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AN ASYMPTOTIC STABILITY AND A UNIFORM ASYMPTOTIC
STABILITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

YOUNHEE KO

(Communicated by Hal L. Smith)

Abstract. We consider a system of functional differential equation x'{t) =

F{t, xt) and obtain conditions on a Liapunov functional to ensure the asymp-

totic stability and the uniform asymptotic stability of the zero solution.

1. Introduction

The purpose of this paper is to present sufficient conditions, using Liapunov's

direct method, to ensure that the zero solution of a system of functional dif-

ferential equations with infinite delay (including finite delay) is asymptotically

stable and that the zero solution of a system of functional differential equations

with finite delay is uniformly asymptotically stable. This is, of course, an old

problem, and there are many well-known results and applications.

We consider the system

(1) x'(t) = F(t,xt),

where xt is the translation of x on [t - h, t] back to [-h, 0], where h > 0
is a fixed constant, and x' denotes the right-hand derivative. The following
notation will be used.

For x £ Rn, \x\ denotes a usual norm in Rn. For h > 0, C denotes
the space of continuous functions mapping [-h , 0] into R" , and, for <p £ C,

\\<p\\ = sup_/,<s<0 \(p(s)\. Also, Ch denotes the set of </> € C with \\4>\\ < H. If
x is a continuous function of u defined for -h < u < A, with A > 0, and

if t is a fixed number satisfying 0 < t < A, then xt denotes the restriction of
x to [t - h, t] so that x, is an element of C defined by xt(6) = x(t + 6) for

-h < 6 < 0. We denote by x(to, </>) a solution of (1) with initial condition

(j> £ C where xto(to ,</>) = </>, and we denote by x(t, to, <f>) the value of x(to, <t>)
at t.

It is supposed that F': R+ x CH —> Rn is continuous and takes bounded

sets into bounded sets; where 0 < H < oo. It is well known [6, 10] that

for each to £ R+ - [0, oo) and each <f> £ CH there is at least one solution
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x(to, <j>) defined on an interval [to, to + a) and, if there is an Hx < H with

\x(t, to, <p)\ < Hx, then a = oo.

A Liapunov functional is a continuous V(t, <j>): R+ x Ch -» R+ whose

derivative along a solution of (1) satisfies some specific relation. The derivative
of a Liapunov functional V(t, <f>) along a solution x(t) of (1) may be defined

in several equivalent ways. If V is differentiable, the natural derivative is ob-

tained using the chain rule. But, in general, V^(t, <p) denotes the derivative

of functional V with respect to (1) defined by

VUt, cj>) = limsup{V(t + d,xt+s(t, cp)) - V(t, 4>)}/d.
<5-»0+

Definition 1. Let H > 0, SH = {x £ Rn\ \x\ < H}, and let U:R+xSH -» R
be continuous and locally Lipschitz in x . Then the derivative of U(t,x) along

a solution x of (1) is defined as

U(x)(t, x) = limsup{U(t + d, x + SF(t, xt)) - U(t, x)}/d.
3^0+

Remark 1. (i) It is easy to check that

lim sup \{U(t + S,x(t + <?)) - U(t, x(t))} = U!X)(t, x(t))

for any solution x(t) of (1).

(ii) If U(t, x(t)) has continuous partial derivatives of the first order,

U'(X)(t, x(t)) = grad U ■ F + 8U/dt.

Definition 2. Let F(t, 0) = 0, for all t > 0.
(a) The zero solution of (1) is said to be stable if for each e > 0 and to > 0

there is a S > 0 such that [<p £ Cs, t > t0] imply \x(t, to, cf>)\< e.

(b) The zero solution is uniformly stable (U.S.) if it is stable and if 5 is

independent of to ■
(c) The zero solution is asymptotically stable (A.S.) if it is stable and if for

each to > 0 there is a 5 > 0 such that <j> £ Cs implies that x(t, t0, <f>) —* 0 as

/ —> oo .

(d) The zero solution is uniformly asymptotically stable (U.A.S.) if it is U.S.

and if there is an n > 0 and for each y > 0 there exists T > 0 such that

[t0 £ R+, (j) £ C„, t > t0 + T] imply that \x(t ,t0,d))\<y.

Definition 3. A measurable function n: R+ —> R+ is said to be integrally pos-

itive with parameter d > 0 (IP(^)) if whenever / = U^iK, Pm] with

am< Pm< am+i and fim - am > d (m = 1, 2, 3, ...), then /7 n(i) dt = oo.

If a function n is integrally positive for every d > 0, then it is called integrally

positive (IP).

Definition 4. Let n: R+ -> R+ be mesaurable.
(a) The function r\ is said to be weakly integrally positive with parameters

S > 0 and A > 0 (WIP(r5, A)) if whenever {tt} and {5t} satisfy U + St <

U+\ < tt + S, + A with St > d, then

Y ri(t)dt = oo.
i=i Jt'
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(b) The function n is said to be uniformly weakly integrally positive with

parameters S > 0 and A > 0 (UWIP(r5, A)) if (a) holds and for every M > 0
there exists Q > 0 such that for all S > Q and for all {ti} and {<?,} satisfying

(a), then

/ n(t) dt> M   where / = (J[f,, U + Si].
Jltt,t,+S]nl i=l

Remark 2. If n is IP(<5), then it is UWIP(<5, A) for all A > 0. The converse
is false. See [4, Remark 4].

In presenting sufficient conditions, the following theorem is basic. Denote by

Wi the continuous functions from R+ -> R+ , Wt(0) = 0, and Wt(y) strictly
increasing (called wedges).

Theorem A (see [6, p. 105]). Let H > 0 and V: R+xCh -* R+ be continuous.

If 3 wedges Wx, W2, W3 such that, for all 4> £ Ch ,

(i)  wx(\m\)<v(t,<r)<w2(\\<p\\),
(ii)   V(y)(t,xt)<-Wi(\x(t)\),and

(iii)   F(t,cp) is bounded for q> bounded,

then x = 0 0/(1) is uniformly asymptotically stable.

One of our main goals is to eliminate condition (iii) in the above theorem.

2. Main results and some remarks

Let \x(t)\' be the right-hand derivative of \x(t)\, let {a(t)}+ = max{a(;), 0},
and let {a(t)}- = max{-a(0, 0} .

Theorem 1. Let H > 0 and V': R+ x Ch -» R+ be continuous and locally

Lipschitzian in tj> and n be WIP(/J, A) for any fi > 0 and A > 0. Suppose
U: R+ x R" —> R+ is continuous and locally Lipschitz in x such that either

Jq{U'(s, x)}+ds or f0'{U'(s, x)}-ds is uniformly continuous for any bounded

solution x(t) of (I) on R+. Further, suppose 3 wedges Wx, W2, Wit and

W4 such that, for all t > 0 and (p in Ch ,

(i)   Wx(\<p(0)\)<V(t,<t>) and V(t,0) = 0,
(ii)   V^(t, x,) <-rj(t)W2(\x(t)\), and

(iii)   W3(\x(t)\)<U(t,x(t))<W4(\x(t)\).

Then the zero solution of (I) is asymptotically stable.

Proof. It is evident that the zero solution is stable. By stability, there is a

S = S(t0, H) such that [t0 > 0, <f> £ Q , t > t0] imply that \x(t ,t0,<t>)\<H.
Suppose that for some such (t0, (j>) the solution x(t) = x(t, t0, </>) -» 0 as

t -* oo. First we claim that liminf^oo \x(t)\ = 0. If this is false, then there

exist constants 6, T > 0 such that \x(t)\ > 8, for t > t0 + T. Thus

/•OO

lim V(t, xt) < V(to,<t>) - W2(0).        n(s)ds = -oo,
'^°° Jto+T

a contradiction. Suppose that J0'{U'(s, x(s))}+ds is uniformly continuous on

R+. Then for some y > 0, we can choose a constant 6 > 0 and a sequence

t0 < ati < Pi < a2 < 02 < ■•■ < otj < fr < ■■■   such that  W4(d) < W3(y)
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and, for i = 1,2,3,..., \x(cti)\ = 6, |x(/?,)| = y, and d < \x(t)\, for any
t £ [a,, Pi]. Thus we have

W3(\x(Pi)\) < U(pi, x(Pi)) = I ' U'(s, x(s)) ds + U(ai, x(a,))
J a,

rfii
<   /    U'(s,x(s))+ds+W4(\x(ai)\)

Jdj

and
rfii

0 < W3(y) - W4(6) < /    U'(s, x(s))+ ds.
Jat

By assumption there exists p > 0 such that /?, - a, > p for f = 1,2, 3, ... .

Let / = U^i[a* > Pi]- Then we have

lim V(t, xt) < V(t0, 4>) - W2(6) I n(s) ds = -oo,

a contradiction. Suppose that Jq{U'(s , x(s))}- ds is uniformly continuous on

R+. Then for some y > 0, we can choose a constant 6 > 0 and a sequence

t0 < ax < px < a2 < p2 < ■ ■ ■ < eti < Pi < ■ ■ ■ such that WA(d) < W3(y)

and, for / = 1,2,3,..., |x(a,)| > y, \x(Pi)\ = 9, and 8 < \x(t)\, for any
t £ [a,, Pi]. Thus we have

W4(\x(Pi)\) > U(pi,x(Pi)) = f ' U'(s, x(s))ds + U(ai,x(a,))

> - /    U'(s,x(s))-ds + W3(\x(ai)\)

and

0 < W3(y) - W4(6) < /    U'(s, x{s))- ds.
Jat

By assumption there exists p > 0 such that /?, - a, > p for / = 1, 2, 3, ... .

Let / = U^i[a; > Pi] ■ Then we have

lim V(t,xt)< V(to,4>)- W2(0) f n(s)ds = -oo,
t^OO Jj

a contradiction. Thus the proof is complete.

Remark!. The condition that either JQ'{U(s ,x(s))}+ds or Jq{U(s ,x(s))}-ds

is uniformly continuous for any bounded solution x(t) of(l)on R+ is satisfied

if
-p(t) < U'(t, x(t))   or   U'(t, x(t)) < q(t),

where p,q: R+ -» R+ are measurable functions such that jQp(s)ds and

J0'q(s)ds are uniformly continuous on R+ .

Corollary 1. Let V: R+ x CH -> R+ be continuous and let r\ be WIP(<5, A) for
any S > 0 and A > 0. Suppose that

(i)   Wx(\x(t)\) < V(t,xt) and V(t, 0) = 0,
(ii)   V({)(t,xt)<-n(t)W2(\x(t)\),and

(iii)   F(t,4>) is bounded for <p bounded.

Then the zero solution of (I) is asymptotically stable.
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Now, we consider a system of functional differential equations with un-

bounded delay

(2) x' = F(t, x(s);a<s <t), -oo < a.

To specify a solution of (2) we require a to > a and a bounded continuous

function <f>: [a, to] —► Rn ; we then obtain a solution x(t, to, cf>) satisfying (2)

on an interval [to, to + P) with x(t, to, <j>) = <fi(t) for a < t < to ■ For details

see Driver [5] or Burton [2]. To make the presentation here parallel that for

finite delay equations, for each t > a we consider the function space C(t)

with 4> £ C(t) if (j>:[a,t]—>Rn is bounded and continuous. The norm used

is the supremum norm || • ||. Thus, for any to > a, our initial function is

some 4> £ C(to) and our definitions of stability coincide with the one for finite

delay. A Liapunov functional is denoted by V(t,x(-)). For convenience we

may assume that to > 0.

Theorem 2. Let H > 0 and for each t0> a let CH(to) c C(t0) with 4> £ CH(to)
if ||0|| < H, and let V: [to, oo) x Cn(to) —► R+ be continuous and locally

Lipschitz in </> and r\ be WIP(/?, A) for any P > 0 and A > 0. Suppose
U: R+ x Rn —► R+ is continuous and locally Lipschitz in x such that either

f0'{U'(s, x)}+ds or f0l{U'(s, x)}-ds is uniformly continuous for any bounded

solution x(t) of (I) on R+. Further, suppose 3 wedges Wx, W2, W$, and

W4 such that, for all t > to and cp in Cn(to),

(i)   Wx(\<P(0)\) < V(t, 4) and V(t, 0) = 0,
(ii)   V({)(t,xt)<-n(t)W2(\x(t)\),and

(iii)   W4(\x(t)\) < U(t,x(t)) < W4(\x(t)\).

Then the zero solution of (2) is asymptotically stable.

Proof. The proof requires only slight modifications of the proof of Theorem 1.

Example 1. Consider the scalar equation

(A) x'(t) = -a(t)x(t) + b(t)x(t-Xt),

where a: R+ —► R+ is continuous, b: R+ —> R is continuous, \b(t-Xt)\ > \b(t)\

with 0 < X < 1, and n(t) = a(t) - \b(t)\/(l - X) is WIP(r5, A) for any S > 0
and A > 0. Then the zero solution of (A) is A.S.

Proof. Consider the functional

V(t, xt) = \x(t)\ + T^-j f       \b(s)\ \x(s)\ds.
I -A J(X_x)t

Then we have

V'(t, xt) < - a(t)\x(t)\ + \b(t)\ \x(t - Xt)\

+ J-l\b(t)\\x(t)\-\b(t-Xt)\\x(t-Xt)\

^ - (flW - tziJW) W)l - AW ~ W ~ l*(')l)l*C - Wl

- -(flW-T3jl*Wl)l*W|.
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Since \b(t - Xt)\ > \b(t)\ for any / > 0 with 0 < X < 1, \b(t)\ is bounded on
R+ . Also, we have

U'(t, x(t)) = |jc(0|' < -a(t)\x(t)\ + \b(t)\ \x(t - Xt)\.

That is, U(t,x(t)) is bounded above on R+, where U(t,x(t)) - \x(t)\.

Hence, it follows from Theorem 2 that the zero solution of (A) is A.S.

Example 2. Consider the scalar equation

(B) x'(t) = -a(t)f(x(t)) + f   C(t - s)g(x(s)) ds,
J — OO

where a: R+ —* R+ is continuous, C:/?+—► R is continuous with J0°° \C(u)\ du

<co, t1(t) = a(t)-Mj0°°\C(u)\du is WIP(r5, A) for any S>0 and A>0,
f:R^>R is continuous and strictly increasing with /(0) = 0, and g: R -» R

is continuous with \g(x)\ < M\f(x)\ for some M > 0. Then x = 0 of (B) is

A.S.

Froo/. Consider the functional

/t l-OO

/    \C(u-s)\du\g(x(s))\ds.
■OO ./f

Then we have

V'(t,x(.))< -a(t)\f(x(t))\+ f   \C(t-s)\\g(x(s))\ds
J —oo

/•CX) ft

+ /    |C(m - t)\du\g(x(t))\ -      \C(t-s)\ \g(x(s))\ ds
Jt Joo

/•OO

< - fl(f)|/(*(0)l + M /    |C(m)| du\f(x(t))\
Jo

= - {a(t) - M J~ \C(u)\du}\f(x(t))\.

Also, we have

U'(t,x(t)) = \x(t)\'<-a(t)\f(x(t))\+ f   \C(t-s)\\g(x(s))\ds
J —oo

/•OO

< - a(t)\f(x(t))\ + M /     \C(u)\ duf(\\x,\\),
Jo

where \\xt\\ = sup_00<i<( \x(s)\. That is, \x(t)\' is bounded above. Thus, it
follows from Theorem 2 that x = 0 of (B) is A.S.

Now, we prove a uniform asymptotic stability theorem for a system of func-

tional differential equations with finite delay.

Theorem 3. Let H > 0 and V: R+ x Ch —> R+ be continuous and locally Lip-
schitzian in 4> and r\ be UWIP(/?, h) for any P > 0. Suppose U: R+x R" —►

R+ is continuous and locally Lipschitz in x such that either j0{U'(s, x)}+ds

or Jq{U'(s , x)}-ds is uniformly continuous for any bounded solution x(t) of

(1) on R+. Further, suppose 3 wedges Wx, W2, W3, W4, and W5 such that,

for all t > 0 and (p in Ch ,

(i)   Wx(\cP(0)\)<V(t,cp)<W2(\\cf>\\),
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(ii)   VlX)(t,xt)<-n(t)W3(\x(t)\),and

(iii)   W4(\x(t)\)<U(t,x(t))<W5(\x(t)\).

Then the zero solution of (I) is uniformly asymptotically stable.

Proof. It is evident that the zero solution is U.S. Let 0 < H' < H and take

So = So(H') of U.S. For any e > 0, we try to show that there is a T = F(e) > 0

such that any solution x(t, to, (f>) of (1) with ||^|| < So satisfies |x(/, ^o, (p)\ < e

for any t > to + T. Let S — S(e) be the above constant for uniform stability.

Suppose that a solution x — x(t, to, <f>), \\cf>\\ < So, satisfies ||xt(*o, <l>)\\ > S , for
any t>to- Then we have t* £[t, t + h] for each t > to such that \x(t*)\ > S.

Now we can choose a constant 6 > 0 with W4(S) > W<,(6). By assumption

on rj there is an L — L(e) > 0 such that there is at least t' £ [t, t + L] with

\x(t')\ < 6 for any t > t0 .
By Definition 4 there is an L = L(c) > 0 such that

rk+L

/      n(s)ds>W2(So)/W3(e).
Jt0

If \x(t)\ > 6 were true for all t £ [to, to + L], then we would have

rh+L

0<V(to + L)<V(t0,<p)- /       ri(s)W3(\x(s)\)ds
Jt0

rto+L

< W2(S0) - Wi(6) /       n(s)ds<0,
Jt0

a contradiction.

Now, we shall assume that j0'{U'(s, x(s))}+ds is uniformly continuous on

R+ and L> h . Then we can choose a sequence

to < ax < px < a2 < P2 < ■ ■ ■ < cii < Pi < ■ ■ ■

such that, for / = 1, 2, 3, ...,

|x(q,)| = 0,     \x(Pt)\ >S,    6< \x(t)\       for any t £ [a,-, &■],

a, £ [t0 + (2i- 2)h , t0 + (2i-l)h]l)/,, and pi £ It, where /, = [t0 + (2i-l)h,
to + 2ih]. Thus we have

W4(\x(Pi)\) < U(P,, x(Pi)) = f ' U'(s, x(s)) ds + U(ai, x(a,))
Jat

<  f'u'(s,x(s))+ds + W5(\x(ai)\)
Jat

and

0 < W4(S) - W5(9) < /    U'(s, x(s))+ ds.
Ja,

By assumption there exists a p > 0 with P,<- a, > p for / = 1, 2, 3, ... . Let

p — ram{h, p] and / = \Jh=x[Pi ~ V- > Pi] ■ Then we have

lim V(t, xt) < V(t0, <t>) - W3(0) f n(s) ds = -oo,
t^OO Jj
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a contradiction. Let N be the smallest positive integer such that

N       ft

w2(So)-w3(d)Yi' n{s)ds<o.

Then N only depends on e and we can take T = 2Nh such that, at some

t £[to, to + T]  \\xr(to, <P)\\. Thus the proof is complete.

Example 3. Consider the scalar equation

(C) x'(t) = -a(t)x(t) + b(t)x(t-h),

where a: R+ —► R+ is continuous, b: R+ -» R is continuous, J0 |6(,s)|rf.s is

uniformly continuous on R+ , and n(t) = a(t) - \b(t + h)\ is UWIP(<5, h) for
rj > 0. Then x = 0 of (C) is U.A.S.

Proof. Consider the functional

V(t, xt) = \x(t)\ + /    \b(u + h)\ \x(u)\ du.
Jt-h

Then we have

\x(t)\ < V(t, xt) = \x(t)\ + I     \b(u + h)\ \x(u)\ du
Jt-h

<\\xt\\ + \\xt\\ f   \b(u + h)\du
Jt-h

< \\xt\\ + M\\x,\\   for some M > 0 with  /    \b(u + h)\du < M
Jt-h

on R+ (by Remark 6). Also, we have

V'(t, xt) < - a(t)\x(t)\ + \b(t)\ \x(t - h)\ + \b(t + h)\ \x(t)\ - \b(t)\ \x(t - h)\

< -{a(t)-\b(t + h)\}\x(t)\.

Furthermore,

U'(t, x(t)) = \x(t)\' < -a(t)\x(t)\ + \b(t)\ \x(t - h)\ < \b(t)\ \x(t - h)\

and

/  \b(s)\ ds   is uniformly continuous on R+.
Jo

Therefore, it follows from Theorem 3 that x = 0 of (C) is U.A.S.

Remark 3. The above example generalizes the results of the example in [9].

Remark 4. Consider the scalar equation

(D) x'(t) = -a(t)x(t) + b(t)x(t - y(t)),

where a(t): R+ -> R+ is continuous, y(t) > 0 with y'(t) < a < 1 and y(t) < h

for some h > 0, b(t): R+ —> R is continuous with \b(t - y(t))\ > \b(t)\,

a0(l -a)>l for some a0 > 0, and n(t) = a(t) - a0\b(t)\ is UWIP(r5, h) for
any S > 0. Then x = 0 of (D) is U.A.S.
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Proof. Consider the functional

V(t,x(-)) = \x(t)\ + a0 [      \b(s)\\x(s)\ds.
Jt-y(l)

Then we have

V'(t,x(-)) < - a(t)\x(t)\ + \b(t)\ \x(t - y(t))\ + a0\b(t)\ \x(t)\

-a0(l-a)\b(t-y(t))\\x(t-y(t))\

< -{a(t)-a0\b(t)\}\x(t)\.

Since

U'(t, x(t)) = \x(t)\' < -a(t)\x(t)\ + \b(t)\ \x(t - y(0)|

and \b(t)\ is bounded, \x(t)\' is bounded above. Thus x = 0 of (D) is U.A.S.

Now, we shall compare Theorem 2 with the following theorem proved by

Burton and Hatvani (see [4]).

Definition 5. A measurable function n: R+ —> R+ is said to be positive in

measure (PIM) if for every e > 0 there are T £ R+ and S > 0 such that

[t>T,Qc[t-h,t] is open, p(Q) > e] imply that JQ n(t) dt>S.

Theorem B. Let r\ be PIM and V: R+ x Ch -+ R+ be continuous with

(i)   Wi(W-)l) < V(t, cp) < W2(\<f>(.)\) + WiiMW) ̂ d
(ii)   V'(t,Xt)<-n(t)W4(\x(t)\),

where \\\<f>\\\ = [/°A \cj>(s)\2ds]x'2. Then x = 0 of (I) is U.A.S.

Remark 4. We obtain more general results when we apply Theorem 3 to Ex-

ample 5 than when we apply Theorem B to Example 5, because the PIM con-

dition is stronger than the UWIP(<5, h) condition for any S > 0 (cf. Theo-

rem 11 and Remark 4 in [4]) and \b(t)\ should be bounded in order to have

V'(t, xt) <-n(t)W(\x(t)\) for some coefficient function n and wedge W.

Example 5. Consider the scalar equation

(E) x'(t) = -a(t)x(t) + b(t) I    x(u)du,
Jt-h

tA-h

where a(t): R+ —> R+ is continuous, b(t): R+ —> R is continuous, /(     \b(s)\ds
t-X-h

is bounded on R+ , and a(t) - f.     \b(s)\ ds is PIM.

By Theorem B the zero solution of (E) is U.A.S. (see [4]), but we can also

show that x = 0 of (E) is U.A.S. under the condition that a(t) - j{+h \b(s)\ ds

is UWIP(r5, h) for any S > 0 and /0' \b(s)\ ds is uniformly continuous on R+ .

Proof. We can use the functional, which was used in an example in [4] and we

note that  f.    \b(s)\ ds is bounded on R+ . For details see [4].

Remark 5. Theorem 2 generalizes Theorem 2.1 in [6, p. 105] and Theorem

8.7.4 in [2, p. 301].

Remark 6. If b(t): R+ -* R+ is measurable on R+ and a(t) = J^h^ds is

uniformly continuous on R+ , then f(t) = ff+ b(s) ds is bounded on R+ for

some S > 0.
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Proof. Since a(t) - J0' b(s)ds is uniformly continuous on [0, oo), there exists

S* = S*(S) > 0 such that /r'+ b(s) ds <S for any t > 0. Now we can choose

the smallest positive integer N such that NS* >S. Then we have

/t+3 pt+NS'b(s) ds< b(s) ds < NS   for any / > 0.

Remark 7. If b(t): R+ -» R+ is bounded and continuous on R+ , then, obvi-

ously, a(t) = f0'b(s)ds is uniformly continuous on R+ . If b(t): R+ -» i?+ is

unbounded and continuous on R+ and /0°° b(s) ds < oo, then a(f) = f0' b(s) ds

is uniformly continuous on R+ (by [8, Proposition 14, p. 88]). But the next

example shows that a(t) = J0'b(s)ds is uniformly continuous on R+ even

though b(t): R+ -» R+ is unbounded, continuous, and not integrable on R+ .

Example 6. Consider the function

n if t - n, n > 2,

b(t) = < linear   if t £ [n - l/n2, n] U [n, n + l/n2] ,n>2,

k 0 if*€[0, l]U[n + l/n2, (n + 1) - l/(n + I)2], n > 2.

Then we have
/•OO oo     .

/    b(s) ds = V" - = oo

and

/ b(s)ds = - (-2 )(«) = - —0   as«-*oo.
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