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ON THE ABSTRACT CHARACTERIZATION OF OPERATOR SPACES

EDWARD G. EFFROS AND ZHONG-JIN RUAN

(Communicated by Palle E. T. Jorgensen)

Abstract. A direct proof is given for the matricial norm characterization of

operator spaces.

1. Introduction

The abstract characterization given for linear spaces of bounded Hilbert space

operators ("operator spaces") in terms of "matricially normed spaces" [9] im-

plies that quotients, mapping spaces, and various tensor products of operator

spaces may again be regarded as operator spaces. Owing in part to this re-

sult, the theory of operator spaces is having an increasingly significant effect on

operator algebra theory (see, e.g., [3, 4, 7]).

The proof given in [9] appealed to the theory of ordered operator spaces

[1]. In this note we will show that one can give a purely metric proof of this

important theorem by using a technique of Pisier [8] and Haagerup [5] (as

modified in [2]).

2. The matricial characterization theorem

Given Hilbert spaces H and K, the linear space B(H, K) of bounded

operators b: H -» K comes equipped with the usual norm. It follows that

any operator space V C B(H) is a normed vector space. However, due to the

fact that a matrix of operators is again an operator, operator spaces inherit a
richer "matricial norm structure", which distinguishes them from normed vector

spaces. To be specific, we may regard an m x n matrix b = [bjj] of operators
bjj £ B(H) as an operator from H" to Hm , where

n

H" = HQ---QH .

As a result, we may identify the space Mm„(F) of mxn matrices over V with

a subspace of B(Hn , Hm). This provides a distinguished norm on the matrix

space Mmt„(V). The appropriate morphisms in the category of operator spaces
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are those that are well behaved with respect to all of these matrix norms (see

below).

Given a vector space V, we let Mm„(F) denote the vector space of mx

n matrices v = [vtj] («y e V), and we let Mn(V) = Mn>n(V), Mm<n =

Mmj„(C), and M„ = M„,„ . If we systematically keep track of the indices,

we may use the usual identifications Mm,n(Mp<g) = MmPtnq, i.e., we may

"delete internal brackets". Given v £ Mm>n(V), w £ MP>9(F), and scalar

matrices a £ Mp<m , fi £ M„i(?, we define matrices v©w e Mm+P „+q(V) and
avp£Mp,q(V) by

V0W=   0   w      and   av^=   ^(XkiVijPji   ■

L 'j
Letting C" have the usual Hilbert space norm, we have that Mm„ =

B(C" ,Cm) is an operator space. From elementary operator considerations,
the matricial norms on an operator space V are connected by the relations

(Ml)      ||v©w|| = max{||v||,||W||}       (v6Mm,#), weMf#)),

(M2)   ||av£||<|H|||v||||/?||        (veMm#),aeMp,mj£MM).

An L°°-matricially normed space is a vector space V with norms given on each

matrix space Mm,„(V) satisfying (Ml) and (M2). Given two such spaces V

and W, a linear map tp: V -> W determines a linear map

^m-">: Mm<n(V) -» Mm,n(W): [vu] ~ lf(vu)],

and we let p(n) = ^("■"J. cp is said to be completely bounded (resp. completely

contractive, completely isometric) if it satisfies

\\cp\\cb = sup{||pW||: «£N} = sup{||^(m-")||: m, n e N} < oo

(resp.  \\cp\\cb < 1, f^ is isometric for each «eN).

Our object is to prove

Theorem A. Any L°° -matricially normed space V is completely isometric to an

operator space.

Theorem A is a consequence of the following completely bounded analogue

of the Hahn-Banach Theorem.

Theorem B. Given an L°°-matricially normed space V and an element v £

M„(V), there exists a complete contraction tp: V —> M„ such that ||^")(v)|| =

IMI-
To see how Theorem A follows from Theorem B, let S?n be the collection of

all complete contractions cp: V —> M„ . The mapping

O:F^0 0M,:»h(^))

is trivially completely contractive, and from Theorem B it is completely isomet-

ric.
Given v £ M„(V), the classical Hahn-Banach Theorem implies that there

is an element F £ Mn(V)* such that |.F(v)| = ||v||. Thus Theorem B follows

from
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Theorem C. Suppose that F £ Mn(V)* is a contraction. Then there exists a

completely contractive map tp: V —> M„ and contractive 1 x n2 and n2 x 1

matrices y and 8 such that

F(y) = ytp{n)(\)S,

for all \£Mn(V).

Proof. We begin by proving that there exist states po and qo on M„ such that

(1) \F(avfi)\<pv(aa*)xl2\\v\\qo(pr*p)xl2

for any matrices a £ Mnp , v = [vy] £ MP(V), and P £ Mpn . It suffices to

find po and qo such that

\F(mp)\<\(p0(aa*) + qQ(P*P))

for all such a and ft and all v with ||v|| = 1, since then for all t > 0

\F(ayfi)\ = IFitWctrt-Wpy < \(tPo(aa*) + rxq0(P*p)),

and the result follows by minimizing the right-hand side. In turn it suffices to

find po and qo such that

ReF(avP) < \(po(aa*) + q0(P* P)),

since then choosing 6 £ [0, 27t] with e'eF(av0) = \F(a\fi)\, it follows that

|F(oy^)| = F(etecaP) < x2(Po(c*a*) + q0(P*fi)) ■

We will define p0 and q0 to be the barycenters of measures on the state space

S of the C*-algebra M„ .
We let C(S x S) be the real continuous functions on S x S, and let F C

C(S x S) denote the functions of the form

ea,r.f{p,q)=p(aa*) + q{fi*fi)-2KcF{aifi)

with ||v|| = 1. This is a cone because it is obvious that as c e for a > 0 and

(ea,i,p- + ea',i',fi')(p, q)

= p([aa'][aa'r) + q (  ^       ^  ) - 2ReF ([aa'](v® v')   ^  )

= ea",Y",p"(P> q),

where

a" = [aa'],        v"=v©v', R" = [^    ,

and ||v"|| = 1 by condition (Ml). The function eayj cannot be strictly

negative since choosing px, qx £ S with px(aa*) = \\aa*\\, qx(fi*ft) = \\P*fi\\,
it follows that

ea,y,p(Px, qx) = Px(aa*) + qx(P* P) -2ReF(ayp)

> \\aa*\\ + \\P*P\\ - 2\F(ayP)\ = 2(I(||a||2 + ||/?||2) - \F(avP)\)

>2(\\a\\\M\\\P\\-\F(avP)\)>0.
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Thus letting J? be the cone of strictly negative functions on S x S, we have

fn J = 0. Since 3? has interior, we have from the geometric form of
the classical Hahn-Banach Theorem a measure 0 ^ p £ C(S x S)* such that

p\g > 0 and p\s? < 0. From the second inequality we conclude that p is a

positive measure, and we may assume that p is a probability measure. Letting

A) = //pdp(p, q) and qo - JJ q dp(p, q), i.e., taking the barycenters of the

projections of the probability measures on the first and second coordinates, we

have from the first inequality that

0< JJea,y,p(p,q)dp(p,q)=Po(aa*) + qo(p*p)-2ReF(avP)

for any a, v, p as above, and thus we have (1).

Letting n be the standard representation of M„ , i.e., the representation

n

n(a) = a® ■■■ ®a

on (C)" = C" , there exist unit vectors d; and n in C" with Po(a) = n(a)^-^

and qo(a) = n(a)?7 • r\ for a £ M„ (this well-known fact follows easily from

[6, 4.6.18(h)]). We let K and L be the subspaces of all vectors of the form

n(a)*£ (a £ Mn>x) and n(P)n (P £ Mi>n), respectively. Defining 6: C" -+

(C")n = C"2 by

d(ai, ... , an) = ((a,, 0, ... , 0), (a2, 0, ... , 0), ... , (an , 0, ... , 0)),

we have that K and L are subspaces of 8(C). We define a sesquilinear form

( ,  )v on Lx K by

(n(p)ri,n(ayt)v = F(avP).

This is bounded by ||i>|| since we have that

\(n(P)r1,n(an)v\<p0(aa*)x/2\\v\\qo(P*P)x/2

= \\v\\\\n(an\\\\n(p)r1\\.

Letting K0 and Lo be the subspaces of C" with 6(K0) = K and 6(Lo) - L,
we have a corresponding sesquilinear function on LqxKo, and this determines

a unique linear map p(v): Lq —> Kq of norm < \\v\\ such that

F(avP) = p(v)d*n(p)n • 6*n(a)*Z.

Letting cp(v) = p(v)E where E is the projection of C" on Lq and using

matrix notation, we may consider cp(v) as an element of M„ . Thus regarding

£ and n as n2 x 1 matrices,

(2) F(avP) = C(n(a)d)y,(v)(e*n(P))n
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where

'px   p2   •••    0    0    •••"
d*n(p)=   o   o   ■••   pi  p2  •••   ,

-ai     0    ..."
a2    0    ...

n(a)9 =     '

0      Q2     ...

are nx n2 and n2 xn matrices. It follows that if v = [«,-_,-] € Mn(V), f =

[0, ... , Ij., 0, ... , 0] e Mi,„ , and e,= f* £ M„,, then

F(y) = ^F(eivijfj) = Y.^n^e^vu)e*^fM = 79(n)W

where y = £*[n(ex)9 • • • n(e„)6] has norm < 1 since

TI   0   ...] [0   0   ...]     ■
0   0   ...      10   ...

[n(ei)e---n(en)6]=      Q   j ^   Q

0   0   ...      0   1    ...

has norm 1 (deleting the inner brackets, we obtain a permutation matrix, i.e.,

each row and each column contains precisely one "1"), and similarly

' e* 71(f)-

8 = : r,

.e*n(fn)_

has norm < 1.

Finally we have that tp is a complete contraction since given v e MP(V)

and vectors C = (d*n(ak)*£) and co = (d*n(pi)n) in (Cn)p , and letting a and

P be the row and column matrices with entries ak £ M„i and Pi £ Mx „ ,
respectively, we have from (2) that

\cp^(y)co • CI = |E 9(vki)6'n(P,)ti ■ 6*n(ak)^

= \Y,F(<*kVkiP,)\ = \F(ayp)\<po(aa*)l/2qo(P*P)i/2\\v\\

= [Y,Po(c*kak)]l/2 [Y,Q°WPl)]l/2 M

= [J2 Makn\\2}1/2 [£ \HP,)r,\\2] ̂ ||t|| = ||C|| HI ||v||.   D
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