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WITH ZERO TOPOLOGICAL ENTROPY
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(Communicated by Andrew M. Bruckner)

Abstract. The study of the shadowing property has a long history but for in-

terval maps it is rather new. Recent research in this direction is mainly focused

on the positive entropy maps and work for zero entropy is still seldom to be

found in the literature. In this paper we give a characterization of zero topologi-

cal entropy maps which have the shadowing property. Moreover, our condition

is necessary for any continuous function to have the shadowing property.

1. Introduction

Let C°(I, I) denote the class of continuous maps I -+ I, where / is a

compact real interval. The orbit (or trajectory) of x £ I with respect to / is

the sequence orb(;c) = {fn(x)}nxl0 where /" denotes the nth iterate of /.

Denote the set of periodic points of / by Per(/), the set of the fixed points of

/ by Eix(f), and the topological entropy of / by E(f). The interval J c I
is called a periodic interval with period per(/) = k £ N if fk(J) = J and
f'(J) n P(J) = 0 for 0 < /' ̂  j < k . If J is degenerate to a point then it
may be called a periodic point. We will denote a closed interval with x < y
by [x, y], and a closed interval where no information about order of x,^ is

provided by [x, y]*.

Definition 1.1. If / £ C°(I, I) and 8 > 0 is given, then a sequence X^ =

(xi}So °f P°mts m I is called a 8-chain of f (or a <J-pseudo orbit of /)
provided that

|/(Xj) - x,+i \<8   for every i > 0.

Given e > 0, a r5-chain Xj is said to be e-shadowed by y £ I if

\f'(y) — Xf| < e   for every / > 0;

/ is said to have the shadowing property if for any e > 0 there is 8 > 0 such

that every r5-chain of / can be e-shadowed by a point in /.

Definition 1.2. Let f £ C°(I, I). We will call f a shrink function if and only
if for every sequence {/^}^10 of periodic intervals such that Jk+i c Jk and

per(Jk+i) > per(Jk) we have that lim^oo |/fc| = 0.
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Definition 1.3. We will call a one-sided neighborhood [p, q]* of the periodic

point p an m-f-nontrapping neighborhood of p if fm(p) = p and, for every

x £ [p, q]*, x £ fm([p, x]*). If m = 1 then we will say that [p, q]* is an

/-nontrapping neighborhood of p.

Definition 1.4. We will call / £ C°(I, I) a nondegenerate function if the fol-

lowing condition holds:

If x £ I, p e Per(/), [p, q]* is an w-/-nontrapping neighborhood
of p , and limn^oo fmn(x) = p , then for every neighborhood Ox of x

and for all zx, z2 £ (p, q)* there is an «0 S N such that [zi, z2]* c
fmno(Ox).

Main Theorem. Let f £ C°(I, I) and E(f) = 0. Then f has the shadowing
property if and only if f is a nondegenerate shrink function.

Remark 1.5 (cf. Preiss and Smital [13]). Let f £ C°(I, I) and E(f) = 0.
If / has the shadowing property then / is nonchaotic stable (this means that

a perturbed map can be chaotic but the chaos must be small whenever the

perturbation is small).

Remark 1.6. If we use the results from [11], we can easily obtain similar results

for continuous maps of the circle.

2. Necessary conditions

Let / be a compact interval and A a subset of /. Denote by \A\ the
diameter of A , int(A) the interior of A , conv(^) the convex hull of A , and

A the closure of A.
First we recall the following well-known fact (see [8]):

Lemma 2.1. Let f £ C°(I, I) and neN. Then f has the shadowing property

if and only if f" does.

Proposition 2.2. Let f £ C°(I, I). If f is a nonshrink function then it does not

have the shadowing property.

Proof. If / is a nonshrink function then there is a sequence {<4}£i0 of periodic

intervals from Definition 1.2 such that lim^_(00 \Jk\ > 0. Let J = fl^lo ^ • We
have that / = [p, q] where p ^ q .

Set e = J^l and x0 = ^ , and let 8 > 0. There are ;', k £ N such that

(1) \fj(Jk)\<S,

but there is x; e P(Jk) such that f2 ~J(\j) = xo- Set

x,=/'(x0)   for   0<i<;',

xj+i = f(Xj)   for   0 < i.

We have that {x,}^0 is a r5-chain (see (1)) and xo = x2*.

Now if y £ J then \y - xo| > e and if y £ J then I/2 (y) — x2*| > £
because J n f'(J) = 0 for / e N.

Hence we have found a r5-chain which is not e-shadowed.   □

Proposition 2.3. Let f £ C°(I, I) be a degenerate function. Then f does not

have the shadowing property.
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Proof. Let x £ I, lim,,-,^ fmn(x) = p, [p, q]* be an m-/-nontrapping neigh-

borhood of p, and let there be zi, z2 £ (p, q)* and a neighborhood Ox of x

such that

(2) [zx,z2Xqtrn(Ox)   for all ne {0,1,...}.

Without loss of generality assume that [p, q]* = [p, q] and Z\ < z2 . More-

over, we can assume that m = 1 (see Lemma 2.1).
Let e > 0 such that

(3) \q - z2\ > e   and   [x - e, x + e] c Ox .

Now we claim that for any 8 > 0 there exists X,$ which is not e-shadowed.

There is an ns £N such that

(4) f"(x) < Z\   for all n>n$,

(5) \p-f"'(x)\<8.

Let ks £ N be such that ks > ^^ . Set x„s+ks = q , and for i £{l,... ,ks}
define

if   y-m+ks-i+x -8 <P   then   xn/j+ki_i = p,

if   x„s+ks_i+i -8 >p   then   x„s+ks_i £ [p, x„(+ke_i+i -8]

and   f(xna+ks_i) = xns+h_i+i - 8

(this definition is correct because [p, q] is an /-nontrapping neighborhood of

p), and let x, = f'(x) for i € {0,..., tig - 1}.

Hence {x,}"^ is a f5-chain (see (5)). If y $ Ox then |j>-xn| > e (see (3))

and if y £ Ox then f"i+ks(y) < z2 (see (2) and (4)) and so \\„s+ki-fni+ks(y)\ >
e (see (3)).

So our <5-chain cannot be e-shadowed.   □

Remark 2.4. Note that we do not use the assumption that E(f) = 0, so Propo-

sition 2.2 and Proposition 2.3 give us a necessary condition for any function
from C°(I, I) to have the shadowing property.

3. Cover system

We begin with

Definition 3.1. Let / £ C°(I, I). We will call {M}go a cover system for f if

and only if Af, c / is a minimal closed set such that Af, = \Jk€K I'k where I'k

is a closed periodic interval with period 2' and, for all p £ Per(/), f2' (p) j= p

implies p £ I'k for some k £ Kt.

Lemma 3.2. Let f £ C°(I, I), E(f) = 0, p £ Per(f), and c £ Fix(f). If
c £ conv(orb(/7)), then c £ J where J = [j^ f'(con\(orh(p))).

Proof. Assume that c <£ conv(orb(/?)) and c £ J. Then per(p) = m > 1.

Let a = min(orb(p)) and b = max(orb(/>)). We can assume that c > b.

Because c £ J, there is d £ (a,b) and k £ N such that fk+i(d) > b for
i £ {I, ... , m} . But there are i, j £ {I,... , m] such that fk+'(a) = a and

fk+j(b) = a. Hence [a, b] c fk+i([a, d]) n fk+i([d, b]), and we have that
E(f) > 0—a contradiction.   D
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Lemma 3.3. Let f £ C°(I, I) and E(f) = 0. Then for all n £ {0, I, ...} and
p £ Per(f) such that P"(p) ^ p there is a closed periodic interval J dl with

period 2" such that p £ J.

Proof. If n = 0 then we can take J = f|^i f'(I) ■ Now we use induction. Let

Lemma 3.3 hold for n . We will prove it for n + 1.

Let p £ Per(/) and P"+[ (p) # p . From [2, Lemma 8] we have that orb(p) =

Si U S2 where S, < c < S2, c£ ¥ix(f), f(S{) = S2, f(S2) = Si, and Si, S2

are periodic orbits for g = f2 with period ^^- > 2" .

Let Ji = 0J7757(conv(5i)) and J2 = (J~i /2l'(conv(5,2)) • We have that
f(Ji) = J2 and f(J2) = Ji.

If, for example, p £ Si, then p £ Per(g|/,) and P"(p) ^ p. Hence there

is closed periodic interval J c Ji for function g such that per(7) = 2" and
p £ J . But from Lemma 3.2 we have /i n J2 = 0 (c £ Ji U J2), and from
here it is easy to see that / is a periodic interval for function / with period
2n+1.   □

Lemma 3.4. Let f £ C°(I, I) and E(f) — 0. Let {Jk}k^K be a set of periodic

intervals with period 2m, and let J = \Jk&K Jk be an interval. Then J is a

periodic interval with period 2m~l or 2m .

Proof. We have that pm(J) = \JkeKPm(Jk) = \JkeK Jk = J, and hence it

suffices to show that if pm~ (p) = p then p $ J.

Assume that p £ J and pm~ (p) = p .

The set P = {x £ I; pm (x) = x} is closed and hence from the construc-

tion of /:

• there is an interval J* - [p, q]* c J; p ^ q such that P n (p, q)* = 0
and we can take for /* the maximal of such intervals, or

• there is an interval /* = [#i, q2]C J; qi ^ q2 such that Pn[qi, q2] =

{Qx, Qi} ■

In both cases, J* = \Jk€K, Jk where K* c K and pm~' (J*)(~)J* ^ 0. Because

Pm(j*) = J*, it follows that pm~'(J*) = J* and for k £ K* we have (Jk u

Pm~\jk)) c /*. Set Jk* = com(JkUp""1 (Jk)). We have that pm~l(Jk*) D J*k

and hence there is x £ Jk* such that pm ~'(x) — x. But x $ Jklipm' (Jk) and

hence x £ int(/fc*) c int(/*)—a contradiction to the construction of J*.   □

Lemma 3.5. Let f £ C°(I, I) and E(f) = 0. Then the following conditions
hold:

(i) There is exactly one cover system for f, {Af,}~0-

(ii) f(Mi) = Mi.
(iii) Mi+lcMifor ie{0, I,...}.
(iv) We can say that Mi = (jk&R. Jk where R, c R, Jkl F\Jk' = 0 for ki^k2,

Jk c I is a closed interval, and for any interval J c Af, there is k £ R, such

that J c Jkl. Now if \Jk\ > 0 then Jkl is a periodic interval with period 2' or

2'-'.

Proof, (i) Let p £ Per(/) and / £ {0, 1, 2,...}. If p'(p) = p then let
IP = 0 else let I'p be the minimal closed periodic interval with period 2' such
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that p £ Ip. The existence of Ip follows from Lemma 3.3 (Ip is the intersection

of all closed 2'-periodic intervals which contain p). Now let Af, = UpePer(/) ty

and it is easy to see that {Af,}^0 is a unique (from minimality) cover system.

(ii) It is easy to see that f(IP) = 11^ for any p £ Per(/) and / 6 {0, 1, ...} .

Now because /(Per(/)) = Per(/), we have that f(Mt) = Af,.

(iii) From the proof of Lemma 3.3 we have that Ip+X c Ip and hence Mi+i c
Mi.   '

(iv) The first part is only the decomposition of a closed subset of a real

interval into closed connected subsets, and the second part follows from Lemma
3.4.   □

Lemma 3.6. Let f £ C°(I, I), E(f) = 0, and {Mt}°Z0 be a cover system for

f, where Mt — IJ/teR ̂ l ^ *n Lemma 3.5. Then if Jk = [a, b] where a < b,
then f(a) ^ a and f(b) ^ b.

Proof. Let P = {p £ Per(f) n Jk°;  f(p)^p}  (P # 0 from minimality of

M0 ) and Jp = USi /''(conv(orb(p))) for p e P. Let p0, p £ P. We have that
JPa n orh(p) = 0 or Jpc JPo.

If conv(orb(/?)) n JPo = 0 then there is a fixed point between conv(orb(/?))

and JPo (because

f(max(orh(p))) < max(orb(p)),        f(min(orb(p))) > min(orb(/?)),

and Lemma 3.2) and hence JPo n Jp = 0.

If JPo n Jp ^ 0 and \JP\ > \JPo\ then JPo c conv(orb(/?)). So we have that
orb(p) = Si U S2 where Si < JPo < S2, and because there is a fixed point in

JPo from [2, Lemma 8] we have that f(Si) = S2 and f(S2) = Si. Hence it is
easy to see that if there is a sequence {P;}^0» Pi e ? > sucn tnat /p< c ^,+1 anc^

1-^,1 < 1/ph.iI then lim«-oo JPt = [a*, b*] where /(a*) = b* and /(&*) = a*.
Hence we can assume that po £ P such that for any p £ P either Jp c JPo

or JpnJPo = 0. Now if J^ = JPo then we are done (see Lemma 3.2). So we can

assume that JPo = [oq, bo] and a <ao . Let J* = (jpeP JP ■ If Pn[a, ao) = 0

then J* f][a, ao) = 0. If Pr\[a, Oq) ̂  0 then there is a fixed point c e (a, ao)

(the same arguments as above) and we can assume that it is maximal. Then

P n [c, ao) = 0 and hence (Lemma 3.2) J* n (c, ao) = 0 . So in both cases we
can replace Jk by J*, which is a contradiction to minimality of Mo.   □

4. Reduction functions

Definition 4.1. Let I = [a, b] be an interval and s/ — \Ji€KIi where /, c /

is a closed interval and /, n /7 = 0 for all i ^ j. We will call a function

h £ C°(I, I) a reduction function for srf if

h (x) = x - I [a, x] n Ijx I -   ^   |/,-1   where x e int^)

I,C[a,x]

(semihomeomorphism h reduces the intervals /, to the points).

Lemma 4.2. Let f £ C°(I, I) be a nondegenerate function, E(f) = 0, {Af,}^0

be a cover system for f, where Mt - \Jk€KiJk as in Lemma 3.5,  h be a
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reduction function for Mi, and J — h(I). Then there is g £ C°(J, J) such
that h o / = g o h and g is a nondegenerate function.

Proof. The existence of a g £ C°(J, J) such that ho f = g o h follows from
Lemma 3.5.

We can assume that i — 0. If not, we only replace function / by f2' and

8 by S2' (it is easy to see that g is nondegenerate if and only if g2' is).

Let Jk° = [a, b], where a < b . Lemma 3.6 implies that there are a*, b* £ I

such that a* < a, b < b*, and if x £ [a*, a] (x £ [b, b*]) then f(x) > a

{fix) <b). Hence if x £ h([a*, a]) (x £ h([b, b*])) then g(x) > h([a,b])
(g(x) < h([a, b])). But we have that Per(g) = Fix(g) and \h([a*, a])\ / 0 ^

\h([b, b*])\ (see Lemma 3.5). Hence we have that

(6)      if \Jk\ > 0 then there is no g-nontrapping neighborhood of h(Jk).

Let x £ J, Ox be a neighborhood of x , p £ Per(g), [p, q]* be an m- g-

nontrapping neighborhood of p, lim^oo gmn(x) = p, and zi, z2 £ (p, q)*.

We will show that m = 1. Let, for example, p < q. If [p, q] is not a

^-nontrapping neighborhood of p, then there is z £ [p, q] such that for all

x £ [p, z] we have g(x) < z. Now from [14, Theorem 1] gm(x) < z for all

m £ N and x £ [p, z]. Hence [p, q] is not an m- ^-nontrapping neighborhood
of p for any m £ N, which is a contradiction.

Hence we have that m = I and from (6) that h~l(p) = Pf £ Fix(/).

Let h~x([p, q]*) = [pf, qf]*. We can assume that p < q and hence pf <

qf. If [pf, qf] is not an /-nontrapping neighborhood of Pf, then there are

zf, z*f £ [pf, qf] such that z*f < zf and f([pf, zf]) n [pf, zf] c [pf, z*f].

Because [p, q] is a g-nontrapping neighborhood of p, there is Jk = [a, b] C

A/o such that Zf,zy £ Jk. We have that Pf < a and hence f([a, zf\) c

[a, z*A , and similarly as in the proof of Lemma 3.6 we can replace Jk by the

set /* such that /* n (zy, Zf) — 0, which is a contradiction to the minimality

of Mo. Hence we have that [pf, qf]* is an /-nontrapping neighborhood of

Pf.
Now let Xf £ h  x(x) and zif £ h  '(z,) for / = 1, 2.

We have that zif, z2f £ (pf, qf)*, lim„_00/n(x^) = pf, and there is a

neighborhood 0Xf of Xf such that h(0Xf) c Ox .

Because / is nondegenerate, there is «0 £ N such that [zXf, z2f] c fn°(0Xf)
and hence we have that [zi, z2]c gn°(Ox).   D

Lemma 4.3. Let f £ C°(I, I) be a shrink function, E(f) = 0, and {A/",}^0 be
a cover system for f. Then for all e > 0 there is e* > 0 and i £ N such that

if hi is a reduction function for Mi and J c I is an interval with \J\ > e then

\hj(J)\ > e*. (In other words, h~x blows up small intervals to small intervals.)

Proof. Assume the contrary.

Let there be e > 0, an increasing sequence {m;}^ , and a set of intervals

{/,}£, such that |/,| > e and |/z„,(/,)| < \ for all i £ N.

We can assume that f]°l{ 7, = / such that |7| > § (if necessary we can con-

sider proper subsequences). Hence lim,_00 \hnj(J)\ = 0, and from Lemma 3.5

we have \hi(A)\ > \hj(A)\ for i > j and A c I. Hence we have that \hi(J)\ = 0
for i > 0 and so J c Mi for i > 0. So there is a sequence {Jk: }^0 such that
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J c Jk , and from Lemma 3.5 we obtain a contradiction to the assumption that

/ is a shrink function.   □

5. Proof of Main Theorem

Theorem 5.1 (Gedeon and Kuchta [8]). Let f £ C°(I, I), and let there be an
m £ N such that if p £ Per(/) then fm(p) = p. Then f has the shadowing

property if and only if f is a nondegenerate function.

Remark 5.2. This is a slight variation of [8, Theorem 2]. In [8] there is an

assumption that Per(/) is nowhere dense in I and there is a different definition
of nondegenerate function.

But from [8, Lemma 7] it is easy to see that we can change the used definition
of a nondegenerate function for Definition 1.4.

Moreover, if Per(/) is dense in some interval J c I then we have J c

Per(/) (see [13, 4.1 Lemma]), and hence it is easy to see that / is a degenerate
function and does not have the shadowing property. So this assumption is not

necessary.

Main Theorem. Let f £ C°(I, I) and E(f) = 0. Then f has the shadowing
property if and only if f is a nondegenerate shrink function.

Proof. | => | If / has the shadowing property then Propositions 2.2 and 2.3

imply that / is a nondegenerate shrink function.
<= | Let / be a nondegenerate shrink function and e > 0. From Lemma 3.5

there is a cover system {A/,}^0 of /". From Lemma 4.3 there is e* > 0 and

i £ N such that if h is a reduction function for Af, and x, y £ I then

(7) if   \h(x) - h(y)\ < e*   then   \x-y\<e.

Let / = h(I). From Lemma 4.2 there is g £ C°(J, J) such that hof=goh
and g is a nondegenerate function. From Theorem 5.1 we have that g has

the shadowing property. Hence there is 8 > 0 such that every (5-chain of g is

e*-shadowed by some y* £ J.
Now let X.5 = {x,}g0 be a r5-chain of /. Then X*d = {h(xj)}™0 is a r5-chain

of g and there is y* £ J such that \g'(y*) - h(xt)\ < e* for all /' > 0.
Let v £ h~x(y*). We have that h(p(y)) = g'(h(y)) = g'(y*) and from (7)

we have \f'(y) - x,| < e for all i > 0.   □
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