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ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF POINCARE DIFFERENCE EQUATIONS
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Abstract. It is shown that if the zeros \\, ki,..., \n of the polynomial

q(X) = X" + axkn~x + ■ ■ ■ + a„

are distinct and r is an integer in {1, 2,..., «} such that \XS\ ̂  |Ar| if

s / r, then the Poincare difference equation

y(n + m) + (ax + px(m))y(n + m - 1) + ■ ■• + (a„ + p„(m))y(m) = 0

has a solution yr such that (A) yr(m) = 1^(1 + o(l)) as m —► oo , provided

that the sums z\llZmP'(J) 0 ^ ' < n) converge sufficiently rapidly. Our

results improve over previous results in that these series may converge condi-

tionally, and we give sharper estimates of the o(l) terms in (A).

1. Introduction

We consider the Poincare difference equation

(1) y(n + m) + (ax +px(m))y(n + m - 1) + •• • + (a„+pn(m))y(m) = 0,

where an ^ 0, the polynomial

q(X) = Xn + axXn~x +--- + a„

has distinct zeros Xx, X2, ... , Xn, and

(2) lim pk(m) = 0,        \<k<n.
m—>oo

Under these assumptions it is natural to ask whether (1) has solutions yx,

yi, "• ,yn which behave asymptotically in some sense like the solutions

xr(m) = X1?   (1 < r < n) of the constant coefficient equation

x(n + m) + axx(n + m - 1) H-(- a„x(m) - 0.

\f XX,X2, ... ,Xn have distinct moduli, then Poincare's theorem [5] asserts that

every nontrivial solution of (1) exhibits the asymptotic behavior

..     y(m+\)     .
hm -±———^ = Xr

m—oo    y(m)
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for some r in {1,2,..., n) and Perron's theorem [4] asserts that (1) has

solutions yi,y2,... ,yn such that

(3) iim>^!±i)=/lr,       1<r<„.
m-.oo    yr(m)

The conclusions of Poincare's and Perron's theorems are weak, since (3) does

not imply that yr(m) - X™ becomes small (i.e., o(Xrn)) as m-»oo. (We will

use O and o in the usual way to indicate asymptotic behavior as m —» oo .) To

obtain this conclusion it is necessary to replace (2) with a stronger condition.

For example, the following theorem is due to Evgrafov [2].

Theorem 1. Suppose that the zeros Xx, X2, ... , Xn of q(X) are distinct and

oo

El^(m)l<00'        l<k<n.

Then (1) has solutions yx,... ,yn such that

(4) yr(m) = Xr"(l+o(l)),        \<r<n.

The following theorem of Gelfond and Kubenskaya [3] provides an estimate

of the o(l) term in (4).

Theorem 2. Suppose that \XX\ < \X2\ < ■■■ < \Xn\ and there is a nonincreasing
sequence P such that

\Pi(m)\<P(m),        m = 0, 1,...,  \<i<n,

(5) "-^TT1-".
m^oo    P(m)

and YT P(m) < °° L^ y(m) = Y,%m PU) ■ Then (I) has solutions yx,...,
yn such that

(6) yr(m) = Xrn(l + 0(y(m))),        \<r<n.

Coffman [1] has shown that (5) can be weakened to

™ r    ■ fP(m+l) ( \Xi\ \
(1) hminf^v > max    -\->-    .

m—oo       P(m) l<i<n\\Xi+x\J

Theorems 1 and 2 do not apply if any of the series X)m=o^'(w) (1 - ' — n)
converge conditionally. Moreover, even if these series converge absolutely, the

estimate of the order of convergence in (6) may be too conservative, as our

examples in §3 will illustrate.

The following theorem is our main result.

Theorem 3. Suppose that the zeros Xx, X2, ... , X„ of q(X) are distinct, and let

0 < |Ai| < |^21 < ••■ <\X„\. Suppose also that the series Y^=oP>(m) (1 - l- n)
converge (perhaps conditionally) and there are nonincreasing sequences cp and

y/ such that limOT_00 <p(m) = limTO^00 y/(m) = 0, y/(m) = o(<f>(m)),

oo

(8) Y,PiU) = 0(<Km)),        \<i<n,
j=m
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and
oo

(9) E \PiU)\<Kn+j - i) = 0(¥(m)),        \<i<n.
j=m

Let r be an integer in {I, 2, ... , n} such that \Xr\ # \XS\ if r ^ s. If r > 1,

suppose also that there is an integer Mx and a number p such that

(10) \<p<\kr/Xr-l\

and pm4>(m) and pmy/(m) are nondecreasing for m > Mx. Then (1) has a

solution yr such that

(11) yr(m) = Xrn(\ + 0(<t>(m))),       m^oo.

The assumption concerning p is equivalent to the conditions

hminf   \.   .     > -V-1     and    hminfrv .   , ' > -^  ,
m—oo     (p(m) Xr m->oo     y/(m) Xr

which is related to Coffman's condition (7).

2. Proof of Theorem 3

We will prove Theorem 3 by means of a series of lemmas. For convenience

we rewrite (1) as

y(n + m) + axy(n + m - 1) H-h a„y(m) = -^fy(m),

where

^fy(m) - px(m)y(n + m - 1) +p2(m)y(n + m - 2) H-\-p„(m)y(m).

By variation of parameters, y is a solution of (1) if and only if

(12) y(m) = Yx^uk(m),
k=i

where
n

Y*riAuk(fn) = -dinJ7y(m),        1 < i < n.
k=l

Solving this system yields

(13) Auk(m) = -AkX-kmS?y(m)   with Ak = \/Xkq'(Xk).

Now let M be a positive integer which we will specify further below. For now

we assume that if r > 1 then pm<f>(m) and pmy/(m) are nondecreasing for

m > M for some p satisfying (10). From (12) and (13), if the sequence yr

satisfies

r—l        m-l

yr(m) = xr-YAkY tfT'&yrV)
(14) k={     1=M
v     ' n oo

+E^EAr^>vC'')>    ™^

(where the first sum is vacuous if r = 1), then yr satisfies (1) for m> M.
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It is convenient to rewrite (14) in terms of the sequence vr defined by

(15) vr(m) = X-myr(m) - I.

Then

(16) &yr(j) = Pr(j)+^rvr(j),

where

(17) Pr(j) = YXnr+1-lPi(j),

and
n

(18) JtruU) = Y K+i-lPiU)u(n + j - i)
i=l

for any sequence u. From (14)—(16),

r—l , ,   s. m m—l

vr(m) = Fr(m)-YAkl^)    YXkJ^vrU)

(19) *-'      V J   >="n y *   \ m   oo

k=r        ^ArJ     j=m

where

r—l / «   \mm—l n /*   \ m   oo

(20) Fr(m) =-YAk(f)    Yrkjrr(j) + YA*[T)    EV'^0')-
fc-l \ArJ     j=M k=r        V/r/     j=m

If ur satisfies (19), then the sequence yr defined by

(21) yr(m) = (l+vr(m))Xr"

satisfies (1). This motivates us to look for vr as a fixed point (sequence) of the

transformation

(22) v = Fr + ^u,

where

r—l , ,   \mm-l

Zu(m) = -Y,Ak(j-)    YrkUrU(j)
(23) k=l j=M

+2>*(r) Hrk^u(j).
k=r ^   "'     j=m

Now let M > Mx  and let 38 be the Banach space of sequences u =

{u(m)}™=M such that u(m) = 0(cp(m)), with norm

(24) ||«||=sup{|u(/n)|/0(/fi)}.
m>M

We will show that (22) is a contraction mapping of 3§ into itself if M is

sufficiently large.
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Lemma 1. Suppose that the series Y^°° WU) converges, and let a be a nonin-

creasing sequence such that
oo

o(m) > sup |^F(i/)|,    where W(m) = Y WU) ■
v>m

j=m

Let y be a complex constant.

(a) // |y| < 1 then

oo

(25) !>«/(;) <Kx\y\ma(m),
j=m

where Kx depends only on/ y.

(b) If \y\ > 1 and there is a number p such that 1 < p < \y\ and pma(m)

is nondecreasing for m> M, then

m-l

(26) Y y'wU) ^ K2\y\ma(m),       m>M+\,

where K2 is a constant which depends only on y and p.

Proof, (a) Summation by parts yields

N N

Yyjw(J) = -7NW(N+l) + ymW(m)+  Y (^~ yJ~lWU),        m<N.
j=m j=m+l

Letting N -> oo and applying routine estimates yields (25) with

II -y\

(b) Summation by parts yields

m-l , . ^    m-l

Yvjw(j) = yMW(M)-ym-lW(m)-r(l--)   Y  ^U);
j=m ^   y' j=m+i

therefore,

w~' \y\M-m i
y~mYyJ™U)   <^-(PMo(M))^-a(m)

j=M " "'

'   j=M+l      H

and the monotonicity of pma(m) implies (26) with

K  ^1   i    l    i     P\y~l\

2        \7\   \y\(\r\-p)'

Lemma 2. The sequence Fr defined by (20) for m> M is in 38.

Proof. We apply Lemma 1 with w(j) = Pi(j) and y = Xr/Xk . From (17),

oo n °°    / }   \ J

j=m i=l j=m V   k/
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Since \Xr/Xk\ < 1 for r < k < n , we can infer from (8) and Lemma 1(a) that

oo /•>   \ m

YrkiprU) <A[r-k)   ^")'        m>M, r<k<n,
j=m

for some constant A . Therefore, the second sum in (20) is 0(<p(m)). Similarly,

Lemma 1(b) implies that the first sum in (20) is 0(<f>(m)). Therefore, Fr £ 38 .

In the following lemma let

(27) CW= sur,[y/(m)/4>(m)].
m>M

Since y/(m) = o(4>(m)) by assumption, C(M) is well defined and

(28) lim C(M) = 0.
M—>oo

Lemma 3. If u£3% then J~ru £ 3% and

(29) ||#«||</C(JI/)||m||,

where J is independent of u and M.

Proof. From (18) and (24),

oo

Y^MrU(j)
(30) j=m

n oo      a     j

< IMIE W"'E r  \piUmn + j~i)>      r^k^n>
i=l j=m     k

and

m-l

YKijtrU(j)

(31) j=M
n m-l    ^    J

< IMI £ l-M""'E f   \Pi(j)\(p(n + j - i),        \<k<r-\.
i=l j=M     k

Now (9) and (30) imply that

oo j     m

Y^kJ^u(j) <a\\u\\ y-    y/(m),        r<k<n,
j=m

where a is independent of u and M. By applying Lemma 1(b) with w(j) =

\Pi(j)\(p(n + j - 1) and y - Xr/Xk , we see from (31) that

m-l a     m

Y Kij?ru(j) < P\\u\\ f    ¥(m),        \<k<r-\,
j=M k

where P is independent of u and M. From (23) and the last two inequalities

we see that ffiu(m)\ < Jy/(m)\\u\\ (m > M) for some J independent of u
and m . This together with (24) and (27) implies (29).
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We can now complete the proof of Theorem 1. Lemmas 2 and 3 and (22)

imply that ^ maps 38 into itself. If ux and u2 are in 38, then Lemma 3

implies that

Wrui-J-ru2\\<jr,(M)\\ux-u2\.

Because of (28), we can choose M so large that £(M) < 1/7; then the mapping

defined by (22) is a contraction mapping of 38 and its fixed point vr satisfies

(19) for m > M. Therefore, yr as defined by (21) satisfies (1) for m > M

and has the asymptotic behavior (11).

3. A REMARK AND EXAMPLES

Remark 1. Since vr is the fixed point of (22), we have vr = Fr + ^vr, where

Fr = 0(4>) and !Tvr = 0(yi). Since y/(m) = o(<p(m)), the asymptotic formula

(11) can be written more precisely as

yr(m) = X?(l+Fr(m) + 0(y,(m))),

where Fr, which is 0((j>(m)), is the known sequence defined by (20).

In the following examples we consider the difference equation

(32) y(m + 2) + (ax + e(m)/m)y(m + 1) = a2y(m) = 0,

where

X2 + axX + a2 = (X - XX)(X - X2),

with 0 < \XX\ < \X2\.

Example 1. Let e(m) = \/m. Applying Theorem 2 with P(m) = \/m2 and

y(m) — YjJLm l/J2 - 0(1/m) shows that (32) has solutions yi and y2 such
that

r33v yi(m) = X?(l + 0(l/m)),

[    ' y2(m)=X>?(l + 0(l/m)).

However, Theorem 3 and Remark 1 yield sharper estimates

yx(m) = Xm(l+Fx(m) + 0(l/m2)),

y2(m) = A?(l + F2(m) + 0(l/m2)),

where Lemma 2 implies that the known sequences Fx(m) and F2(m) are

0(\/m).

Example 2. Let e(m) — (-\)m/m . Then Theorem 2 implies only that (32) has

solutions satisfying (33). However, now (8) and (9) hold with <f>(m) = \/m2

and y/(m) — 1/w3, respectively, so Theorem 3 and Remark 1 yield the sharper
estimates

y1(m)-Ar(l+F1(m) + 0(l/m3)),

y2(m)=X2n(l+F2(m) + 0(l/mi)),

where Lemma 2 implies that Fx(m) and F2(m) are 0(\/m2).

More generally, let e(m) - (-\)m8(m), where S(m) is nonincreasing,

,.     .,   ,    n .    ..    . eS(m + l)      Xx 1/2
hm o(m) = U,    and    hminf———t—- >  -r^

m-»oo m->oo        d(m) X2
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Then Theorem 3 and Remark 1 imply that (32) has solutions such that

yx(m)=Xm(l+Fx(m) + 0(d2(m)/m)),

y2(m) =Xf(l+ F2(m) + 0(d2(m)/m)),

where Lemma 2 implies that Fx(m) and F2(m) are 0(S(m)/m). However,

Theorem 2 does not apply unless Y^°° d(j)/j < oo, in which case it yields the

weaker estimates

yi(m)=Xm(l + 0(y(m))),

y2(m)=X^(l + 0(y(m))),

where y(m) = £~m<5(;)//.
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