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Abstract. The Aramata-Brauer Theorem says that the regular character minus

the principal character of a finite group can be written as a positive rational lin-

ear combination of induced linear characters. In the language of Artin L-series

this says that C£(s)/CfOs) is entire, where this is the quotient of the Dedekind

(-functions of a Galois extension E/F of number fields. Given any subset of

characters of a finite group, we will give a necessary and sufficient condition for

when a character is a positive rational linear combination of characters from

this specified subset. This result implies that the regular character plus or minus

any irreducible character can be written as a positive rational linear combina-

tion of induced linear characters. This both generalizes and gives a new proof

of the Aramata-Brauer Theorem.

Introduction and statement of main results

The Aramata-Brauer Theorem says that the regular character minus the prin-
cipal character of a finite group G can be written as a positive rational linear

combination of characters induced from nonprincipal, linear characters of cyclic
subgroups of G. This character-theoretic result has important implications for

the theory of Artin L-series. If E/F is a Galois extension of algebraic number

fields with Galois group G and y/ is any character of G, there is an Artin

L-series, L(s, y/, E/F), which encodes some important arithmetic properties
of this extension. Artin's Conjecture is that these L-series are always analytic at

every complex point s ^ I. Utilizing Brauer's Theorem that all Artin L-series

are meromorphic, it can be shown that Artin's Conjecture is true for characters

which can be written as a positive rational linear combination of characters in-

duced from linear characters of subgroups of G. Furthermore, this is essentially

the only general family of characters for which Artin's Conjecture is known to

be true. Thus the Aramata-Brauer Theorem proves Artin's Conjecture for the

L-series attached to the regular character minus the principal character of G

(this L-series is seen to be the quotient Ce(s)/Cf(s) of Dedekind £-functions

of E/F).
In [7, p. 871] Heilbronn couched Artin's Conjecture in the language of char-

acter theory. Specifically, for a fixed point So £ C - {1} , he defined the virtual
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character
0g=    Y   n¥y/,

(celrr(G)

where Irr(G) is the set of all irreducible characters of G and n¥ is the order of

the zero or pole of the meromorphic Artin L-series L(s, y/, E/F) at sq . The

connection between these virtual characters &g and Artin's Conjecture rests on

the observation that 6a is a character if and only if all Artin L-series attached
to the extension E/F are analytic at so ■ Moreover, if y/ is any character of
G, it follows from basic properties of L-series that the order of the zero or pole

of L(s, y/, E/F) at so is equal to the inner product (do, y) - In particular,

L(s, y/, E/F) is analytic at So if and only if this inner product is nonnegative.

Since, as noted above, L(s, k*, E/F) is analytic at so for any linear character

k of any subgroup of G (where a star will always denote induction from a

character of a subgroup to a character of G), we have that

(*) (dG, k*) > 0   for all linear characters k of all subgroups of G.

Heilbronn's ideas were extended by Stark [8], Foote-Murty [5], Foote [4],
and Foote-Wales [6] to produce results of the following form: By imposing
conditions on G, such as solvability, and by setting a bound on the order of

the zero or pole of Ce(s) at So , they were able to prove that all Artin L-series

attached to the extension E/F are analytic at so •
In this paper, we consider the family ff of all "candidates" for the number-

theoretically defined virtual characters do by taking property (*) above as the
defining characteristic for any virtual character 6q to be a member of ^. This

specifies the family in purely character-theoretic terms for any finite group G.

Our main result is that any character of G whose inner product with every

element of %f is nonnegative must be a positive rational linear combination
of induced linear characters. We thus see that the methods for proving Artin's

Conjecture in the references cited in the preceding paragraph are essentially

equivalent to the general method of proving that certain characters are positive

rational linear combinations of induced linear characters. As an application of

our main result we show that the regular character plus or minus any irreducible

character can be written as a positive rational linear combination of linear char-
acters induced from cyclic subgroups. In particular, this both generalizes and

gives a new proof of the Aramata-Brauer Theorem.

In fact, for our character-theoretic results we need not restrict to induced

linear characters. The analogous result holds when we use any subset of the

characters of our finite group in place of the set of induced linear characters.

Given a subset of characters of the group we give a necessary and sufficient

condition for when a character can be written as a positive rational linear com-

bination of characters from this subset.
Let &~ be a subset of the characters of a finite group G. For instance &"

might consist of all the induced linear characters of G. A virtual character

8 of G will be referred to as a Heilbronn character with respect to &" if the

inner product of 6 and <f> is nonnegative for all <f> £ SF. Let %?(&~) denote

the set of all Heilbronn characters with respect to y, where %f(&) is the set

of all virtual characters of G. The phrase Heilbronn character will be used

in place of Heilbronn character with respect to &" when this does not lead to

confusion. Note that, in general, a Heilbronn character need not be a character.
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On the other hand every character is a Heilbronn character for every set y as

the inner product of two characters is always nonnegative.

Theorem 1. Let SF be a subset of characters of some finite group G, and let y/

be a nonzero virtual character of G. Then y/ can be written as a positive rational

linear combination of characters from y if and only if the inner product of y/

with every Heilbronn character with respect to y is nonnegative.

An easy consequence of this theorem is a generalization of the classical
Aramata-Brauer Theorem (first proved in [1-3]):

Theorem 2. Let p be the regular character of G and x be any irreducible char-
acter of G. Then there exist positive rational numbers st and linear characters

kj of cyclic subgroups of G such that p - x = £«5«'^/ • Similarly p + x is
a positive rational linear combination of linear characters induced from cyclic

subgroups of G.

Corollary (Aramata-Brauer). Let p be the regular character and Iq the princi-

pal character of G. There exist s, £ Q+ and nonprincipal linear characters ki

of cyclic subgroups of G such that p - 1<j = Hj-M-* •

The following proposition is not used in the proofs of our theorems. But

we include it because with only mild restrictions on y it ensures the existence
of Heilbronn characters with respect to y which are not characters of G. In

addition, the proof of this result indicates how to construct these Heilbronn
characters.

Proposition 3. If no positive integer multiple of the irreducible character Xj be-

longs to £F, then there exists a character 6 of G orthogonal to Xj such that

6 - Xj is a Heilbronn character with respect to y.

Preliminary results

The relation between Heilbronn characters and characters of G that can be
written as a positive rational linear combination of characters in y is captured
in Lemma 1 (which is an elementary result about vector spaces). A second

lemma is needed to ensure that we have rational instead of real coefficients.
The proofs of the main results follow directly from these two lemmas.

Definition. Let ( , ) denote the usual inner product on Rk , and let F be any

nonempty subset of Rk . Define

(1) ^(F) = {x£Rk | </,jc)>Oforall/eF} and

(2) W(F) = {Y,"=i Wif | n £ Z+, f■£ F and wt £ R+ for all i} .

It is clear that %?(F) is the set of all vectors in Rk which are either acute

or orthogonal to all vectors in F. Note that the use of the notation %?(F) is

consistent with the use of the notation ^(y) for Heilbronn characters with

respect to y when each vector (r\, r2, ... , rk) £ Rk is identified with the

virtual character £ riXi of G. To tie these two definitions into the theory of
cones, we note that %?(F) is the polar cone of -F and ^(F) is the conical

hull of F. It should also be noted that Lemma 1 can be deduced from the

results in the theory of cones (see, e.g., [9, pp. 51-56]), but it is important to

give a self-contained proof for this paper.
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Lemma 1. Let F be a nonempty finite subset of Rk not containing zero. Assume

that all the elements of F have nonnegative coordinates. Then %?(%?(F)) =

9(F).
Proof. We will first show that 9(F) c %f(%f(F)). Let n be in the conical
hull of F . Then there exist nonnegative real numbers a, and elements f of

F such that n — Y^atf. To show n £ %?(%?(F)) it suffices to show that

(n,x) > 0 for all x £ ST(F). Let x£%f(F). Then (f,x) > 0 for all i.
So (n,x) = (Zaifi,x) = Zai(fi,x)>0. Thus 9(F) c *(*(F)).

Now to show that &(X(F)) C 9(F), let n £ St (SIT (F)) and suppose that
n is not an element of 9(F). Let

On = {x£Rk | (n,x) <0}.

We claim it suffices to show that %*(F) f\On ± 0: Suppose %*(F) n 0„ is
nonempty. Then there exists an element z e ^(F) such that (n, z) < 0, but

this contradicts the fact that n is an element of St(St(F)). So it remains to

show that ??(F) nO„/0.
Let d : 9(F) -» R be the Euclidean distance from any point in 9(F) to

n . As rf is a distance function and the conical hull of F a closed set, d must
achieve a minimum at some point m in 8*(F). Thus d(m) < d(a) for all

a £ 9(F). By assumption n is not an element of 9(F), so m ^ n. We

define a vector c which is in the same plane as m and n , and perpendicular

to m + n by setting

c = (n, m + n)m - (m, m + n)n.

We claim that c £ &(F) n On .
To show this we will use inequality arguments involving division by inner

products; so first let us establish that all inner products involved will be pos-
itive. It will be sufficient to know that m and n have nonnegative coordi-

nates. As m £ 9(F), m must have nonnegative coordinates. As for n, sup-

pose without loss of generality that its first coordinate «i is negative. Define
x = (1, 0, ... , 0). As all the elements of F have nonnegative coordinates,

x £ %f(F). But (n, x) = «i < 0 and n £ St(St(F)), so we have a contradic-

tion. Thus n must have nonnegative coordinates.

Let / e F. To show that c e %?(F) we need to show that (c, f) > 0,
or equivalently that (n, m + n)(m, f) - (m, m + n)(n, f) > 0. This will

follow from the as yet unestablished inequalities (m, m + n)/(n, m + n) < 1

and \<(m,f)/(n,f).
We will begin by establishing the first of these two inequalities. As m was

chosen to be the point in the cone 9(F) of minimum distance to n and 9(F)

is closed under positive multiples, we can deduce that (n - m, m) = 0. Thus

by the Pythagorean Theorem we have ||«||2 = ||m||2-(-||n-w||2, which implies

that || m ||2 < || n \\2. This implies that (m, m) + (m, n) < (n, m) + (n, n).
By the linearity of the inner product, this becomes (m, m+n)/(n, m+n) < 1.

The second inequality will follow from (n - m, f) < 0, which we will estab-

lish using the minimality of m . Proceeding by way of contradiction, suppose

(n - m, f) > 0, and define x = y/+ m where 7 = (n - m, /)/||/||2 - Now

7 < 2{n - m, /)/||/||2- Since 7 is positive, this inequality yields the new

inequality y2|| /||2 + 2y(/, m - n) < 0. Adding \\m - n \\2 to both sides of
this inequality gives || 7/ + m - n ||2 < || m - n \\2 . This in turn implies that
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|| x - n || < || m - n || or d(x) < d(m). But f and m are in the linear cone

9(F), so x is an element of C, a contradiction. Therefore (n - m, f) < 0.

As this was the remaining inequality needed, we have shown that c is an ele-

ment of MT[F).
It remains to show that c £ On . To do so we need to show that

(c, «) = ((«, m + n)m-{m,m + n)n, n) < 0.

By the Cauchy-Bunyakovskii-Schwarz Inequality we have

(m, n)2 < (m, m)(n, n),

which implies that

(m, n)2 + (n, n)(m, n) - (m, m)(n, n) - (m, n)(n, n) <0.

This leads to

(n, m + n)(m, n) - (m, m + n)(n, n) <0,

and so we have

{(n, m + n)m — (m, m + n)n , n) < 0,

i.e., (c, n) < 0.

We have established that c £ %?(F) n On ; therefore, %*(F) f)On ^ 0 and

the proof of Lemma 1 is complete.

Lemma 2. Let V\, ... ,vs and n be vectors in Rk with nonnegative rational

coordinates. If n can be written as a nonnegative real linear combination of
V\, ... ,vs, then n can also be written as a nonnegative rational linear combi-

nation Of V\, ... ,vs.

Proof. By assumption there exist nonnegative real numbers a, such that n =

a\V\ H-f- asvs. We are only concerned with the a, which are nonzero, so

if necessary replace {v\, ... , vs} by one of its subsets and renumber so that
n = a\V\ -\-\-arvr with each a, a positive real number. Now we will renumber

once again, if necessary, so that {v\, ... , vp) is a maximal independent subset
of {vi.vr} .

Let A be the k x r matrix with rational coefficients whose columns are the

column vectors V\,... ,vr. Let C be the column vector n , and let X be the

r-dimensional column vector whose coordinates are variables x\, ... , xr.

If {v\, ... , vr} is an independent set of vectors (i.e., if p — r), then the sys-

tem of linear equations given by AX — C has a unique solution which is found

by row-reducing the augmented matrix (A \ C) over its field of coefficients.
This forces the solution to lie in the field Q of coefficients of (A \ C). There-

fore, in this case, our given solution (a\, ... , ar) which consists of positive

real numbers must be the unique solution and so must consist of positive ra-

tional numbers. Thus, in this case, n may be written as a nonnegative rational

linear combination of v\, ... , vs as was desired.

Now we are left to examine the case where the independent set {v\, ... ,vp)

does not equal the full set {v\, ... , vr) (i.e, p < r). Recall that if AX — C
is a consistent system of linear equations in r unknowns having rank p, then

all solutions (xi, ... , xr) of this system can be obtained as follows: We may
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arbitrarily set (xp+i,... , xr) = (ti.tr-p) and in doing so force each Xj

for i= 1,... ,p to be of the form

Xj = bjiti -\-h bir-ptr-p + dj

with bij, di in the field of coefficients of AX = C for all i £ {I, ... , p} and
all j £ {I, ... , r -p} . Note that b^ and di are not dependent on the choice

of (ti, ... , tr-p). By this fact there exists a solution (a\, ... , a'r) so that

a'p+l, ... , a'r are positive rationals and are chosen close enough to ap+\, ... , (ir-

respectively to ensure that a\, ... , a'p are still positive real numbers. But now

a\, ... , a'p are rational since a'p+l, ... , a'r and btj, dt for all / and ;' are all

rational. In other words (a\, ... , a'r) is a positive rational solution to AX =

C. This says that n can be written as a nonnegative rational linear combination

of V\, ... , vs, and completes the proof of this lemma.

Proof of Theorem 1

Let y and y/ be as given in the statement of Theorem 1. Now identify each

virtual character Yl riXi °f G with the corresponding vector (r\, r2, ... , rk) £

Rk . Viewing y/ as a vector in Rk , we note that the inner product of y/ with

each Heilbronn character with respect to y is nonnegative exactly when y/ £

^(^(F)). With this in mind we can easily prove Theorem 1. Suppose y/ can

be written as a positive rational linear combination of characters of y. Then
y/ £ 9(9~), but by Lemma 1 9(&) C ^(^(Sr)), so the inner product of y/

with each element of %?(&) is nonnegative. This completes one direction of

the proof.
For the other direction, suppose that the inner product of y/ with each Heil-

bronn character with respect to y is nonnegative. Then y/ £%'(%'(!¥)) which

by Lemma 1 is contained in 9(&)\ thus, y/ can be written as a positive real
linear combination of characters in y. Note that y/ is actually a character of

G as ^(y) contains all irreducible characters of G. Thus we may use Lemma

2 to deduce that y/ can be written as a positive rational linear combination of

characters of y. This completes the proof of Theorem 1.

Proof of Theorem 2 and its corollary

Define S? to be the set of all characters of G induced from linear characters

of cyclic subgroups of G. We begin with a result on the magnitude of the

coefficients of Heilbronn characters with respect to J? . Recall that p is the

regular character of G. If 0 is a Heilbronn character with respect to S?, then

as /ley we know that (p, 6), and thus 9(1), is nonnegative.

Proposition 4. Let 6 be a Heilbronn character with respect to £?. Then 6 =

Yfi=i miXi where |w,| < 0(1) for all i.

Proof. Let x be an element of G and let a be an irreducible character of

(x). By Frobenius Reciprocity we have (0\(X), a) = (6, a*). Now a* £ J?

implies that (6,a*) is nonnegative. Thus (6\(x), a) > 0 for all irreducible

characters a of (x), so 6\(X) is a character of (x). As 6\{x)(x) is a sum of

0|(jc)(1) roots of unity we have |0(*)| < 0(1). Since x was arbitrary we have
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As 0 is a Heilbronn character, there exist integers w, such that 0 = Y?i=i m,x .

Noting that (0,0) = Y!i=i m} > tne above inequality becomes Y?i=\ ml ^

0(1)2. This gives our desired conclusion |m,| < 0(1) for all i.

Proof of Theorem 2. Let Xj De an irreducible character of G. By Theorem 1

it suffices to show that (p ± Xj:, 0) > 0 for all Heilbronn characters 0 with

respect to 31. As (p ± Xj, 6} = 0(1) ± (Xj: > 0) > it suffices to show that
\(Xj, 0)\ ^ 0(1) • But this follows immediately from the above proposition, so

the proof is complete.

Proof of the corollary. By Theorem 2 there exist positive rational numbers Sj

and linear characters A,- of cyclic subgroups of G such that p-lG = Yfi=i s'tf ■
By Frobenius Reciprocity, \g is a constituent of any induced principal charac-

ter. Thus if one of the A,- is a principal character, then we have (lg, Yfi=i si^i)
^ 0. But (lG, p - la) = 0, so this is a contradiction. Thus none of the A,

are principal characters, and the corollary is established.

Proof of Proposition 3

The proof of Proposition 3 relies on the following lemma for which we need

a few definitions. For any virtual character a of G define the supporting

indices of a to be the set {i | (a, Xi) ¥" 0} - We will denote the supporting

indices of a by supp(a). Let y be any collection of characters of G and let

lc{l,2,...,r}. Define y = {</> € y | supp(0) c /} .

Lemma 3. Let I be a subset of {1,2, ... , r} . If 0O is a Heilbronn character

with respect to y and supp(0o) C /, then there exists M £ Z+ such that

eo + M(Zi€IXi)e^(F).
Proof. If I - 0 or I = {1,2, ... , r} there is nothing to prove, so assume this

is not the case. Let a = £,,* 7Xi ■ Choose M £ Z+ such that -M < (do, <t>)

for all (j> £ y \ y. To show d0 + Mo £ %?(&~), we need to show that

(0O + Ma , cp)> 0   for all <p £ 9~.

If <p £ y, then supp((£) c /, so (<r, 0) = 0. Therefore we have

(do + Mo , <t>) = (eo,<t>) + M(o , <p) = (Oo,<t>).

As 0o is assumed to be a Heilbronn character with respect to y, we have

(0o, 4>) > 0 - Thus (0O + Ma , q>) > 0 in this case.
If, on the other hand, <j> £ SF \SFi, then supp(<r>) g /, so (cr , <t>) > 1.

Therefore —M(a , <j>) < -M. Since by choice of M we have -M <(6o,4>),

we get

-M(a , </>)<{6o,<l>).

This implies that (0O + Ma ,</>)> 0 and completes the proof of Lemma 3.

Proof of Proposition 3. Note 9[jy = {4> £ y | supp(«ri) C {;'}} = {</> e y | 0 =

m#; for some w e Z+} . Thus by our hypothesis we have y^} = 0 - Therefore

any virtual character of G is a Heilbronn character with respect to y^-}; so,

in particular, -#7- e ^(y^j) • The hypotheses of Lemma 3 are satisfied with

0o = -Xj > and so there exists M £ Z+ such that A/(£,w *,-) - ft e ^(y).

Now taking 0 = £«/ A/"^/ it is clear that 0 is orthogonal to Xj » and we nave

the desired result.
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