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(Communicated by Dennis A. Hejhal)

Abstract. We give an asymptotic expansion as M —► oo, N —► oo of

X\{m + /it)2 , where the product is over 1 < \m\ < M, I < \n\ < N,

{m, n) / (0,0). The formula is analogous to the classical Stirling expan-

sion on M!. Of special interest is the constant term in the expansion, which

involves the Dedekind eta function n{z). Finding this constant is related

to the Kronecker limit formula for the derivative at 0 of the zeta function

Z(s) = 5Dm n\m + m\~2s ■ We consider instead the zeta function without

absolute values.

1. Introduction

Consider the classical Stirling expansion,

(1) \o%N\ = (N + \)\o%N-N + \o%j2li + 0(N-x)

as N -► oo. The terms going to infinity in the expansion can be obtained by the

Euler summation formula, but the constant term log V2n must be evaluated by

a different technique (see, e.g., [Bo, p. 253]). Now consider the Riemann zeta
function £(s) = zZT=i n~s f°r Res > 1, which can be extended by methods

of analytic continuation to an entire meromorphic function which is analytic at

5 = 0. The derivative at zero is

(2) C'W^-logv^,

precisely the negative of the constant in Stirling's expansion. In fact, the value

of £'(0) can be used to obtain Stirling's constant. We outline how this is done
in §2.

Now suppose we have a zeta function corresponding to a two-dimensional

lattice, say Z(s) = Yl' \m + n?\~2s, with Imt > 0, where the prime indicates
the sum over all integer pairs (m, n) ^ (0, 0). The evaluation of Z'(0) is

known as Kronecker's limit formula. It says that

(3) Z'(0) = -log(2;r)2|,7(T)|\

where n(t) is the Dedekind eta function, enix<n n£li(l - e2nikx).
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The question arises whether a "Stirling" formula exists for equation (3), just

as equation (1) corresponds to equation (2). This would be an asymptotic

formula for njm|<ji/, \n\<N\m + nT\2 as M and N go to oo. For the case

t = i this gives a natural generalization of (M!)4 = IIimKM ml ■ Tne purpose

of this paper is to give such a formula (see §4, Theorem), which we call the

double Stirling formula. The corollary deals with the special case when x — i.

We found that it was necessary to derive the formula for the product without

absolute values, and in doing so we needed to consider the zeta function Z\(s) =

z2'(m + nx)~s for a suitable choice of log(m -f- nx). The value Z[(0) gave us

the constant in the expansion. The Kronecker limit formula did not directly

apply.
We prefer to consider the evaluation of the derivatives of zeta functions at 0

in the context of zeta regularized products, which we describe in §2. In §3 we
give motivation for the proof by considering how to prove the classical Stirling

formula starting with (2). In §4 we state the theorem and give the proof. The

idea for the proof comes from two main sources. The first is Barnes's proof

for his asymptotic expansion of multiple gamma functions [Ba]. The second is

Shintani's treatment [S] of the Kronecker limit formula using the double gamma

function. For a synthesis of these ideas and others, see our paper [QHS]. It was

in this context that the problem considered here arose.

2. Zeta regularized products

Let kk , k = \ ,2, ... , be a sequence of nonzero complex numbers, and

let Z(s) — Y^k=\ Aks be the zeta function associated to this sequence. The zeta

function will depend on the particular choice of argkk , and for a real sequence

the arg is chosen to be 0. We will assume that the series for Z(s) converges
absolutely in some half-plane Re 5 > a and that it can be analytically continued
to a meromorphic function in the plane which is holomorphic at 5 = 0. This

will be the case for all the examples that follow. We define the zeta regularized

product of the sequence by

JIzAfc = exp(-Z'(0)).

Some properties of the zeta regularized product are easily established from

the definition. First, if a is any nonzero number, then

(4) nz^=flZ(o,nz^'

provided the arguments are chosen so that arg akk = arg a + argkk . We will

call the sequence akk the rotated sequence. Next, if kk is the union of two

sequences kk and k\ renumbered in any way, then

(5) ij>=nr4nz4
Choosing log A2. = 2\ogkk and \ogkk = logkk , we also have

w iL*Hn/*)2.

(7) IL^-dL*)-
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We will also be concerned with zeta regularized products of the form

[\z(kk + z). The convention on these is that arg(A^ + z) is approximately

equal to argkk for \kk\ large. This is sufficient to determine the product, since
changing a finite number of arguments in the product does not change the prod-

uct. In the product \[z(kk + z) we can allow a finite number of the kks to be

zero by considering the contribution of those factors as z1, where / is the total

number of A^'s which are zero.

More information on zeta regularized products and methods for computing

them can be found in [QHS]. Here is a list of some of the products mentioned

there and the value of the corresponding zeta function Z at 0. We assume that

Imt > 0 and -n < arg(m + nx) < n for all integers m and n . Also we write

^(*) = n£Li(l-e27t'"T) and n(x) = enix/nP(x) for the Dedekind eta function.

The symbol Ff denotes the product for (m, n) ^ (0, 0).

<8> nz(- + -) = f(7Tir    z(0) = 2" + z;

(9) Y[(m + x)= \-e2nH,       Z(0) = 0;

m

(10) Y[z(m + nx) = P(x),       Z(0) = 0;
n>\
m>0

(11) H'z(m + nx) = 2ni[P(x)]2,       Z(0) = 1;
m,n

(12)        n'*iw+"Ti=27rwT)i2>   z(o)=-i.
m,n

We note that (10) appears to follow from (9) by taking an iterated product,

but this procedure must be justified. We also note from property (4) that prod-

ucts (9) and (10) do not change if the sequence is rotated since Z(0) = 0. Also

we remark that

n(m-l-HT)  # T [   |m + «T|,
z I       ■*■■*■ z

so (11) does not directly give Kronecker's limit formula (12).

3. Stirling's formula and zeta regularized products

To motivate §4, we give a brief discussion of the classical Stirling formula

from the point of view of zeta regularized products. Formula (1) can also be

written as ./V! = NN+ll2e~Ns/2nee, where e = 0(N_i) as N —> oo. We note

that V2n in the formula is riz^i n ■ ̂ ne following analysis shows why this is

so. A similar analysis will be used in the proof of the double Stirling formula.

Let
OO

C(s,x) = ^(n + x)-s

n=\

for x > 0 and Re5 > 1, so C,(s, 0) = C(s) is the Riemann zeta function. Use

the Mellin transform formula [SG, p. 364] to get

1     Z"00
C(S,x) = =n     e-xte(ty-'dt,

1 \S) Jo
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where 6(t) = £~ , e~nt = (e' - l)~l. The expansion 0(f) = r1 - \ + O(t) as

/->0+ can be integrated to give for 5 > -1 the expansion

Z(s, x) = -^jxl~s - ^x~s +sO(x-l-s)

as x -+ 00 [SG, p. 458]. This expansion can also be differentiated at s = 0 to

give

-T-CC?, x)\s=0 = -logY[2(n+x) = (x + jjlogx-x + 0(x~i)

as x —► 00 . Now writing (using (5))

oo / oo /  oo

AT! = J] « /11 (n + N) = V2lt     {](« + N)
n=\       I    n=\ I    n=\

gives Stirling's formula.

4. The double Stirling formula

Theorem (double Stirling formula). Suppose Imt > 0, M and N are positive

integers, and arg((M + Nx)/(M - Nx)) and arg(-(M - Nx)/(M + Nx)) are
chosen in the interval (0, n). Then

11     (m + nx)2 = exp(-4(3MN + M + N))(M2 - N2x2)y (-w~ »T)
\m\<M ^ +     T/
\n\<N

(m,n)*(0,0)

\m^Tx)W(«(t))4exp(e),

where y = (2M+\)(2N+\), a = -x(± + 2N(N+ 1)), B = A(| + 2Af(M-f-l)),
n is the Dedekind eta function, and e — 0(M~l) + 0(N~l) as M —► 00 and
N —> 00.

Corollary. With notation as in the theorem,

MINI    U   (m2 + n2) = (M2 + N2)W+W)mW)

\<m<M
\<n<N

f N M\
• exp f -3MN-M-N + M(M + 1)arctan — + N(N + 1)arctan — 1

00

•^[[(l-e-^exptE).

n=\

We note that since TJ^liC1 ~ e~2nn) = 0.99812... is very close to 1, the

constant in the corollary is very nearly \/27i, the constant in the classical Stirling

expansion.
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To prove the theorem, let a and b be complex numbers with positive real

parts. For Res > 2, t > 0, let

oo

Z(s,a,b,z)—  y^ (ma + nb + z)~s,

m,n=\

oo

6(t)=   J2 e-{ma+nb)t,

m,n=\

where the principal branch of log is used to define Z . For t > 0 we find the
expansion

(13) 6(t) = (eat - 1)-V - I)"1 = c2r2 + cxrl + Co + O(t)

as t -* 0+ , where

ci = c2(a, b) = —^ ,

(14) cl=cl(a,b) = ~(^ + iy

,     ^     1       1   (a     b\
Co = Coia'b) = 4+l2[b + a)-

Now we write Z as a Laplace type integral

1     f°°
(15) Z(s,a,b,z) = =-r       9(t)f-le-ztdt

1 {s) Jo

for Res > 2. Using (15) to integrate the expansion (13) [SG, p. 458], we get,

for 5 > -1, Re z > 0,

(16) Z(s, a,b,z)= (5_1)1(5_2)C2Z2-s + ^tCiz1^ + Coz-^ + 50(|2|-1^)

as z —> oo , |arg| < | - 8 , 8 > 0.

We note from (14) that if 5 = 0, the expansion (16) is invariant if a, b, and
z are replaced by aa,ab, and az, respectively, for a any nonzero complex

number. Thus we can remove the restriction on the real parts of a and b, and

the expansion holds as z-»oo in any closed sector of angle < n contained in

some open half-plane through the origin containing a and b. The branch of
log must be chosen appropriately in defining Z ; i.e., log(fj(ma + nb + z)) =

log a + log(ma + nb + z). This remark holds also for the following differentiated
version at s = 0.

Now the expansion (16) may be differentiated at s = 0 [SG, p. 462], and we
get, for z -» oo,

(17) Z'(0,a,b,z) = A(a,b,z) + O(\z\-1),

where

A(a>b>z^Ts {(s-il)(s-2)c2z2's+jhcizi~s+c°zi L

= -2— (-10gZ+ 2) +C!Z(l0gZ- l)-C0lOgZ.
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We can deduce from the definition of Z (or from (5)) that

J2   log(ma + nb)= - Z'(0, a, b, 0) + Z'(0, a, b, Ma)
l<m<M
l<n<N

+ Z'(0, a, b, Nb)-Z'(0, a,b,Ma + Nb).

Hence by (17)

(18) J2    log(ma + nb) = B(a,b,M,N) + Z'(0,a,b,0) + e,
\<m<M
\<n<N

where

B(a,b,M,N) = A(a,b, Ma) + A(a,b, Nb) -A(a,b,Ma + Nb)

and e = 0(M~l) + 0(N~l). Thus letting a = l,b = xanda = -l,b = x
in (18) and adding the results, we have

^   log(w + nx) =    ^2    log(w + nx) +   J^  log(nr)

\m\<M l<\m\<M \<n<N
(\Q) l<n<N \<n<N

= {B(l, x, M, N) + B(-l, x, M, N) + (N + lj)logNx - N}

+ {Z'(0, 1, x, 0) + Z'(0, -1, x, 0) + log(v/27tT-1/2)} + e,

where we used Stirling's formula (1). We compute the first term in brackets as

- 3MN - N + ni (-X- + y + B + ̂ \ + Q + m\ XogM

+ -(y + a - B)log(-M + Nx) + j(y + P - a)\og(M + Nx),

where y, a, and B are as stated in the theorem. We recognize the second term

in brackets as the zeta regularized product (10), P(x).

Now adding another Stirling expansion (1) to (19) and exponentiating yields

the theorem. The corollary follows easily by substituting x = i and using the

identities

(M + Ni\ N
ar8Ur^J = 2arctanM'

/   M-Ni\     _ M
aTz{-MTN-i)=2aTCtanN>
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