ultrafilter on N. The $\mathscr F$ -product $\widehat E_\mathscr F$ is actually an AL_p -space (see [S1, Chapter V, §1]). We denote by P the following isometric lattice isomorphism on $\widehat E_\mathscr F$: $$P((x_1, x_2, ...) + c_{\mathcal{F}}(E)) = (x_2, x_3, ...) + c_{\mathcal{F}}(E),$$ whose inverse isometric lattice homomorphism is given by $$Q((x_1, x_2, ...) + c_{\mathscr{F}}(E)) = (0, x_1, x_2, ...) + c_{\mathscr{F}}(E).$$ Received by the editors February 13, 1992. 1991 Mathematics Subject Classification. Primary 47B55. The author was supported by an F.P.I. grant from the Spanish Ministerio de Educación y Ciencia. 1.2. **Definition.** Let T be a positive contraction on E, and denote by $\widehat{T}_{\mathscr{F}}$ its canonical extension to the \mathscr{F} -product $\widehat{E}_{\mathscr{F}}$. We define the *limit space of* T as the Banach space $E(T)=\operatorname{Ker}(P-\widehat{T}_{\mathscr{F}})$ and the *limit operator of* T by $\widetilde{T}=\widehat{T}_{\mathscr{F}}|_{E(T)}=P|_{E(T)}$. The fact that $$\{T^n x\} + c_{\mathscr{F}}(E) \in E(T) \quad \forall x \in E$$ justifies our terminology. The Banach subspace $$A(T) = \overline{\{\{T^n x\} + c_{\mathcal{F}}(E) : x \in E\}} \subseteq E(T)$$ will be called the asymptotic space of T. As an immediate consequence of property (1), $E(T) = \operatorname{Ker}(I - Q\widehat{T}_{\mathscr{F}})$ is in fact a sublattice of $\widehat{E}_{\mathscr{F}}$ and so an AL_p -space. Moreover, as \widetilde{T} is the restriction of an isometric lattice homomorphism, \widetilde{T} is obviously an isometric lattice homomorphism. We can now state our basic lemma, which translates the techniques of Allan-Ransford [A] and Phong-Lyubich [L] to the setting of Banach lattices. 1.3. **Theorem.** Let T be a positive contraction on the AL_p -space E with $1 \le p < \infty$, and let \widetilde{T} denote its limit operator. Then we have $$\Gamma \cap \sigma_p(T) \subseteq \sigma(\widetilde{T}) \subseteq \Gamma \cap \sigma(T)$$, where $\Gamma = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. *Proof.* Let $\lambda \in \rho(T)$. As $$R(\widehat{\lambda, T})(E(T)) \subseteq E(T)$$, we get $\lambda \in \rho(\widetilde{T})$, where the resolvent is given by $$R(\lambda, \widetilde{T}) = R(\widehat{\lambda, T})|_{E(T)}.$$ But \widetilde{T} is an invertible isometry and so the inclusion $\sigma(\widetilde{T}) \subseteq \Gamma \cap \sigma(T)$ is already proved. On the other hand, if $\lambda \in \Gamma \cap \sigma_p(T)$, there exists a nonzero vector x with $Tx = \lambda x$. Defining now $$\tilde{x} = (x, \lambda x, \lambda^2 x, \dots) + c_{\mathscr{F}}(E) \in E(T),$$ we obtain $\widetilde{T}\widetilde{x} = \lambda \widetilde{x}$, $\|\widetilde{x}\| = \|x\| \neq 0$; therefore, $\lambda \in \sigma(\widetilde{T})$. ## APPLICATIONS Let T be a positive contraction on L^1 . In 1970 Orstein and Sucheston [O] showed that (1) $$\sup_{\|f\|_1 \le 1} \lim_{n \to \infty} \|T^n f - T^{n+1} f\|_1$$ is either 0 or 2. This surprising result opened a new direction of research. Wittmann [W] extended this "zero-two" law to AL_p -spaces. On the other hand, Zaharopol [Zah], Katznelson-Tzafriri [K], and Schaefer [S2] proved that, given a positive linear contraction in an arbitrary Banach lattice, the limit $\lim_n |||T^n - T^{n+1}|||$ is either 0 or 2. We now deduce a simple proof of a uniform "zero-two" law from the above representation technique. We need the following modification of an Arendt-Schaefer-Wolff result (see [Ar, Lemma 3.3]): 2.1. **Lemma.** Let T be a positive isometry on the Banach lattice E, and suppose that $r(I-T) < \sqrt{3}$. Then we have T = I. *Proof.* By the classical result of Gelfand (see [A]), we only need to show $\sigma(T)=1$. If this is not verified, as $\sigma(T)$ is cyclic (see [S1]), there must be an element $a \in \sigma(T)$ such that $\frac{2}{3}\pi \leq \arg a \leq \frac{4}{3}\pi$ holds; this implies $-1 \leq \operatorname{Re}(a) \leq -\frac{1}{2}$. From this inequality we obtain $$r(I-T)^2 \ge |a-1|^2 = |a|^2 - 2\text{Re}(a) + 1 \ge 3.$$ - 2.2. **Theorem.** Let E be an AL_p -space $(1 \le p < \infty)$, and let T be a positive contraction on E. Then the following statements are equivalent: - (a) $\lim_{n\to\infty} ||T^n T^{n+1}|| = 0$. - (b) $\lim_{n\to\infty} ||T^n T^{n+1}|| < \sqrt{3}$. *Proof.* (b) \to (a) Given a free ultrafilter \mathscr{F} on E, if we denote by $S = \widehat{T}_{\mathscr{F}}$ the canonical extension of T to the \mathscr{F} -product AL_p -space $\widehat{E}_{\mathscr{F}}$, we have (see [S1, Chapter V, §1]) $$\sigma_{ap}(T) = \sigma_p(S), \qquad ||T^n - T^{n+1}|| = ||S^n - S^{n+1}||.$$ By the Katznelson-Tzafriri theorem [K], it suffices to prove $\sigma_p(S) \cap \Gamma = \sigma(T) \cap \Gamma \subseteq \{1\}$. However, given $x \in E(T)$, denoting by \widetilde{S} the limit operator of S we get $$||x - \widetilde{S}x|| = ||Q^n(\widehat{S}^n - \widehat{S}^{n+1})x|| \le ||S^n - S^{n+1}|| \, ||x||$$ and so we deduce $\|I-\widetilde{S}\|<\sqrt{3}$. Lemma 2.1 now shows that $\widetilde{S}=I$, and then from Theorem 1.3 we conclude $$\Gamma \cap \sigma_n(S) \subset \sigma(\widetilde{S}) = \{1\}.$$ ### ACKNOWLEDGMENT The author wishes to thank Professors F. Andreu and J. Mazón for many stimulating conversations concerning the subject of this paper. #### REFERENCES - [A] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79. - [Ar] W. Arendt, H. H. Schaefer, and M. Wolff, On lattice isomorphisms with positive real spectrum and groups of positive operators, Math. Z. 164 (1978), 115-123. - [K] Y. Katznelson and C. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 313-328. - [L] Y. I. Lyubich and Vu Quoc Phong, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), 37-42. - [O] D. Orstein and L. Sucheston, An operator theorem on L¹ convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. - [S1] H. H. Schaefer, Banach lattices and positive operators, Springer, Berlin, Heidelberg, and New York, 1974. - [S2] _____, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244. - [W] R. Wittmann, Analogues of the zero-two law for positive linear contractions in L^p and C(X), Israel J. Math. **59** (1987), 8-28. [Zaa] A. C. Zaanen, Riesz spaces. II, North-Holland, New York, 1983. [Zah] R. Zaharopol, The modulus of a regular linear operator and the "zero-two" law in L^p-spaces (1 , J. Funct. Anal. 68 (1986), 300–312. Departament d'Anàlisi Matemàtica, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain E-mail address: martinjo@vm.ci.uv.es