OSCILLATION CRITERIA FOR HAMILTONIAN MATRIX DIFFERENCE SYSTEMS

L. H. ERBE AND PENGXIANG YAN

(Communicated by Hal L. Smith)

ABSTRACT. We obtain some oscillation criteria for the Hamiltonian difference system

$$\left\{ \begin{array}{l} \Delta Y(t) = B(t)Y(t+1) + C(t)Z(t)\,, \\[0.2cm] \Delta Z(t) = -A(t)Y(t+1) - B^*(t)Z(t)\,, \end{array} \right.$$

where A, B, C, Y, Z are $d \times d$ matrix functions. As a corollary, we establish the validity of an earlier conjecture for a second-order matrix difference system.

1. Introduction and preliminary results

Consider the linear Hamiltonian difference system

(1.1)
$$\Delta y(t) = B(t)y(t+1) + C(t)z(t), \Delta z(t) = -A(t)y(t+1) - B^*(t)z(t),$$

the corresponding matrix system

(1.2)
$$\Delta Y(t) = B(t)Y(t+1) + C(t)Z(t), \Delta Z(t) = -A(t)Y(t+1) - B^*(t)Z(t),$$

and the Riccati equation

(1.3)
$$\Delta W(t) + A(t) + B^*(t)W(t) + W(t)B(t) - B^*(t)W(t)B(t) + (I - B(t))^*W(t)(C^{-1}(t) + W(t))^{-1}W(t)(I - B(t)) = 0,$$

where A(t), B(t), C(t), W(t), Y(t), Z(t) are $d \times d$ matrices with A(t), C(t) Hermitian, C(t) > 0, and I - B(t) invertible. Here y(t), z(t) are $d \times 1$ vectors and t takes on integer values in [M-1, N+1], where M, N are two integers.

In [4, 5] the authors extended many of the results to equations (1.1)–(1.3) which had been developed for linear Hamiltonian differential systems of the form

(1.4)
$$y'(x) = B(x)y(x) + C(x)z(x), z'(x) = -A(x)y(x) - B^*(x)z(x).$$

Received by the editors February 24, 1992.

1991 Mathematics Subject Classification. Primary 39A10.

Key words and phrases. Disconjugacy, difference system, Riccati system.

Research was supported by NSERC-Canada.

Here $x \in I$ is a finite or infinite interval, A, B, C are continuous $d \times d$ matrix-valued functions, and y, z are $d \times 1$ vector functions. Many of the results for (1.4) may be found in the book of Coppel [2], and in [4, 5] it was shown that discrete analogues of many of these results may be obtained. Related work on symmetric three-term recurrences may be found in [1] and the references therein. In this paper, we shall obtain some oscillation and disconjugacy criterion for (1.1), (1.2) and, as a consequence of our results, shall prove a generalization of a conjecture of Peterson and Ridenhour [7]. We recall some notation and definitions.

We say (1.1) is disconjugate on [M-1, N+1] iff for any nontrivial prepared solution $\{y(t), z(t)\}$ of (1.1) there exists at most one integer $p \in [M-1, N]$ such that either $y^*(p)C^{-1}(p)(I-B(p))y(p+1) \leq 0$ when $y(p) \neq 0$ or y(p) = 0. Recall that a solution $\{y(t), z(t)\}$ of (1.1) is said to be prepared if $y^*(t)z(t)$ is real valued and that a solution $\{Y(t), Z(t)\}$ of (1.2) is said to be prepared if $Y^*(t)Z(t)$ is Hermitian. We say a prepared solution of (1.2) is a conjoined basis if $\operatorname{Rank}[\frac{Y(t)}{Z(t)}] \equiv d$, and it is said to be recessive at ∞ if there exists an integer M_0 for which

$$(1.5) Y^*(t)C^{-1}(t)(I-B(t))Y(t+1) > 0, t \geq M_0,$$

and

(1.6)
$$\lim_{n \to \infty} \sum_{s=M_0}^n u^*(Y^*(s)C^{-1}(s)(I-B(s))Y(s+1))^{-1}u = \infty$$

for every unit vector u. A prepared solution of (1.2) is said to be dominant at ∞ if (1.5) holds for some integer M_0 and

(1.7)
$$\sum_{s=M_0}^{\infty} u^*(Y^*(s)C^{-1}(s)(I-B(s))Y(s+1))^{-1}u$$

converges for every unit vector u.

Equation (1.1) is said to be eventually disconjugate in case there exists an integer M_0 such that (1.1) is disconjugate on $[M_0 - 1, N_1 + 1]$ for all integers $N_1 > M_0$.

We introduce the following quadratic forms:

$$q[u] = \sum_{t=M}^{N+1} (z^*(t-1)C(t-1)z(t-1) - y^*(t)A(t-1)y(t)),$$

where

$$u = \{y(t), z(t)\} \in \Omega = \{y, z \in C^d : y(M-1) = 0 = y(N+1), \\ \Delta y(t) = B(t)y(t+1) + C(t)z(t)\},$$

and

$$Q[U] = \sum_{t=M}^{N+1} (Z^*(t-1)C(t-1)Z(t-1) - Y^*(t)A(t-1)Y(t)),$$

where

$$\begin{split} U = \{Y(t)\,,\,Z(t)\} \in \Lambda = \{Y\,,\,Z \in C^{d\times d} \colon Y(M-1) = 0 = Y(N+1)\,,\\ \Delta Y(t) = B(t)Y(t+1) + C(t)Z(t)\}. \end{split}$$

We introduce the further notation:

$$\Lambda^+ := \{U \in \Lambda : \text{there is a } t_0, M-1 \le t_0 \le N-1, \text{ such that } Y(t_0) = 0$$
 and $Y(t_0+1)$ is nonsingular or there is $M+1 \le t_0 \le N+1$ such that $Y(t_0) = 0$ and $Y(t_0-1)$ is nonsingular}.

We say q is positive on Ω provided $q[u] \ge 0$ for all $u \in \Omega$ and q = 0 iff $u \equiv 0$; Q is positive definite on Λ provided, for all $U \in \Lambda$, $Q[U] \ge 0$ and Q = 0 iff $U \equiv 0$; Q is strictly positive on Λ^+ if Q[U] > 0 for all $U \in \Lambda^+$.

The following results were established in [4, 5]: The first theorem may be regarded as a discrete version of the "Reid Roundabout Theorem" (cf. Ahlbrandt [1]).

Theorem 1. The following are equivalent:

- (i) Equation (1.1) is disconjugate on [M-1, N+1].
- (ii) q[u] is positive definite on Ω .
- (iii) Q[U] is positive definite on Λ and strictly positive on Λ^+ .
- (iv) There exists a Hermitian solution of the Riccati equation (3) such that $C^{-1}(t) + W(t) > 0$, $t \in [M-1, N]$.
- (v) There exists a solution of equation (1.2) such that

$$Y^*(t)C^{-1}(t)(I-B(t))Y(t+1) > 0, t \in [M-1, N].$$

Theorem 2. Assume (1.1) is eventually disconjugate. Then it follows that:

(i) every conjoined basis $\{Y(t), Z(t)\}$ satisfies

$$Y^*(t)C^{-1}(t)(I - B(t))Y(t + 1) > 0$$
, $t \ge M_1 \ge M$ (M_1 large enough);

- (ii) there exists a solution $\eta_0 = \{Y_0(t), Z_0(t)\}$ of (1.2) which is recessive at ∞ ;
- (iii) if $\eta_1 = \{Y_1(t), Z_1(t)\}$ is any prepared solution of (1.2) such that $Z_0^*(t)Y_1(t) Y_0^*(t)Z_1(t)$ is invertible, then η_1 is a dominant solution of (1.2) and $Y_1^{-1}(t)Y_0(t) \to 0$ (zero matrix) as $t \to \infty$.

By using Theorem 1, one can obtain a comparison theorem between the two systems:

(1.8)_i
$$\Delta y(t) = B_i(t)y(t+1) + C_i(t)z(t), \\ \Delta z(t) = -A_i(t)y(t+1) - B_i(t)z(t), \qquad i = 1, 2,$$

where we make the assumption on $(1.8)_i$ as (1.1).

Denote

$$(1.9)_i \quad D_i(t) = \begin{bmatrix} C_i^{-1}(t) & -B_i^*C_i^{-1}(t) \\ -C_i^{-1}(t)B_i(t) & B_i^*(t)C_i^{-1}(t)B_i(t) - A_i(t) \end{bmatrix}, \qquad i = 1, 2.$$

The following is then a generalized Sturm Comparison Theorem.

Theorem 3. If $(1.8)_1$ is disconjugate on [M-1, N+1] and $D_2(t) \ge D_1(t)$ on [M-1, N+1], then $(1.8)_2$ is disconjugate also.

Proof. For $u_1 = \{y_1(t), z_1(t)\}$ with $y_1(M-1) = 0 = y_1(N+1)$ and $\Delta y_1(t) = B_1(t)y_1(t+1) + C_1(t)z_1(t)$, i.e., $z_1(t) = C_1^{-1}(t)(\Delta y_1(t) - B_1(t)y_1(t+1))$, we have

$$q_{1}[u_{1}] = \sum_{t=M-1}^{N} (z_{1}^{*}(t)C_{1}(t)z_{1}(t) - y_{1}^{*}(t+1)A_{1}(t)y_{1}(t+1))$$

$$= \sum_{t=M-1}^{N} (\Delta y_{1}^{*}(t), y_{1}^{*}(t+1))D_{1}(t) \begin{pmatrix} \Delta y_{1}(t) \\ y_{1}(t+1) \end{pmatrix},$$

and for $u_2 = \{y_1(t), z_2(t)\}$ with $z_2(t) = C_2^{-1}(t)(\Delta y - 1(t) - B_2(t)y_1(t))$, we have

$$q_{2}[u_{2}] = \sum_{t=M-1}^{N} (\Delta y_{1}^{*}(t), y_{1}^{*}(t+1)) D_{2}(t) \begin{pmatrix} \Delta y_{1}(t) \\ y_{1}(t+1) \end{pmatrix}$$

$$\geq \sum_{t=M-1}^{N} (\Delta y_{1}^{*}(t), y_{1}^{*}(t+1)) D_{1}(t) \begin{pmatrix} \Delta y_{1}(t) \\ y_{1}(t+1) \end{pmatrix} = q_{1}[u_{1}].$$

By Theorem 1, we know $q_1[u_1] \ge 0$ and so $q_2[u_2] \ge 0$, i.e., $(1.8)_2$ is disconjugate.

Corollary 4. If $(1.8)_1$ is disconjugate and $B_1(t) = B_2(t)$, $A_1(t) \ge A_2(t)$, $C_1(t) \ge C_2(t)$, then $(1.8)_2$ is disconjugate.

Proof. This can be shown from Theorem 3 and

$$D_i(t) = \begin{pmatrix} I & 0 \\ -B_i^*(t) & I \end{pmatrix} \begin{pmatrix} C_i^{-1}(t) & 0 \\ 0 & -A_i(t) \end{pmatrix} \begin{pmatrix} I & -B_i(t) \\ 0 & i \end{pmatrix}.$$

Matrix systems. Next we consider the oscillation of solutions of the matrix system (1.2).

Definition. The Hamiltonian matrix difference system (1.2) is said to be non-oscillatory if for each conjoined basis $\{Y(t), Z(t)\}$ there exists an integer t_0 such that, for $t \ge t_0 \ge M - 1$, we have

$$Y^*(t)C^{-1}(t)(I - B(t))Y(t+1) > 0.$$

Otherwise we say it is oscillatory.

From Theorem 1, we know if (1.2) is nonoscillatory, then (1.1) is eventually disconjugate. If we suppose that there is a Hermitian solution W(t) of (1.3) with $W(t) + C^{-1}(t) > 0$, then this solution satisfies the rewritten Riccati equation (1.3):

(1.10)
$$\Delta W(t) + G^*(t)G(t) + h(t) = 0$$

or

$$\Delta W(t) + \rho(t) + h(t) = 0,$$

where

$$G(t) = (C^{-1}(t) + W(t))^{-1/2}W(t)(I - B(t)) + (C^{-1}(t) + W(t))^{1/2}B(t),$$

$$h(t) = A(t) - B^*(t)C^{-1}(t)B(t),$$

$$\rho(t) = (W(t) + C^{-1}(t)B(t))^*(C^{-1}(t) + W(t))^{-1}(W(t) + C^{-1}(t)B(t)).$$

Denote by F the set of all sequences of real numbers $s = \{s(t)\}_{t=0}^{\infty}$ with $0 \le s(t) \le 1$ and $\sum_{\tau=0}^{\infty} s(\tau) = +\infty$.

Let $S(t) = \sum_{\tau=0}^{t} s(\tau)$, $S(t, t_0) = \sum_{\tau=t_0}^{t} s(\tau)$, $l(t) = \lambda_d(C^{-1}(t))$, and $L(t) = \sum_{\tau=0}^{t} s(\tau)$ $\lambda_1(C^{-1}(t))$. Here we suppose that the eigenvalues of $C^{-1}(t)$ are ordered with

$$\lambda_1(C^{-1}(t)) \ge \lambda_2(C^{-1}(t)) \ge \cdots \ge \lambda_d(C^{-1}(t)).$$

We introduce the following conditions which will be used in subsequent results:

- $\begin{array}{ll} (S_1) & \limsup_{t\to\infty} S^{-1-\alpha}(t) \sum_{\tau=0}^t S(\tau) L(\tau+1) < +\infty \,; \\ (S_2) & \limsup_{t\to\infty} S^{-\alpha}(t) L(t) < +\infty \,; \text{ where } \, \alpha \geq 0 \,. \end{array}$

Similar to [3], we can prove

Theorem 5. Let (S_1) hold for some $s \in F$. Then equation (1.2) is oscillatory provided

$$\lim_{t \to \infty} \sup S^{-1-\alpha}(t) \lambda_1 \left(\sum_{\tau=0}^t S(\tau) \sum_{k=0}^{\tau} (A(k) - B^*(k) C^{-1}(k) B(k)) \right) = +\infty.$$

Theorem 6. Let (S_2) hold for some $s \in F$. Then (1.2) is oscillatory provided

$$\limsup_{t\to\infty} S^{-1-\alpha}(t)\lambda_1\left(\sum_{\tau=0}^t (A(\tau)-B^*(\tau)C^{-1}(\tau)B(\tau))\right)=+\infty.$$

Example. Let

$$C(t) = \begin{pmatrix} t^{-\alpha-1/2} & 0 \\ 0 & t^{-\alpha} \end{pmatrix} \,, \qquad A(t) = \begin{pmatrix} t^{\alpha+1/2} & \frac{1}{2} \\ \frac{1}{2} & t^{\alpha} \end{pmatrix} \,,$$

 $a \ge 0$, $B(t) = \frac{1}{2}I$. From Theorem 6 it follows that (1.2) is oscillatory in this

Theorem 7. If (1.2) is nonoscillatory, then there exists t_0 such that, for all $t \geq t_0$, we have

$$A(t_0) + \sum_{\tau = t_0 + 1} (A(\tau) - B^*(\tau)C^{-1}(\tau)B(\tau))$$

$$< C^{-1}(t+1) + (I - B(t_0))^*C^{-1}(t_0)(I - B(t_0)).$$

Proof. Since (1.2) is nonoscillatory, there exists a sufficiently large integer t_0 and a Hermitian matrix solution of (1.11) with $C^{-1}(t) + W(t) > 0$ for $t \ge t_0$. Taking the summation of both sides of (1.11) from t_0 to t, we obtain

$$\begin{split} -W(t+1) &= \sum_{\tau=t_0+1}^t h(\tau) + \sum_{\tau=t_0+1}^t \rho(\tau) + A(t_0) - W(t_0) + W(t_0)B(t_0) \\ &+ B^*(t_0)W(t_0) - B^*(t_0)W(t_0)B(t_0) + (I - B(t_0))^*W(t_0) \\ &\times (C^{-1}(t_0) + W(t_0))^{-1}W(t_0)(I - B(t_0)) \\ &\geq \sum_{\tau=t_0+1}^t h(\tau) + A(t_0) \\ &+ (I - B(t_0))^*(W(t_0)(C^{-1} + W(t_0))^{-1}W(t_0) - W(t_0))(I - B(t_0)) \\ &= \sum_{\tau=t_0+1}^t h(\tau) + A(t_0) \\ &- (I - B(t_0))^*C^{-1}(t_0)(C^{-1}(t_0) + W(t_0))^{-1}W(t_0)(I - B(t_0)) \\ &= \sum_{\tau=t_0+1}^t h(\tau) + A(t_0) - (I - B(t_0))^*C^{-1}(t_0)(I - B(t_0)) \\ &+ (I - B(t_0))^*(C^{-1}(t_0) - C^{-1}(t_0) \\ &\quad \times (C^{-1}(t_0) + w(t_0))^{-1}W(t_0))(I - B(t_0)) \\ &= \sum_{\tau=t_0+1}^t h(\tau) + A(t_0) - (I - B(t_0))^*C^{-1}(t_0)(I - B(t_0)) \\ &+ (I - B(t_0))^*C^{-1}(t_0)(C^{-1}(t_0) + W(t_0))^{-1}C^{-1}(t_0)(I - B(t_0)) \\ &> \sum_{\tau=t_0+1}^t h(\tau) + A(t_0) - (I - B(t_0))^*C^{-1}(t_0)(I - B(t_0)). \end{split}$$

From $-W(t+1) < C^{-1}(t+1)$, the result follows.

Note. Taking $t = t_0$, we get [5, Proposition 2.1]. If B(t) = 0, $C(t) \equiv I$, we get [7, Theorem 1].

From [4] we may express Q[U] in the equivalent form

(1.12)
$$Q[U] = Y^*(t)W(t)Y(t)|_{M-1}^{N+1} + \sum_{t=M-1}^{N} F^*(t)F(t),$$

where

$$F(t) = (C^{-1}(t) + W(t))^{-1/2}W(t)(I - B(t))Y(t + 1) - (C^{-1}(t) + W(t))^{1/2}C(t)Z(t),$$

$$U = \{Y(t), Z(t)\} \in \Lambda, \text{ and } (1.2) \text{ is nonoscillatory.}$$

Theorem 8. Suppose $C(t) \equiv I$, $B^*(t) + B(t) \leq B^*(t)B(t)$, and there exists $U = \{Y(t), Z(t)\}$ with $\Delta Y(t) = B(t)Y(t+1) + Z(t)$ such that

(1.13)
$$\limsup_{N \to \infty} \lambda_1(Q[U]) = -\infty.$$

Then (1.2) is oscillatory.

Note. If $B(t) \equiv 0$, then this is [7, Theorem 5].

Proof. Suppose not, i.e., suppose (1.2) is nonoscillatory. Then by Theorem 2 there exists a solution $\{Y(t), Z(t)\}$ of (1.2) and an integer t_0 such that

(1.14)
$$\sum_{t=t_0}^{\infty} (Y^*(t)(I-B(t))Y(t+1))^{-1} = \tau \text{ (constant matrix)}.$$

We are going to prove that $Y^*(t)(I - B(t))Y(t + 1)$ is decreasing. To see this, observe that

(1.15)

$$\begin{split} \Delta(Y^{*}(t)(I-B(t))Y(t+1)) &= Y^{*}(t+1)(\Delta Y(t) + \Delta Z(t)) + \Delta Y^{*}(t)(I-B(t))Y(t+1) \\ &= Y^{*}(t+1)[I-(I+W(t))^{-1}(I-B(t)) + W(t+1) \\ &- W(t)(I+W(t))^{-1}(I-B(t)) \\ &\times (I-(I-B^{*}(t))(I+W(t))^{-1})(I-B(t))]Y(t+1) \\ &= Y^{*}(t+1)[I+W(t+1)-(I-B^{*}(t))(I+W(t))^{-1}(I-B(t))]Y(t+1). \end{split}$$

From (1.12)–(1.14) we know that if t is sufficiently large, we have W(t) < 0, i.e., 0 < I + W(t) < I. Furthermore,

(1.16)
$$-(I - B(t))^*(I + W(t))^{-1}(I - B(t)) < -(I - B(t))^*(I - B(t))$$

$$= -I + (B^*(t) + B(t)) - B^*(t)B(t).$$

Combining (1.15), (1.16), and the condition, we see that

$$\Delta(Y^*(t)(I-B(t))Y(t+1)) \leq 0,$$

i.e., $(Y^*(t)(I - B(t))Y(t + 1))^{-1}$ is increasing. This contradicts (1.14) and completes the proof.

Next we consider two matrix systems:

(1.17)_i
$$\Delta Y(t) = B_i(t)Y(t+1) + C_i(t)Z(t), \Delta Z(t) = -A_i(t)Y(t+1) - B_i^*(t)Z(t), \qquad i = 1, 2.$$

We make the same assumption on $(1.17)_i$ as $(1.8)_i$. Using Theorem 3, it is easy to show:

Theorem 9. If $(1.17)_1$ is nonoscillatory and $D_2(t) \ge D_1(t)$ for $t \ge t_0 \ge M - 1$ for some integer t_0 , then $(1.17)_2$ is nonoscillatory as well.

Next we wish to consider certain subsystems of (1.2). To this end we denote $R = \{i_1, i_2, \ldots, i_k\}$, $1 \le i_1 < i_2 < \cdots < i_k \le d$, $A(t) = (a_{ij})_{d \times d}$, $B(t) = (b_{ij})_{d \times d}$, and $C^{-1}(t) = (c_{ij})_{d \times d}$. We suppose that B(t) satisfies $b_{ij} = 0$ if $i \notin R$ and $j \in R$.

Let

$$\widetilde{A}(t) = (\widetilde{a}_{ij})_{k \times k}, \qquad \widetilde{B}(t) = (\widetilde{b}_{ij})_{k \times k}, \qquad \widetilde{C}(t) = (\widetilde{c}_{ij})_{k \times k}^{-1},$$

where $\tilde{a}_{ij} = a_{l_i l_j}$, $\tilde{b}_{ij} = b_{l_i l_j}$, $\tilde{c}_{ij} = c_{l_i l_j}$ if l_i , $l_j \in R$. For the $k \times k$ matrix system,

(1.18)
$$\Delta \widetilde{Y}(t) = \widetilde{B}(t)\widetilde{Y}(t+1) + \widetilde{C}(t)\widetilde{Z}(t), \\ \Delta \widetilde{Z}(t) = -\widetilde{A}(t)\widetilde{Y}(t+1) - \widetilde{B}^*(t)\widetilde{Z}(t).$$

We have

Theorem 10. If (1.18) is oscillatory, so is (1.2).

Proof. Suppose (1.18) is oscillatory. Then by Theorem 1 we can find two integers M, N such that there exists a nonzero vector sequence $\tilde{u}(t) = (\tilde{y}_{i(t)}^{\tilde{y}(t)}) \in \widetilde{\Omega}$, $\tilde{y}(t) = (\tilde{y}_{j})_{k}$, $\tilde{z}(t) = (\tilde{z}_{i})_{k}$, with $\tilde{q}[\tilde{u}] \leq 0$. (Here \tilde{q} , $\widetilde{\Omega}$ correspond to (1.18).)

$$u = \begin{bmatrix} y(t) \\ z(t) \end{bmatrix}, \qquad y(t) = (y_j)_d, \quad z(t) = (z_j)_d,$$

with

$$y_{i_j} = \begin{cases} \tilde{y}_j & \text{if } i_j \in R, \\ 0 & \text{otherwise,} \end{cases} \qquad z_{i_j} = \begin{cases} \tilde{z}_j & \text{if } i_j \in R, \\ 0 & \text{otherwise,} \end{cases}$$

Then from $q[u] = \tilde{q}[\tilde{u}] \le 0$ we conclude that (1.2) is oscillatory.

Remark. If $B(t) \equiv 0$, then Theorem 10 establishes the conjecture of [7].

Theorem 11. If $C^{-1}(t) \leq M$ (constant Hermitian matrix), $\sum_{t=M}^{\infty} h(t)$ exists, and (1.2) is nonoscillatory, then

$$\lim_{t\to\infty} C^{-1}(t)B(t) = L \quad (constant \ Hermitian \ matrix);$$

furthermore, $L \leq M$.

Proof. Since (1.2) is nonoscillatory, there exists a Hermitian solution W(t) for $t \ge t_0$ (some integer $t_0 \ge M$) of (1.3) with $W(t) + C^{-1}(t) > 0$.

Taking the summation of both sides of (1.3), we have

(1.19)
$$-W(t+1) = W(t_0) + \sum_{\tau=t_0}^{t} \rho(\tau) + \sum_{\tau=t_0}^{t} h(\tau).$$

Now since $-W(t+1) \leq C^{-1}(t+1) \leq M$, and since $\sum_{\tau=t_0}^t h(\tau)$ exists, it follows that $\sum_{\tau=t_0}^{\infty} \rho(\tau)$ exists, so $\lim_{t\to\infty} W(t) = W_0$, a constant Hermitian matrix with $W_0 \geq -M$.

Since $\rho(t) \ge 0$, we have $\lim_{t\to\infty} \rho(t) = 0$. From (1.19) and $C^{-1}(t) \le M$, it follows that W(t) is bounded, i.e., $\lambda_d((C^{-1}(t) + W(t))^{-1})$ does not go to zero as $t\to\infty$.

From the Courant-Fisher Theorem [6] we get

$$\lambda_1(\rho(t)) \ge \lambda_1[(W(t) + C^{-1}(t)B(t))^*(W(t) + C^{-1}(t)B(t))]\lambda_d[(C^{-1}(t) + W(t))^{-1}].$$

Now let $t \to \infty$ to obtain

$$\lim_{t\to\infty} \lambda_1((W(t)+C^{-1}(t)B(t))^*(W(t)+C^{-1}(t)B(t)))=0,$$

i.e.,

$$\lim_{t\to\infty}(W(t)+C^{-1}(t)B(t))=0\,,$$

i.e.,

$$\lim_{t \to \infty} C^{-1}(t)B(t) = \lim_{t \to \infty} (-W(t)) = -W_0 \le M.$$

This completes the proof.

Corollary 12. Suppose $C^{-1}(t) \leq M$ (constant Hermitian matrix) and $\lim \inf_{t\to\infty} \sum_{\tau=M}^t \lambda_d(h(\tau)) > -\infty$. Then there exists a Hermitian solution W(t) for $t \geq t_0 \geq M$ of (1.3) which satisfies $\lim_{t\to\infty} (W(t) + C^{-1}(t)B(t)) = 0$; furthermore, $C^{-1}(t)B(t)$ is bounded.

REFERENCES

- Calvin D. Ahlbrandt, Dominant and recessive solutions of symmetric three term recurrences,
 J. Differential Equations (to appear).
- 2. W. Coppel, Disconjugacy, Lecture Notes in Math., vol. 220, Springer, New York, 1971.
- 3. L. Erbe and P. Yan, Weighted averaging techniques in oscillation theory for second order difference equations, Canad. Math. Bull. 35 (1992), 61-69.
- 4. ____, Disconjugacy for linear Hamiltonian difference systems, J. Math. Anal. Appl. 167 (1992), 355-367.
- 5. ____, Qualitative properties of Hamiltonian difference systems, J. Math. Anal. Appl. (to appear).
- 6. P. Lancaster and M. Tismenetsky, *The theory of matrices*, Academic Press, New York, 1985, pp. 286-289.
- 7. A. Peterson and J. Ridenhour, Oscillation of second order linear matrix difference equations, J. Differential Equations 89 (1991), 69-88.

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1