ON THE RIEMANNIAN GEOMETRY OF THE NILPOTENT GROUPS H(p, r)

PAOLA PIU AND MICHEL GOZE

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. We study some aspect of the left-invariant Riemannian geometry on a class of nilpotent Lie groups H(p, r) that generalize the Heisenberg group H_{2p+1} . Let us prove that the groups of type H (or Kaplan's spaces) and the H(p, r) groups have same common Riemannian properties but they are not the same spaces.

Introduction

The Heisenberg group H_{2p+1} with the left-invariant metric

$$ds^{2} = (dx_{i})^{2} + \left(dz + \sum x_{2i-1} dx_{2i}\right)^{2}$$

is a typical model of a homogeneous Riemannian non-Euclidean structure.

The geometry of these metrics is strongly connected to contact geometry of the Pfaff equation

$$\omega = dz + \sum x_{2i-1}dx_{2i} = 0.$$

In fact, let $\mathscr{C}(\omega)$ be the group of contact transformations relative to ω (i.e., of the transformations preserving the codimension 1 distribution $Ker(\omega)$). Then

$$\mathscr{C}(\omega) = \Im som(ds^2),$$

where $\Im som(ds^2)$ denotes the group of isometries of ds^2 .

It is natural to study the Riemannian structures adapted to a generalized (i.e., of higher codimension) contact geometry.

Recall that in codimension 1, every contact equation is equivalent to $\omega = dz + \sum x_{2i-1} dx_{2i} = 0$. This is not true anymore in codimension greater than 1, where one has an infinity of models [G₁].

In [GH] Haraguchi and the second author introduced a notion of *r-contact* system that seems to generalize in a remarkable way that of codimension 1 contact structure.

Received by the editors March 15, 1990.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C25, 53B20.

The first author is a member of the GNSAGA, CNR Italy, and of the national group "Geometria delle varietà differenziabili", 40%, M.P.I., Italy.

Definition. Let S be a Pfaff system. S is called an r-contact system if the rank of S is r, its class is maximal, and S admits an integral foliation of dimension (n-r)/(r+1) (which is the maximal dimension of such a foliation).

Theorem [H]. Let M be an (rp+r+p)-dimensional manifold with an r-contact system S. Then S is locally equivalent to the system given by

$$\omega_i = dz_i + \sum_{\alpha=1}^p y_i^{\alpha} dx_{\alpha}, \qquad i = 1, \ldots, r.$$

The simplest examples of Lie groups admitting a left-invariant r-contact system are groups that generalize the Heisenberg group H_{2p+1} , denoted by H(p, r) (see [GH]).

In this paper, we study some aspect of the Riemannian geometry of H(p, r) equipped with a natural left-invariant metric whose isometries preserve the distribution associated to the r-contact system.

I. THE GROUPS
$$H(p, r)$$

I.1. Lie algebra considerations.

Definition 1.1. A generalized Heisenberg group in the sense of Goze and Haraguchi [GH] is the product $H(p, r) = \mathcal{M}_{1p} \times \mathcal{M}_{pr} \times \mathcal{M}_{1r}$ of three Abelian topological groups of matrices of dimensions $1 \times p$, $p \times r$, and $1 \times r$ respectively, endowed with the multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + \frac{1}{2}(xy' - x'y)).$$

In [H] and [GH] Haraguchi and Goze proved the following result:

Proposition 1.2. (1) The groups H(p, r) are (rp + r + p)-dimensional, two-step nilpotent, connected, and simply connected.

- (2) The center Z of H(p,r) is r-dimensional and isomorphic with the Abelian topological group \mathcal{M}_{1r} .
- (3) A group H(p, r) admits discrete uniform subgroups. An attempt at classification can be found in [H].
 - (4) A group H(p, r) admits an r-contact system (see Introduction).

We shall use on H(p, r) the global left-invariant coframe

(1.1)
$$\begin{cases} \vartheta^{\alpha} = dx_{\alpha}, \ \vartheta^{(\alpha, i)} = dy_{i}^{\alpha}, & i = 1, \dots, r; \\ \vartheta^{i} = dz_{i} + \frac{1}{2} (y_{i}^{\alpha} dx_{\alpha} - x_{\alpha} dy_{i}^{\alpha}), & \alpha = 1, \dots, p. \end{cases}$$

The frame of left-invariant vector fields dual to the 1-forms (1.1) is

$$E_{\alpha} = \frac{\partial}{\partial x_{\alpha}} - \frac{1}{2} y_{i}^{\alpha} \frac{\partial}{\partial z_{i}}, \quad E_{(\alpha, i)} = \frac{\partial}{\partial y_{i}^{\alpha}} + \frac{1}{2} x_{\alpha} \frac{\partial}{\partial z_{i}}, \quad E_{i} = \frac{\partial}{\partial z_{i}}.$$

The Maurer-Cartan equations for the Lie algebra $\mathfrak{h}(p, r)$ are given by

$$\left\{ \begin{array}{l} d\vartheta^{\alpha} = 0 \,, \\ d\vartheta^{(\alpha,\,i)} = 0 \,, \\ d\vartheta^{i} = -\vartheta^{\alpha} \wedge \vartheta^{(\alpha,\,i)} . \end{array} \right.$$

Remarks 1.3. From the Maurer-Cartan equations it follows at once that:

- (1) the group H(p, r) is isomorphic to the Heisenberg group H_{2p+1} if and only if dim Z = r = 1;
- (2) the derived group H'(p, r) is an r-dimensional group and coincides with the center Z of H(p, r);
- (3) the Lie algebra $\mathfrak{h}(p,r)$ of H(p,r) is the direct sum of three Abelian subalgebras $\mathfrak{h}(p,r) = \mathfrak{h}_1 \oplus \mathfrak{h}_2 \oplus \mathcal{Z}$, where \mathcal{Z} is the center of $\mathfrak{h}(p,r)$ (the Lie algebra of the center Z of H(p,r)).
- I.2. A Riemannian structure for H(p, r). We shall consider on the group H(p, r) the left-invariant metric tensor g given by

(1.2)
$$g = \sum (\vartheta^{\alpha})^2 + \sum (\vartheta^{(\alpha,i)})^2 + \sum (\vartheta^i)^2.$$

Therefore, with respect to the metric g, the vector fields $\{E_A\}$ form an orthonormal frame.

To obtain the Levi-Civita connection we compute the connection 1-forms (by means of $d\vartheta^A = \vartheta^B \wedge \vartheta^A_R$)

$$\vartheta_{\alpha}^i = -\frac{1}{2}\vartheta^{(\alpha,\,i)}\,, \qquad \vartheta_{(\alpha,\,i)}^i = \frac{1}{2}\vartheta^{\alpha}\,, \qquad \vartheta_{(\alpha,\,i)}^\alpha = \frac{1}{2}\vartheta^i.$$

The curvature forms $(\Omega_R^A = d\vartheta_R^A + \vartheta_R^C \wedge \vartheta_C^A)$ are

$$\begin{split} &\Omega_{j}^{i} = \frac{1}{4}\vartheta^{(\alpha,\,j)} \wedge \vartheta^{(\alpha,\,i)}\,, & \Omega_{\beta}^{\alpha} = \frac{1}{4}\vartheta^{(\alpha,\,i)} \wedge \vartheta^{(\beta,\,i)}\,, \\ &\Omega_{(\alpha,\,j)}^{(\alpha,\,i)} = \frac{1}{4}\vartheta^{j} \wedge \vartheta^{i}\,, & \Omega_{(\beta,\,i)}^{(\alpha,\,i)} = \frac{1}{4}\vartheta^{\beta} \wedge \vartheta^{\alpha}\,, \\ &\Omega_{(\beta,\,j)}^{(\alpha,\,i)} = 0\,, & \Omega_{(\alpha,\,j)}^{i} = \frac{1}{4}\vartheta^{j} \wedge \vartheta^{(\alpha,\,i)}\,, \\ &\Omega_{(\alpha,\,i)}^{i} = \frac{1}{4}\vartheta^{i} \wedge \vartheta^{(\alpha,\,i)}\,, & \Omega_{\alpha}^{i} = \frac{1}{4}\vartheta^{i} \wedge \vartheta^{\alpha}\,, \\ &\Omega_{(\alpha,\,i)}^{\alpha} = -\frac{3}{4}\vartheta^{\alpha} \wedge \vartheta^{(\alpha,\,i)}\,, & \Omega_{(\alpha,\,i)}^{\beta} = -\frac{1}{4}\vartheta^{\beta} \wedge \vartheta^{(\alpha,\,i)}. \end{split}$$

Hence, the Ricci tensor ρ is given by

(1.3)
$$\begin{cases} \rho(E_i, E_j) = \frac{p}{2} \delta_j^i, & i, j = 1, \dots, r; \\ \rho(E_\alpha, E_\beta) = -\frac{r}{2} \delta_\beta^\alpha, & \alpha, \beta = 1, \dots, p; \\ \rho(E_{(\alpha, i)}, E_{(\beta, j)}) = -\frac{1}{2} \delta_j^i \delta_\beta^\alpha. \end{cases}$$

As a consequence [J], the Riemannian space (H(p, r), g) is not an Einstein space (i.e., $\rho_{AB} \neq K g_{AB}$, $A, B = 1, \ldots, rp + r + p$).

Finally we compute the scalar curvature, which is $\tau = \sum \rho_{AB} = -\frac{1}{2}rp$.

I.3. Geodesics and Killing vector fields on (H(p, r), g). Further, let $J: \mathcal{Z} \to \operatorname{End}(\mathfrak{h}_1 \oplus \mathfrak{h}_2)$ be the linear map defined by

$$g(J(a)X, Y) = g([X, Y], a),$$

where $a \in \mathcal{Z}$ and $X, Y \in \mathfrak{h}_1 \oplus \mathfrak{h}_2$. It is easy to see that the endomorphism J(a) satisfies the following conditions:

(1.4)
$$||J(a)X|| = ||X|| ||a||, \qquad a \in \mathcal{Z}, X \in \mathfrak{h}_1 \oplus \mathfrak{h}_2; J(a)^2 = -||a||^2 I; \qquad g(J(a)X, Y) + g(J(a)Y, X) = 0.$$

Using polarization we obtain from (1.4)

$$g(J(a)X, J(b)X) = g(a, b)||X||^2,$$

 $g(J(a)X, J(a)Y) = ||a||^2 g(X, Y)$

for all $X, Y \in \mathfrak{h}_1 \oplus \mathfrak{h}_2$ and $a, b \in \mathcal{Z}$.

The geodesics of (H(p, r), g) are the solutions of Euler-Lagrange equations for the Lagrangian

$$L = \frac{1}{2} [(\dot{x}_{\alpha})^{2} + (\dot{y}_{i}^{\alpha})^{2} + (\dot{z}_{i} + \frac{1}{2} y_{i}^{\alpha} \dot{x}_{\alpha} - \frac{1}{2} x_{\alpha} \dot{y}_{i}^{\alpha})^{2}]$$

associated to the metric (1.2). These equations are

(1.5)
$$\ddot{x}_{\alpha} = -\dot{y}_{i}^{\alpha} (\dot{z}_{i} + \frac{1}{2} y_{i}^{\alpha} \dot{x}_{\alpha} - \frac{1}{2} x_{\alpha} \dot{y}_{i}^{\alpha}),$$

$$\ddot{y}_{i}^{\alpha} = \dot{x}_{i}^{\alpha} (\dot{z}_{i} + \frac{1}{2} y_{i}^{\alpha} \dot{x}_{\alpha} - \frac{1}{2} x_{\alpha} \dot{y}_{i}^{\alpha}),$$

$$\frac{d}{dt} (\dot{z}_{i} + \frac{1}{2} y_{i}^{\alpha} \dot{x}_{\alpha} - \frac{1}{2} x_{\alpha} \dot{y}_{i}^{\alpha}) = 0.$$

The last equation implies at once $\dot{z}_i+\frac{1}{2}y_i^\alpha\dot{x}_\alpha-\frac{1}{2}x_\alpha\dot{y}_i^\alpha=\mathrm{const}$. We restrict our attention to the geodesics $\gamma(t)=(x(t)\,,\,y(t)\,,\,z(t))\,$, starting at identity with the velocity vector $\dot{\gamma}(0)=(\lambda\,,\,\mu\,,\,\nu)\,$, i.e., satisfying the initial condition $x(0)=y(0)=z(0)=0\,$, and $\dot{x}(0)=\lambda\,,\,\dot{y}(0)=\mu\,,\,\dot{z}(0)=\nu\,$. Then the last of (1.5) becomes

$$\dot{z}_i(t) + \frac{1}{2}y_i^{\alpha}(t)\dot{x}_{\alpha}(t) - \frac{1}{2}x_{\alpha}(t)\dot{y}_i^{\alpha}(t) = \nu_i \quad \text{for all } t,$$

and the first two equations in (1.5) reduce to

$$\begin{cases} \ddot{x}_{\alpha} = -\nu_i \dot{y}_i^{\alpha}, \\ \ddot{y}_i^{\alpha} = \nu_i \dot{x}_{\alpha}. \end{cases}$$

Then the equations of these geodesics are, if $\nu \neq 0$,

$$\begin{cases} x(t) = \frac{1 - \cos(\|\nu\|t)}{\|\nu\|^2} J(\nu)\mu + \frac{\lambda}{\|\nu\|} \sin(\|\nu\|t), \\ y(t) = \frac{1 - \cos(\|\nu\|t)}{\|\nu\|^2} J(\nu)\lambda - \frac{H}{\|\nu\|} \sin(\|\nu\|t) + (H + \mu)t, \\ z(t) = \frac{1 - \cos(\|\nu\|t)}{\|\nu\|} L - \frac{N}{\|\nu\|} \sin(\|\nu\|t) + (1 + K\nu - 2M\cos(|\nu|t))t, \end{cases}$$

where

$$H_{(\alpha,i)} = \frac{\mu_{(\alpha,j)}\nu_{j}\nu_{i}}{\|\nu\|^{2}}; \quad L_{i} = H_{(\alpha,i)}\lambda_{\alpha} + \mu_{(\alpha,i)}\lambda_{\alpha}; \quad M_{i} = \frac{H_{(\alpha,i)}\mu_{(\alpha,j)}\nu_{j}}{\|\nu\|^{2}};$$

$$K = \frac{\|\lambda\|^{2} + \|\mu\|^{2} + 2\|J(\nu)\mu\|^{2}}{\|\nu\|^{2}}; \quad N = M + \frac{Lt}{2} + K\nu;$$

and

$$\begin{cases} x(t) = \lambda t, \\ y(t) = \mu t, & \text{if } \nu = 0, \\ z(t) = 0. \end{cases}$$

Now recall that $J(\nu)^2 = -\|\nu\|^2 \operatorname{Id}$. Then if $H + \mu = 0$, except when $\nu = 0$, for a geodesic γ starting at the identity with initial vector (λ, μ, ν) , one obtains

the expression

(1.6)
$$\begin{split} X(t) &= \frac{(I - e^{tJ(\nu)})}{\|\nu\|^2} J(\nu)\xi \,, \\ Z(t) &= \left(t + \frac{1}{2} \frac{\|\xi\|^2}{\|\nu\|^2} \left(t - \frac{\sin\|\xi\|t}{\|\xi\|}\right)\right)\nu \,, \end{split}$$

where $X(t) = (x(t), y(t)), Z(t) = z(t), \text{ and } \xi = \lambda + \mu$.

Proposition 1.4. Let \mathfrak{I}_g be the group of isometries of (H(p, r), g).

- (i) If r > 1 then dim $\Im_g = rp + p + r + p(p-1)/2 + r(r-1)/2$.
- (ii) If r = 1 then dim $\Im_{g} = (p+1)^{2}$.

Proof. It is sufficient to compute the Killing vector fields. For r > 1 a basis of Killing vector fields on (H(p, r), g) has been found in [R]. It is

$$\begin{split} \frac{\partial}{\partial x_{\alpha}} + y_{i}^{\alpha} \frac{\partial}{\partial z_{i}} \,, & \frac{\partial}{\partial y_{i}^{\alpha}} - x_{\alpha} \frac{\partial}{\partial z_{i}} \,, & \frac{\partial}{\partial z_{i}} \,, \\ y_{i}^{\beta} \frac{\partial}{\partial y_{i}^{\alpha}} - y_{i}^{\alpha} \frac{\partial}{\partial y_{i}^{\beta}} - x_{\beta} \frac{\partial}{\partial x_{\alpha}} + x_{\alpha} \frac{\partial}{\partial x_{\beta}} \,, \\ y_{i}^{\alpha} \frac{\partial}{\partial y_{i}^{\alpha}} - y_{j}^{\alpha} \frac{\partial}{\partial y_{i}^{\alpha}} - z_{j} \frac{\partial}{\partial z_{i}} + z_{i} \frac{\partial}{\partial z_{j}} \,. \end{split}$$

For r = 1 a basis is

$$\frac{\partial}{\partial x_{i}} + y_{i} \frac{\partial}{\partial z}, \qquad \frac{\partial}{\partial y_{i}} - x_{i} \frac{\partial}{\partial z}, \qquad \frac{\partial}{\partial z},$$

$$y_{i} \frac{\partial}{\partial y_{j}} - y_{j} \frac{\partial}{\partial y_{i}} - x_{i} \frac{\partial}{\partial x_{j}} + x_{j} \frac{\partial}{\partial x_{i}},$$

$$x_{i} \frac{\partial}{\partial y_{j}} - x_{j} \frac{\partial}{\partial y_{i}} - y_{i} \frac{\partial}{\partial x_{j}} + y_{j} \frac{\partial}{\partial x_{i}}.$$

II. NATURAL REDUCTIVITY

II.1. **Definition of a Riemannian homogeneous naturally reductive space.** Let (M, g) be a connected *n*-dimensional Riemannian homogeneous manifold. Further let M = G/K, where G is a group of isometries for M and K is the isotropy subgroup at a point p of M.

We denote by \mathfrak{g} (respectively \mathfrak{k}) the Lie algebra of G (respectively K). Then the space M=G/K is called *naturally reductive* if there exists a vector subspace \mathfrak{m} of \mathfrak{g} such that

$$\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}; \qquad [\mathfrak{m}, \mathfrak{k}] \subseteq \mathfrak{m};$$

$$\langle [X, Y]_{\mathfrak{m}}, Z \rangle + \langle [X, Z]_{\mathfrak{m}}, X \rangle = 0, \quad X, Y, Z \in \mathfrak{m},$$

where \langle , \rangle denotes the inner product induced on m from g by identification of m with T_pM . Further $[,]_m$ is the projection of [,] on m.

In [TV] Tricerri and Vanhecke proved the following result:

Theorem 2.1. Let (M, g) be a connected, simply connected, and complete Riemannian manifold. Then (M, g) is a naturally reductive homogeneous space if and only if there exists a tensor field T of type (1, 2) such that

(AS)
$$\begin{cases} (i) & g(T_XY, Z) + g(Y, T_XY) = 0, \\ (ii) & (\nabla_X R)(Y, Z) = [T_X, R_{YZ}] - R_{T_XYZ} - R_{YT_XZ}, \\ (iii) & (\nabla_X T)(Y) = [T_X, T_Y] - T_{T_XY}, \end{cases}$$

and

$$T_XY + T_YX = 0$$
, $X, Y, Z \in \mathfrak{X}(M)$,

where ∇ denotes the Levi-Civita connection and R is the Riemannian curvature tensor.

II.2. Nonnatural reductivity of the (H(p, r), g) groups.

Theorem 2.2. The homogeneous manifold (H(p, r), g) is naturally reductive if and only if H(p, r) is a Heisenberg group (i.e., r = 1).

Proof. Suppose that (H(p, r), g) is a naturally reductive homogeneous space. Then there exists a tensor field T of type (1, 2) satisfying the conditions (AS) and such that

$$T_XY + T_YX = 0.$$

Let ρ denote the Ricci tensor of the manifold (H(p, r), g). By contraction, from (AS)(ii) we have

$$(\nabla_X \rho)(Y, Z) = -\rho(T_X Y, Z) - \rho(Y, T_X Z).$$

Since T_X is a skew-symmetric operator, the previous condition gives

(2.1)
$$\mathfrak{S}_{X,Y,Z}(\nabla_X \rho)(Y,Z) = 0.$$

On the other hand, from (1.3) one has

$$(\nabla_{E_i}\rho)(E_{\alpha}, E_{(\alpha, i)}) = -(p+r)/4,$$

 $(\nabla_{E_{\alpha}}\rho)(E_i, E_{(\alpha, i)}) = (p+1)/4,$
 $(\nabla_{E_{(\alpha, i)}}\rho)(E_{\alpha}, E_i) = (1-r)/4.$

Now we combine these relations with condition (2.1) and obtain r = 1. Conversely, if r = 1, the group H(p, 1) is isomorphic to the Heisenberg group H_{2p+1} . In this case we know that (H_{2p+1}, g) is a naturally reductive space for every left-invariant metric g [GP].

III. GEODESIC SYMMETRIES

Let (M, g) be a smooth *n*-dimensional Riemannian manifold. For every point m in M, consider a neighborhood U_m of m such that for every point $p \in U_m$ there exists a unit vector $\xi \in T_m M$ and a real number r such that $p = \exp_m(r\xi)$. Then the local geodesic symmetry centered at m is the diffeomorphism $\mathfrak{s}_m \colon U_m \to U_m$ defined by $\mathfrak{s}_m(\exp(r\xi)) = \exp(-r\xi)$.

Definition 3.1 [DN]. A Riemannian manifold is a *D'Atri space* if every local geodesic symmetry is volume-preserving (up to sign).

Locally symmetric manifolds are the simplest D'Atri spaces, but there are also a lot of nonsymmetric examples. In particular, all naturally reductive homogeneous Riemannian manifolds are D'Atri spaces. The converse is false. In

[K] Kaplan gives a family of examples of nonnaturally reductive D'Atri spaces. These spaces are connected and simply connected nilpotent Lie groups whose Lie algebras n split as $n = V \oplus Z$, where Z is the center of n, and satisfy

$$g(X, Y) = 0$$
 for all $X \in V$, $Y \in Z$; $\|\operatorname{ad}_{X}^{*}(Y)\| = \|X_{V}\| + \|Y_{Z}\|$,

where * denotes the adjoint relative to g and X_v (resp. Y_z) is the projection of X on V (resp. Z). These spaces are called of type H.

It is well known that if an analytic Riemannian manifold is a D'Atri space then it satisfies the Ledger conditions of odd order. Now, the first Ledger condition is equivalent to (2.1). The Riemannian manifold (H(p, r), g) is not a D'Atri space but let D be the distribution given by

$$D = \{(\lambda, \mu, \nu) \in \mathfrak{h}(p, r) | \mu_{(\alpha, j)} \nu_i \nu_i + ||\nu||^2 \mu_{(\alpha, i)} = 0\};$$

then

Theorem 3.2. Let X be a vector in $\mathfrak{h}(p, r)\backslash D$. Then the local geodesic symmetry with respect to the geodesic through e and determined by X is volume-preserving (up to sign).

Proof. It follows the same lines as Kaplan's proof.

It is sufficient to consider the geodesic symmetry $\mathfrak s$ at the identity e of H(p,r) along the geodesic γ such that $\dot{\gamma} \in \mathfrak{h}(p,r) \backslash D$. Let $\exp_H \colon \mathfrak{h}(p,r) \to H(p,r)$ denote the Lie exponential maps. Let U be a normal neighborhood of e. For X in $\exp^{-1}U$, let $F(X) \in \mathfrak{h}(p,r) \backslash D$ denote the tangent vector at e of the geodesic joining e to $\exp_H X$, and put $\Sigma = F^{-1} \circ (-F)$. Then the geodesic symmetry $\mathfrak s$ maps $\exp_H X$ to $\exp_H \Sigma X$.

The geodesic symmetry $\mathfrak s$ can also be computed easily. Indeed, if we put $F(X) = (a_1, a_2)$ from (1.6) we have

$$X = \frac{(I - e^{J(a_2)})}{\|a_2\|} J(a_2) a_1, \qquad Z = \left(1 + \frac{1}{2} \frac{\|a_1\|}{\|a_2\|^2}\right) \left(1 - \frac{\sin\|a_2\|}{\|a_2\|}\right) a_2,$$

and therefore

$$\sum (X) = -e^{-J(a_2)}X$$
, $\sum (Z) = -Z$.

By using conditions (1.4) one gets

$$||X||^2 = 2 \frac{||a_1||^2}{||a_2||^2} (1 - \cos ||a_2||),$$

$$||Z|| = \left(1 + \frac{1}{2} \frac{||a_1||^2}{||a_2||^2} \left(1 - \frac{\sin||a_2||}{||a_2||}\right)\right) ||a_2||.$$

For small ||X||, ||Z||, these equations determine $||a_1||$, $||a_2||$ uniquely, so we can write

$$\mathfrak{s}(\exp_H X + Z) = \exp_H \left(\sum (X + Z) \right) = \exp_H (-e^{\beta(\|X\|, \|Z\|)J(\|Z\|)} X - Z)$$

for some function β depending only on the length of X and Z.

Although $\mathfrak s$ is not an isometry, it acts isometrically on the spheres of $\mathfrak h_1 \oplus \mathfrak h_2$ and $\mathcal Z$ centered at 0. Therefore, it preserves the Euclidean Lebesgue measure in $\mathfrak h(p,r)$. The Riemannian volume element defines a Haar measure

on H(p, r). The Haar measure of a nilpotent group is the exponential of a Lebesgue measure. Finally the geodesic symmetry $\mathfrak s$ is volume-preserving.

IV. Lie algebras of type
$$H$$
 and Lie algebras $\mathfrak{h}(p,r)$

The groups of type H and the H(p, r) groups have some common Riemannian properties. Let us prove that they are not the same spaces.

Let H be a group of type H. Its Lie algebra \mathfrak{h} is called an algebra of type H. In $[G_2]$ Goze proved the following result:

Proposition 4.1. Let G be a connected, simply connected n-dimensional two-step nilpotent group with r-dimensional center Z. Then there exists on G a Pfaffian system S of rank r and class n.

Let $\mathfrak{h}(r)$ be an algebra of type H, where r is the dimension of its center. Then

(1) The Pfaffian system S defines on $\mathfrak{h}(r)$ an r-contact structure (an early generalization of contact structure introduced in [L]), i.e.,

$$(d\alpha)^{(n-r)/2} = 0 \mod S \ \forall \alpha \in S.$$

The Pfaffian system S defines on h(p, r) an r-contact system.

- (2) $\mathfrak{h}(r)$ is a model for a Lie algebra with an r-contact structure. $\mathfrak{h}(p, r)$ is a model for a Lie algebra with an r-contact system.
- (3) Every Lie algebra h(r), with $\dim h(r) = rp + r + p$, can be contracted onto h(p, r).
- (4) The Engel invariant c(s) for a Pfaffian system (S) satisfies the Gardner inequalities

$$\frac{n-r}{r-1} \le c(S) \le \frac{n-r}{2}.$$

For r-contact systems we have c(S) = (n-r)L/(r-1); but an r-contact structure satisfies c(S) = (n-r)/2.

From this follows the

Proposition [G₂]. The Lie algebra $\mathfrak{h}(r)$ is an $\mathfrak{h}(p,r)$ algebra if and only if it is a Heisenberg algebra.

REFERENCES

- [DN] J. E. D'Atri and H. K. Nickerson, Geodesic symmetries in spaces with special curvature tensor, J. Differential Geom. 9 (1974), 251-262.
- [G₁] M. Goze, Étude locale des systèmes de Pfaff, Publ. IRMA, Strasbourg, 1989.
- [G₂] _____, Systèmes de Pfaff associés aux algèbres de Lie de type H, Rend. Sem. Mat. Univ. Politec. Torino 46 (1988), 91-110.
- [GH] M. Goze and Y. Haraguchi, Sur les r-systèmes de contact, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), 95.
- [GP] M. Goze and P. Piu, Classification des métriques invariantes à gauche sur le groupe de Heisenberg, Rend. Circ. Mat. Palermo 39 (1990), 299-306.
- [H] Y. Haraguchi, Sur une généralisation des structurers de contact, Thèse, Mulhouse, 1981.
- [J] G. R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differential Geom. 3 (1969), 309-349.
- [K] A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35-42.

- [R] W. Reyes, A note about Killing vector fields on H(p, r), Rend. Sem. Mat. Univ. Cagliari 55 (1985), 25-29.
- [TV] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lecture Note Ser., vol 83., Cambridge Univ. Press, New York, 1983.
 - (P. Piu) DIPARTIMENTO DI MATEMATICA, VIA OSPEDALE 72, 09124 CAGLIARI, ITALY E-mail address: piu@vaxca1.LINICA.IT
- (M. Goze) Faculté des Sciences et Techniques, Université de Haute-Alsace, 4 rue des Frères Lumière, 68093 Mulhouse-Cédex, France
- (M. Goze) Institut des Recherches Mathématiques Avancés Laboratoire associé au C.N.R.S. $n^{\circ}1$, 7 rue René Descartes, F 67084 Strasbourg-Cédex, France