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OSCILLATION CRITERIA FOR HAMILTONIAN
MATRIX DIFFERENCE SYSTEMS

L. H. ERBE AND PENGXIANG YAN

(Communicated by Hal L. Smith)

Abstract. We obtain some oscillation criteria for the Hamiltonian difference

system
(AY{t) = B{t)Y{t+\) + C{t)Z{t),

I AZ{t) = -A{t)Y{t + 1) - B*{t)Z{t),

where A, B, C, Y, Z are dxd matrix functions. As a corollary, we establish

the validity of an earlier conjecture for a second-order matrix difference system.

1. Introduction and preliminary results

Consider the linear Hamiltonian difference system

fin Ay(t) = B(t)y(t+l) + C(t)z(t),
['} Az(t)= -A(t)y(t+l)-B*(t)z(t),

the corresponding matrix system

AY(t) = B(t)Y(t+l) + C(t)Z(t),

( ' ' AZ(t) = - A(t)Y(t + 1) - B*(t)Z(t),

and the Riccati equation

AW(t) + A(t) + B*(t)W(t) + W(t)B(t) - B*(t)W(t)B(t)

(1-3) + (/ - B(t))*W(t)(C-x(t) + W(t))-xW(t)(I - B(t)) = 0,

where A(t),B(t), C(t), W(t), Y(t), Z(t) are dxd matrices with A(t), C(t)
Hermitian, C(t) > 0, and I-B(t) invertible. Here y(t), z(t) are dx 1 vectors

and t takes on integer values in [M-1, N+l], where M, N are two integers.

In [4, 5] the authors extended many of the results to equations (1.1)—(1.3)

which had been developed for linear Hamiltonian differential systems of the

form

y'(x) = B(x)y(x) + C(x)z(x),

[ ' ' z'(jc)= -A(x)y(x)-B*(x)z(x).
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Here x £ I is a finite or infinite interval, A, B, C are continuous dxd

matrix-valued functions, and y, z are d x 1 vector functions. Many of the

results for (1.4) may be found in the book of Coppel [2], and in [4, 5] it was

shown that discrete analogues of many of these results may be obtained. Re-

lated work on symmetric three-term recurrences may be found in [1] and the

references therein. In this paper, we shall obtain some oscillation and disconju-

gacy criterion for (1.1), (1.2) and, as a consequence of our results, shall prove
a generalization of a conjecture of Peterson and Ridenhour [7]. We recall some
notation and definitions.

We say (1.1) is disconjugate on [M-l, N+l] iff for any nontrivial prepared
solution {y(t), z(t)} of (1.1) there exists at most one integer p £ [M - 1, N]

such that either y*(p)C~l(p)(I-B(p))y(p+l) < 0 when y(p) ^ 0 or y(p) = 0.
Recall that a solution {y(t), z(t)} of (1.1) is said to be prepared if y*(t)z(t)

is real valued and that a solution {Y(t), Z(t)} of (1.2) is said to be prepared

if Y*(t)Z(t) is Hermitian. We say a prepared solution of (1.2) is a conjoined

basis if Rank[£('h = d, and it is said to be recessive at oo if there exists an

integer Mo for which

(1.5) Y*(t)C~x(t)(I-B(t))Y(t+l)>0,        t>M0,

and
n

(1.6) lim Y u*(Y*(s)C-x(s)(I-B(s))Y(s+l))-xu = oo
n—foo *—*

s=M0

for every unit vector u. A prepared solution of (1.2) is said to be dominant at

oo if (1.5) holds for some integer Mo and

oo

(1.7) £ u*(Y*(s)C-x(s)(I-B(s))Y(s+l))-xu

s=M0

converges for every unit vector u.

Equation (1.1) is said to be eventually disconjugate in case there exists an

integer M0 such that (1.1) is disconjugate on [Mo - I, Nx -\-1] for all integers

Nx > M0.
We introduce the following quadratic forms:

JV+l

q[u] = ]T;(z*(,-l)C(f- \)z(t- \)-y*(t)A(t- \)y(t)),
t=M

where

u = {y(t), z(t)} £ Q = {y, z £ Cd:y(M- 1) = 0 = y(N + 1),

Ay(t) = B(t)y(t+l) + C(t)z(t)},

and
N+l

Q[U] = £(Z*(t - l)C(t - l)Z(t - 1) - Y*(t)A(t - l)Y(t)),
t=M

where

U = {Y(t), Z(t)} £ A = {Y, Z £ Cdxd: Y(M - 1) = 0 = Y(N + 1),

AY(t) = B(t)Y(t + I) + C(t)Z(t)}.
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We introduce the further notation:

A+ := {U £ A: there is a t0, M - 1 < t0 < N - 1, such that Y(t0) = 0

and Y(to + 1) is nonsingular or there is M + 1 < to < N + 1

such that Y(to) = 0 and Y(to- 1) is nonsingular}.

We say q is positive on Q provided q[u] > 0 for all u £Q and q = 0 iff

u = 0; Q is positive definite on A provided, for all U £ A, Q[U] > 0 and
Q = 0 iff U = 0; Q is strictly positive on A+ if Q[U] > 0 for all U £ A+ .

The following results were established in [4, 5]: The first theorem may be re-

garded as a discrete version of the "Reid Roundabout Theorem" (cf. Ahlbrandt

[1])-

Theorem 1. The following are equivalent:

(i) Equation (1.1) is disconjugate on [M - 1, N + 1].

(ii)  q[u] is positive definite on Q.
(iii)   Q[U] is positive definite on A and strictly positive on A+.
(iv) There exists a Hermitian solution of the Riccati equation (3) such that

C-x(t) + W(t)>0, t£[M-l,N].

(v) There exists a solution of equation (1.2) such that

Y*(t)C~x(t)(I - B(t))Y(t + 1) > 0,        t£[M-l,N].

Theorem 2. Assume (1.1) is eventually disconjugate. Then it follows that:

(i) every conjoined basis {Y(t), Z(t)} satisfies

Y*(t)C~x(t)(I - B(t))Y(t + 1) > 0,        t > Mx > M (Mx large enough);

(ii) there exists a solution no — {Yo(t), Z0(t)} of (1.2) which is recessive at

oo;

(iii) if nx — {Yx(t), Zx(t)} is any prepared solution of (1.2) such that
Z0*(t)Yx(t) - Y0*(t)Zx(t) is invertible, then nx is a dominant solution of (1.2)

and Yl~x(t)Yo(t) —> 0 (zero matrix) as t —> oo.

By using Theorem 1, one can obtain a comparison theorem between the two

systems:

,   o, Ay(t) = Bi(t)y(t+l) + Ci(t)z(t),
V-*h Az(t) = -Ai(t)y(t+l)-Bi(t)z(t),        l~l>z'

where we make the assumption on (1.8), as (1.1).
Denote

(19V    D(t)-\     C'_1W -B!C~x(t) /-I?
[    h      ,W     [-Crl(t)Bt(t)       B*(t)Cri(t)Bi(t)-Mt)\'

The following is then a generalized Sturm Comparison Theorem.

Theorem 3. 7/~ (1.8)i is disconjugate on [M - 1, N + 1] and D2(t) > Dx(t) on
[M - I, N +1], then (1.8)2 is disconjugate also.
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Proof. For ux = {yx(t), zx(t)} with yx(M- 1) = 0 = yx(N + 1) and Ayx(t) =

Bx(t)yx(t+ l) + Cx(t)zx(t), i.e., zx(t) = Cf1(0(Ayi(0-5i(0yi(r-l-1)), we have

N

qi[ui]=   YI (Zt(t)Ci(t)zx(t)-y*x(t+l)Ax(t)yx(t+l))
t=M-l

andfor«2 = {vi(0, z2(r)} with z2(0 = Cf'(rXAj;-IW-^W^iW) , we have

fc[«2]= £ (AKw-Ku+n^wf^fU
t=M-l ^ ''

By Theorem 1, we know <7i[wi] > 0 and so ^["2] > 0, i.e., (1.8)2 is disconju-

gate.

Corollary 4. If (1.8)1 is disconjugate and Bx(t) = B2(t), Ax(t) > A2(t), Cx(t) >
C2(t), then (1.8)2 is disconjugate.

Proof. This can be shown from Theorem 3 and

D(t)-( 1   °Vc<"lw    ° M1 ~Ut)\
Dl{t)-{-B*(t) i){   0     -AMA0     /   J"

Matrix systems. Next we consider the oscillation of solutions of the matrix

system (1.2).

Definition. The Hamiltonian matrix difference system (1.2) is said to be non-

oscillatory if for each conjoined basis {Y(t), Z(t)} there exists an integer to

such that, for t > to > M - 1, we have

Y*(t)C-x(t)(I - B(t))Y(t + I) > 0.

Otherwise we say it is oscillatory.

From Theorem 1, we know if (1.2) is nonoscillatory, then (1.1) is eventu-

ally disconjugate. If we suppose that there is a Hermitian solution W(t) of

(1.3) with W(t) + C~x(t) > 0, then this solution satisfies the rewritten Riccati

equation (1.3):

(1.10) AW(t) + G*(t)G(t) + h(t) = 0

or

(1.11) AW(t) + p(t) + h(t) = 0,
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where

G(t) = (C~x(t) + W(t)Txl2W(t)(I - B(t)) + (C~x(t) + W(t))xl2B(t),

h(t) = A(t)-B*(t)C-x(t)B(t),

p(t) = (W(t) + C-x(t)B(t))*(C-x(t) + W(t))-x(W(t) + C~x(t)B(t)).

Denote by F the set of all sequences of real numbers s = {s(t)}^0 with

0 < s(t) < I and T,T=os(T) = +°° ■
Let S(t) = EUo5(t), S(t, to) = £U05(t), l(t) =Xd(C~x(t)), and L(t) =

Xx(C~x(t)). Here we suppose that the eigenvalues of C~x(t) are ordered with

Xi(C-x(t))>X2(C~x(t))>.-->Xd(C-x(t)).

We introduce the following conditions which will be used in subsequent results:

(Sx)   limsup^005-1-a(r)EUo^)^+ 1) < +°°;
(S2)   limsup,^ S~a(t)L(t) < +00; where a > 0.

Similar to [3], we can prove

Theorem 5. Let (Sx) hold for some s£F. Then equation (1.2) is oscillatory
provided

limsupS-'-^i [ YS(r)Y(A(k) - B*(k)C~x(k)B(k))) =+oo.
\^o        fo J

Theorem 6. Let (S2) hold for some s£F. Then (1.2) is oscillatory provided

limsupS-'-Wi [Y(A(x) - B*(x)C-x(t)B(x))\ =+oo.
'-°° \fo J

Example. Let

a > 0, 5(f) = ^/. From Theorem 6 it follows that (1.2) is oscillatory in this

case.

Theorem 7. If (1.2)  is nonoscillatory, then there exists to such that, for all

t>to, we have

A(t0)+  Y (A(r)-B*(x)C~x(x)B(x))
T=<0+1

< C-X(t +l) + (I- B(t0)yC-x(t0)(I - B(t0)).

Proof. Since (1.2) is nonoscillatory, there exists a sufficiently large integer to

and a Hermitian matrix solution of (1.11) with C~x(t) + W(t) > 0 for t > t0 ■
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Taking the summation of both sides of (1.11) from to to t, we obtain

t t

-W(t+l)=   Y hW+ E P(r) + A(to)-W(tQ) + W(to)B(to)
T=/0+l T=/o+l

+ B*(tQ)W(to) - B*(to)W(t0)B(t0) + (I- B(t0))*W(to)

x (C'x(to) + W(t0))-xW(to)(I - B(t0))

t

> Y h(r) + A(to)
T=t0+l

+ (I- B(to)Y(W(t0)(C-x + W(t0))-xW(t0) - W(t0))(I - B(t0))

=   Y h(r) + A(t0)
T=r0+l

- (/ - B(to)TC-x(to)(C-x(to) + W(to)TxW(to)(I - B(t0))
t

=   Y h(T) + A(to)-(I-B(t0)yC-x(to)(I-B(to))
T=/0+l

+ (I-B(t0))*(C-x(to)-C-x(to)

x(C-[(t0) + w(to))-xW(tQ))(I-B(t0))

t

=   Y h(x) + A(to)-(I-B(to)yC-x(t0)(I-B(to))
r=t0+l

+ (I- B(to)TC-x(to)(C-x(t0) + W(to))'xC-x(t0)(I - B(t0))

t
> Y h(x) + A(to)-(I-B(t0))*C-x(to)(I-B(to)).

T=/0+l

From -W(t + 1) < C~x(t + 1), the result follows.

Note. Taking t = t0, we get [5, Proposition 2.1]. If B(t) - 0, C(t) = /, we get
[7, Theorem 1].

From [4] we may express Q[U] in the equivalent form

N

(1.12) Q[U] = Y*(t)W(t)Y(t)\N{+_\+   Y   *"W(0.
t=M-l

where

F(t) = (C-x(t) + W(t))-xl2W(t)(I-B(t))Y(t+l)-(C-x(t) + W(t))xl2C(t)Z(t),

U = {Y(t), Z(t)} e A, and (1.2) is nonoscillatory.

Theorem 8. Suppose C(t) = /,  B*(t) + B(t) < B*(t)B(t), and there exists
U = {Y(t), Z(t)} with AY(t) = B(t)Y(t + I) + Z(t) such that

(1.13) limsupAi({2[<7]) = -oo.
V-»oo

Then (1.2) is oscillatory.

Note. If B(t) = 0, then this is [7, Theorem 5].



HAMILTONIAN MATRIX DIFFERENCE SYSTEMS 531

Proof. Suppose not, i.e., suppose (1.2) is nonoscillatory. Then by Theorem 2

there exists a solution [Y(t), Z(t)\ of (1.2) and an integer to such that

oo

(1.14) 5^(y(f)(/ - B(t))Y(t + l))~x = x   (constant matrix).
t=to

We are going to prove that Y*(t)(I - B(t))Y(t + I) is decreasing. To see this,

observe that

(1.15)
A(Y*(t)(I-B(t))Y(t+l))

= Y*(t + l)(AY(t) + AZ(t)) + AY*(t)(I - B(t))Y(t + I)

= Y*(t + 1)[7 - (/ + W(t))~x(I - B(t)) + W(t + 1)

-W(t)(I+W(t)rx(I-B(t))

x(I-(I- B*(t))(I + W(t))~x)(I - B(t))]Y(t + I)

= Y*(t +l)[I+W(t+l)-(I- B*(t))(I + W(t))~x(I - B(t))]Y(t + 1).

From(1.12)-(1.14) we know that if t is sufficiently large, we have W(t) < 0,

i.e., 0 < / + W(t) < I. Furthermore,

(116) " (/ " B{t)ni + WWl(I ~ B(t)) < ~(/ - BWV ~ B{t))

['    ' =-I + (B*(t) + B(t))-B*(t)B(t).

Combining (1.15), (1.16), and the condition, we see that

A(Y*(t)(I-B(t))Y(t+l))<0,

i.e.,  (Y*(t)(I - B(t))Y(t + l))~x  is increasing.   This contradicts (1.14) and
completes the proof.

Next we consider two matrix systems:

AY(t) = Bi(t)Y(t+l) + Q(t)Z(t), .     ,   ,
K       >' AZ(t) = -At(t)Y(t+l)-B*(t)Z(t),        '-x'z-

We make the same assumption on (1.17), as (1.8),. Using Theorem 3, it is
easy to show:

Theorem 9. If (I.I7)x is nonoscillatory and D2(t) > Dx(t) for t > t<j > M - 1
for some integer to, then (1.17)2 is nonoscillatory as well.

Next we wish to consider certain subsystems of (1.2). To this end we denote

R = {ix,i2, ... , ik},  1 < ix < i2 < ■■■ < ik < d, A(t) = (au)dxd, B(t) =

(bu)dxd > and C~x(t) = (Cij)dxd. We suppose that B(t) satisfies bij - 0 if
i <£ R and j £ R.

Let

A(t) = (au)kxk,       B(t) = (bij)kxk,       C(t) = (cu)^k,

where au = aht., by = fy,,., c,-y = ch!j if li,lj£R.
For the k xk matrix system,

(1 18) AY(t) = B(t)Y(t+ 1) + C(t)Z(t),

AZ(t) = - A(t)Y(t + 1) - B*(t)Z(t).
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We have

Theorem 10. 7/(1.18) is oscillatory, so is (1.2).

Proof. Suppose (1.18) is oscillatory. Then by Theorem 1 we can find two inte-

gers M, N such that there exists a nonzero vector sequence u(t) = (||||) e Q,

y(t) - (yj)k , z(t) - (zt)k , with q[it] < 0. (Here q, Q, correspond to (1.18).)
Let

u= z(o '    y(t) = (yj)d> z(t) = (zj)d,

with
= ih   tiijeB-, =(2j   ifijeR,

l'     \ 0    otherwise, ''     \ 0     otherwise,

Then from q[u] = q[u] < 0 we conclude that (1.2) is oscillatory.

Remark. If B(t) = 0, then Theorem 10 establishes the conjecture of [7].

Theorem 11. If C~l(t) < M (constant Hermitian matrix), Y^LMh(t) exists,

and (1.2) is nonoscillatory, then

lim C~x(t)B(t) — L   (constant Hermitian matrix);
t—too

furthermore, L < M.

Proof. Since (1.2) is nonoscillatory, there exists a Hermitian solution W(t) for

t > t0 (some integer t0 > M) of (1.3) with W(t) + C~x(t) > 0.

Taking the summation of both sides of (1.3), we have

(1.19) -W(t+l) = W(t0) + Y PW + Y *(*)■

Now since -W(t + 1) < C~l(t + 1) < M, and since £'T=,0/z(T) exists, it

follows that Z^,0 p(t) exists, so lim^oo W(t) = W0, a constant Hermitian

matrix with W0 > -M.
Since p(t) > 0, we have lim,_>00^(r) = 0. From (1.19) and C~l(t) < M, it

follows that W(t) is bounded, i.e., Xd((C~x(t) + W(t))~x) does not go to zero

as t —► oo.

From the Courant-Fisher Theorem [6] we get

h(p(t)) > Xx[(W(t) + C-x(t)B(t))*(W(t) + C'x(t)B(t))]Xd[(C-x(t) + W(t))~x].

Now let t —> oo to obtain

lim Xx((W(t) + C-x(t)B(t))*(W(t) + C~x(t)B(t))) = 0,
(—»oo

i.e.,
lim(W(t) + C-x(t)B(t)) = 0,
t—>oo

i.e.,
lim C~x(t)B(t) = lim(-W(t)) = -W0<M.
t—>oo t—>oo

This completes the proof.

Corollary 12. Suppose C~l(t) < M (constant Hermitian matrix) and

liminfj-Kx, Y!t=m ̂ d(h(T)) > _0° ■ Then there exists a Hermitian solution W(t)

for t > to > M of (1.3) which satisfies 1^,^00(^(0 + C~x(t)B(t)) = 0;
furthermore, C~x(t)B(t) is bounded.
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