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MULTIPLICATIVE PERTURBATIONS
OF LINEAR VOLTERRA EQUATIONS
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(Communicated by Palle E. T. Jorgensen)

Abstract. We prove that the following problems are essentially equivalent:

[VO]cr u(t) = x+ f a(t- s)CTu(s) ds,
Jo

[VO]rc V(t) = y+ f a(t- s)TCv(s) ds,
Jo

where T is an unbounded closed linear operator in a Banach space X with

dense domain D(T), C is a bounded linear operator on X, and a e

^Toc([0> °°)> K), which is exponentially bounded. We give some applications

of our abstract theorem to second-order differential operators on the line.

1. Introduction

The purpose of this note is to study multiplicative perturbations of linear

Volterra equations.
Let X be a Banach space and A an unbounded closed linear operator in X

with dense domain D(A). Let a: [0, oo) -» R be a locally integrable function.

We suppose that a(t) is Laplace-transformable, i.e., there is /? > 0 such that

^e-P'\a(t)\dt <oo.
We consider the linear Volterra equation

[VOL u(t) = x+ I a(t-s)Au(s)ds       (x £ D(A), t > 0).
Jo

Let (V(t))t>o be a family of bounded linear operators in X which is ex-

ponentially bounded, i.e., there are constants M > 1 and co > f} such that

\\V(t)\\ < Mewt  (t > 0) is satisfied; (V(t))t>0 is said to be of type (M, co).
The family (V(t))t>o is called a solution family (or a resolvent) for [VO]^

if the following conditions are satisfied:

(Vx)   V(t) is strongly continuous on R+ , and F(0) = ld.

(V2)   V(t) commutes with A, i.e., V(t)D(A) c D(A), and AV(t)x = V(t)Ax
for all x £ D(A) and t > 0.
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(F3)   The following linear Volterra equation holds:

V(t)x -x = j a(t- s)AV(s)xds   for all x £ D(A) and t > 0.
Jo

We can see that if [VOLj admits a solution family (V(t))t>o then it is unique

and

(a*V(t))x:= j a(t-s)V(s)xds£D(A)
Jo

and

V(t)x -x = A j  a(t-s)V(s)xds   for all x £ X and t > 0
Jo

(cf. [Pr, §1, Proposition 1.1]).
For the special cases a(t) = 1 and a(t) = t, the solution family (V(t))t>o

for [VO]^ becomes the Co-semigroup generated by A , respectively, the cosine

function generated by A .

Necessary and sufficient conditions for the existence of a solution family

for [VO]^ have been considered by DaPrato and Iannelli [Dala], Arendt and

Kellermann [ArKe], Priiss [Pr], and others.
We begin with a fundamental theorem of which we will make use later. By

p(A) we denote the resolvent set of A .

Theorem (cf. [Pr, §1, Theorem 1.3]). Assume that (V(t))t>o is strongly contin-

uous and of type (M, co). Then (V(t))t>o is a solution family of [VO]A if and

only if the following conditions hold:

(Hx)   d(X) # 0 and l/a(2) e p(A) for all X>co.
(H2)  H(X, A) := (X - Xd(X)A)~l exists, and H(X, A) = /0°° euV(t) dt for all

X > co.

Let T be a closed linear operator in X with dense domain D(T), and

let C be a bounded linear operator on X. Consider the operators TC and

CT defined by D(TC) = {x £ X, Cx £ D(T)} and D(CT) = D(T). Our
main goal is to show that the perturbation problems [VO]cr and [VO]tt are

essentially equivalent.
Our result extends the one given by Desch and Schappacher for Co-semi-

groups (cf. [DeScha2, Theorem 1]). As an application we consider the following

ordinary differential operator of second order:

(d/dx)2(c(x)-) + d(x)(d/dx) + e(x).

2. The main results

Let X be a Banach space. Let a: [0, 00) —> R be a locally integrable func-

tion. We suppose that there exist fi > 0 such that

/    e~fi'\a(t)\dt< 00.
Jo

Let T be an unbounded closed linear operator in X with dense domain

D(T), and let C be a bounded linear operator on X.
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Our main theorem is

Theorem 2.1. (a) If [VOJcr admits a solution family (U(t))t>o on X, then

[VO]tc admits a solution family (V(t))t>o on X.

(b) // [VO]t-c admits a solution family (V(t))t>o on X and p(CT) ^ 0,
then [VOJcr admits a solution family (U(t))t>o on X.

Corollary 2.2. Let A be a closed linear operator in X with dense domain D(A)

such that [VOL, admits a solution family on X. Let B: XA-> XA be a bounded
linear operator, where XA := (D(A), || • ||^). Then [VO]^+g admits a solution
family on X.

This corollary is a generalization of a perturbation result given by Desch and
Schappacher [DeSchal].

Proof of Corollary 2.2. Let X £ p(A), and consider Ax := -X + A + B . It
follows from the proof of Theorem 1.31 [Na] that p(A{) ^ 0. We first show

that [VO]^ admits a solution family on X. Since

AX = (I-BR(X,A))(-X + A),

it suffices to show that [VO]^, admits a solution family on X, where Bx :—

(-X + A)(I - BR(X, A)), but this follows from [Rhl, Corollary 1.2] since Bx =
[(-X + A) + (X-A)BR(X,A)] and (X-A)BR(X, A) £3'(X). So again by [Rh 1,
Corollary 1.2], [VO]^+/i admits a solution family on X.   □

Proof of Theorem 2.1. (a) We set

V(t)x :=x + T [ a(t-s)U(s)Cxds.
Jo

Since ^a(t - s)U(s)Cxds £ D(CT) - D(T), V(-)x is well defined for all
x £ X. On the other hand, F is closed; hence, V(t) is closed and consequently
a bounded linear operator.

Since [VO]cr admits a solution family, CT is closed, and therefore the
graph norms of CT and T are equivalent on D(T) (cf. [Br, Corollary II.6]).
Then there exists y > 0 such that

II /"
||F(0x|| < ||x|| + 7■   /  a(t-s)U(s)Cxds forallxe^T,

lUO CT

where || • ||cr denotes the graph norm of CF.

Let (M, co) be the type of (U(t))t>0. It follows that

\\V(t)x\\ < \\x\\ + My (f \a(t - s)\e°>s ds) \\Cx\\

II        f'
-ryllCT / a(t-s)U(s)Cxds

II      Jo

< \\x\\ + Myewt ( j la^)!*-"*ds\ \\Cx\\ + y\\U(t)Cx - Cx\\

< \\x\\ + Myem (f°° |a(5)|e"^ ^5] ||C7jc|| + yMe°"\\Cx\\ + y\\Cx\\

< M'ewt\\x\\   for all x £ X and some M' > 1,
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so (V(t))t>o is exponentially bounded of type (M', co). On the other hand,

V(t) is strongly continuous. In fact,

\\V(t)x-V(t0)x\\=   T   f a(s)U(t-s)Cxds- [°a(s)U(t0-s)Cxds
Jo Jo J

II f' f'°
<a\\     a(s)U(t-s)Cxds-       a(s)U(t0- s)Cxds

\\Jo Jo CT

= aUCT\[ a(s)U(t-s)Cxds- f°a(s)U(t0-s)Cxds

II r' /*'° in
+   / a(s)U(t-s)Cxds-       a(s)U(to-s)Cxds\\\

\\Jo Jo IIJ

= a {||C/(r)CJC - C/(/0)Cjc|| + I / a(s)U(t - s)Cxds
I II Jo

r'° ill
- /   a(s)U(t0-s)Cxds\\ \

Jo IIJ
for all x £ X and some a > 0.

We only have to show that

/•OO

/    e~XtV(t) dt = (X -Xa(X)TC)~l   for all X >co.
Jo

For x £ X and X > co,

/•OO /•OO / /•( \

/    e~x'V(t)xdt=       e~Xt(x + T     a(t-s)U(s)Cxds\ dt

= -x + T       e~u I a(t-s)U(s)Cxdsdt.
X Jo Jo

Applying the Fubini theorem we obtain

[°°e-XtV(t)xdt = jX + Tr (re-Xta(t-s)dt) U(s)Cxds

= jX + t[°°e-^ ( r e~Xta(t) dt) U(s)Cxds

= \x + ^-T(I - a(X)CT)~lCx   for all x £ X and X > co.
A, A,

Let x £ X, X > co, and consider y := x + T(l/d(X) - CT)~lCx. We will
show that y 6 D(TC) and y = (/ - d(X)TC)~lx. We have

c*=cx+ct(w)-ctYcx

= Cx+W)(-m-CTY'Cx-Cx

'W){W)-CTTCX£D(CT)"D{T)-
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thus y £ D(TC) and

(I-dWTQy^y-dW-^T^-CTyCx^x.

Next, we note that for any x £ D(TC) and Ixswe have

('^(^-cTy'cyi-mTQx

=x+T{w)-CTY'cx-m{TCx+T{w)-CTY'CTCx)

'x+T(w)-cTY'cx-m

*{rcx+Tik(*k)-CTY'cx-TCx)

= X .

Consequently,

7 + T {ljx) ~ CT)   c = (/ ~ aWrc)_1

and
/•OO 1

/    e-x'V(t)dt=1(I-a(X)TC)-i    for X>co.
Jo *■

(b) Let p £ p(CT). We set

U(t)x:=x + (p-CT)C f a(t - s)V(s)T(p - CT)~lxds.
Jo

On the other hand, for all x £ X,

I a(t - s)V(s)xds £ D(TC).
Jo

Hence, U(-)x is well defined for all x £ X. Since T is closed, U(t) is a

bounded linear operator on I. As /h TC J0'a(t - s)V(s)xds = V(t)x - x

and t -» /0r a(s)V(t - s)xds are continuous, we conclude that U(t) is strongly

continuous. On the other hand, it is clear that £/(•) is exponentially bounded of

type (M, co), where M > M' ((M', co) is the type of (V(t))t>o); therefore,
it suffices to show that

/•OO

/    e-XtU(t)dt = (X-Xd(X)CT)-1
Jo

for all X > co.
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For x £ X and X > co,

/•OO

/    e~XtU(t)xdt
Jo

= \x+ f   e~Xt(p-CT)C f a(t-s)V(s)T(p-CT)-lxdsdt
X       Jo Jo

= \x + (p-CT)C f   e~u [ a(t - s)V(s)T(p - CT)~lx ds dt
X Jo Jo

= jX + (p-CT)C r ([°°e-Xta(t-s)dt) V(s)T(p-CT)~lxds

= jX + (p-CT)C r ( re-ha(t)dt)e-XsV(s)T(p-CT)-lxds

= \x + a(X)(p - CT)C(I - d(X)TC)-xT(p - CT)~lx
A

= l[/+0.-cr)c(^-rc)"'^-CD-']x.

For x £ X and X > co we put

y := x + (p - CT)C (^ - TC^j     T(p - CT)~lx.

We will show that y £ D(CT) and (/ - a(X)CT)y = x. An elementary calcu-

lation gives

' ■ (" - m)c (m ~ TCY'n" ~ CTr'x+M" - CTr'x
£ D(CT) = D(T)

and

HX)CTy = m(l,-JM)

"c[w)(w)-TCY'Tl"-CT)"x-T{''-CTr,x^

+ pd(X)CT(p-CT)-ix

= y-x.

Consequently, (I - a(X)CT)y - x .
On the other hand, we have, for any x £ D(T),

I + (p-CT)c(-^--Tc)     T(p-CT)-1   CTx

= CT  I + (p-CT)c(-^--TC\     T(p-CT)-1   x;

hence, / + (p - CT)C(l/d(X) - TC)'lT(p - CT)~l = (I - a(X)CT)~l .   D



multiplicative perturbations of linear volterra equations 499

3. Applications

In this section we describe two applications of Theorem 2.1 to the following

ordinary differential operator of second order

(£)'<««•>+'w(az)+«M
with a(t) = t.

Example 3.1. Let 7 be a bounded and closed subinterval of R, and consider

X = C(I), the Banach space of continuous functions in x £ I with norm

||M||00 = maxx6/|w(jc)|.

Assume

(i) c(x) > 0 for all x £ I,
(ii) c('),c'('),d('),and e(-) belong to C(I).

Consider the operator T in X defined by

Tu = u" + d(x)u' + e(x)u,

D(T) = {u£X; u"£X;  u'(x) = 0 for x £ dl},

and let C:I-»I be given by Cu = c-u.
It is known that CT generates a cosine function on X (cf. [WaSe, §3]);

hence, by Theorem 2.1, TC also generates a cosine function on X. The above

argument gives an operator-theoretical approach to the following initial bound-

ary value problem:

d2u      d2 , .. . d .      ,      , .   . . m
-~~2 - -^—^(c • u) + d(x)—(c • u) + e(x)c(x) -u,       (eR, x£l,

u(0,x) = f(x),     j-(u(0,x) = g(x),        x £ I (f, g £ D(TQ).   U

Example 3.2. Let X = L2(I), where I = (0, 1), and define F on X by
Tu = u" with D(T) = {f £ H2(0,l): f(0) = /(l) = 0} (Dirichlet boundary
conditions) or D(T) = {f £ H2(0, 1): /'(0) = /'(l) = 0} (Neumann boundary
conditions). Then T is selfadjoint and form-negative, so T generates a cosine

function on X (cf. [Fa, Theorems 2.2 and 5.1]).

Now let c £ W{'°°(I) such that c(x) > 8 for all x £ I and some constant
r5>0.

We consider the operator C defined by Cu = c-u. Then CT generates a

cosine function on X. In fact, the function cp(x) = /0* l/y/c(s)ds is a homeo-

morphism of / onto another interval J . Moreover, cp induces an isomorphism

between L2(7) and L2(J) defined by V: L2(J) -» L2(7), Vf:=focp.
For u £ D(CT) = D(T) we have

(V~lCTV)u = (c o cp~x • cp" o ,p-l)u' + u" := b(-)u' + u",

where b(-) := c o y~l(-) • cp" o cp~x(-). On the other hand, it follows from [Fa,

Theorem 2.2, p. 105 and Theorem 5.1, p. 116] that

E :— {x £ L2(J): U(t)x is continuously differentiable in t £ 1}

( H0l(J)   in the case of Dirichlet boundary conditions,

I Hl(J)   in the case of Neumann boundary conditions,
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where (U(t))t>o is a cosine function on L2(J) with generator f defined by

Tu - u" (u £ L2(J)). It follows from the Kisynski theorem (cf. [Ki] or [Wa])

that the matrix operator

y := ( ~   J j    with domain D(f) x E

is the infinitesimal generator of a strongly continuous group on E x L2(J).

Since 3§ e Jtf(E x L2(J)), 38 + £T generates a strongly continuous group in
E x L2(J), where

93 := (b   o)        (Bu = b(-)u'for u £ E).

By [Wa, Theorem], (V~XCTV) generates a cosine function on L2(J). Con-

sequently, CT generates a cosine function on X. Applying Theorem 2.1, we

get that TC generates a cosine function on X, i.e., the following problem is

well posed:

d2u      d2 .
Jfl = dxl(c'•■")'        teR> *e/'

u(0,x) = f(x),     ^u(0,x) = g(x),        x£l(f,g£D(TQ).   D
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