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IN COMPACT GELFAND PAIRS
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(Communicated by J. Marshall Ash)

Abstract. For G a compact separable Hausdorff topological group and for

1 < p < 2 the finiteness of the Hausdorff-Young sequence operator is estab-

lished for functions in Ll(G) with positive Fourier decompositions and which

are pth-power integrable in a neighborhood of the identity. A similar result is

established in the context of compact Gelfand pairs.

In the early 1950s Norbert Wiener proved but did not publish the result

that an integrable function on the circle group G = R/2nZ that is in L2(U)

for a neighborhood U of the identity element and that has nonnegative Fourier

coefficients is in L2(G) [2, pp. 242, 250; 7]. When L2 is replaced by LP in both
occurrences in the statement of the theorem, Wainger [8] (for 1 < p < 2) and
Shapiro [7] (for p e (2, oo) - 2Z+) have given counterexamples. Remarkably,

the correct formulation of a generalization of Wiener's theorem did not appear

until 1987 when Ash, Rains, and Vagi [1] proved the following (for G — R/2nZ,

G — Z, and normalized Haar measure v on G given by (27t)_1 Lebesgue

measure and Plancherel measure v on Z given by (2tt)-1 counting measure;

of course, property (iv) is no restriction in this abelian group setting):

Theorem A. If

(i) f£Ll(G,du),
(ii) f\u £ LP(U ,dv\u)   (1 < p < 2) for a neighborhood U of the identity

element e of G,

(iii) f(a) > 0  (a £ G), and
(iv) f(xy) = f(yx)  (x,y£G),

then f £ L"(G, dv) where q = p/(p - 1).

Even more striking in view of other possible proofs and the history, is the el-

egance and simplicity of their argument. Subsequently, Kawazoe and Miyazaki,

using the method in [1], proved Theorem A for compact semisimple Lie groups

G and an analogous result for spherical Fourier decompositions of A-bi-invar-
iant functions on compact symmetric spaces (see Theorem B) [6]. It is the aim
of this note to observe that by using the Peter-Weyl theory, the proofs in [6]

apply for arbitrary separable compact Hausdorff topological groups in the case
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of Theorem A and compact Gelfand pairs in the case of Theorem B. While

the gain in generality is not great, we feel, the gain in lucidity by dropping

the differential structure (the Lie hypothesis) and the algebraic structure (the

semisimple hypothesis) is worthwhile, particularly in distinguishing the nature

of these results from more subtle phenomena such as multiplier theorems where

the make-up of G is important. We emphasize that the proofs of Kawazoe and

Miyazaki need not be changed for this added generality. In what follows, all

facts without specific citations may be found in the standard references [4, 5].

Let G be a separable compact Hausdorff topological group, and let G denote

the set of equivalence classes of irreducible unitary representations of G. Con-

volution is defined by <p * y/(x) = JG y>(xy~l)y/(y) dv(y) where v is a normal-

ized bi-invariant measure on G. For q in G, let da = dimeHn and Xa = Trn

where (n, Hn) £ a. Let 0 be the measure on the power set of G given by

v({a}) = dl. Basic to the Peter-Weyl theory is that da < oo for every a £ G.

For / in L>{G) and (n,Hn) £ a£ G, let 9f(n) = JGf(x)n(x-l)dv(x).

The Hilbert-Schmidt norm of f(n) depends only on a and may be computed

by ||^"/(o:)|Ihs = Xa * f * f(e) where f(x) — f(x~l). Other aspects of the
Peter-Weyl theory are the Plancherel and Fourier inversion formulas:

(1) 11/ Wh(G) = E <U^/(")Hhs       if 6 L2(G)),
a€G

(2) f=zZdaXa*f      (f&L2(G)).

Furthermore, {XaW e G) is an orthonormal basis for the class (or central)

functions in L2(G): if L%(G) = {/ £ D>(G)\f(£,xl;-x) = f(x) for every f for

^-a.e. x} and if f(a) = d~x(f, %a) then (1) and (2) simplify to

(3) ll/II^G) - £^L/W = ll/ll2^,       (/€££(<?)),
a€G

(4) f=z2d*fWxa     (feL%(G)).
aed

By the standard Riesz-Thorin interpolation argument based on (3) and the

trivial estimate ||/||z,°°(G) < 11/IIl'(G) > we ^ave me Hausdorff-Young inequality

(5) \\f\\L9(G)<\\f\\is(g)       (feL^(G),   \<p<2, q=p/(p-\)).

Lemma. Let U be a neighborhood of e in G. There exists a continuous function

h on G with support in U such that h>0 and h(xg) = \Ghdv = 1 where %g
is the trivial representation of G. Furthermore, h may be chosen to be central.

Proof. The required function h is constructed in a manner analogous to that
of [6, Lemma 4.2] without using the differential structure assumed there. Let

If be a symmetric neighborhood of the identity such that W2 c U. Let

g = u(W)~lxw ■ Then ho = g * g is continuous with support in U and

JG ho dv = 1. Since g = g, it follows that ho is positive definite and, therefore,

ho > 0. Then h(x) = $Gho(yxy~x)dv(y) is central and shares the previously

noted properties of ho.   □
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By the complete reducibility of finite-dimensional unitary representations, we

see that for a, P, y £ G there are nonnegative integers m(a, P :y) such that

(6) X«Xp = iZm(a>P'-y)X.y       (m(a, P:y)>0).

yeG

The proof of Theorem A is now immediate. Computation using (4) yields

(h-fr(y) = d?-1   £  dadpm(a,P:y)'h(a)'f(P)       (f £ L\,(G)).
a,0€G

Since m(zg, y : y) = 1 and since the constituents of the sum above are all non-

negative, we have f(y) < (/z • /)~(y) (y £ G). Since h • f £ LP(G), Theorem

A now follows from (5).
We remark that the restriction to the class of central functions was mainly

for ease of notation. For general / we must replace Xa with an orthogonal

basis {(pa, i■ '■ 1 < i < d%} of the a-isotypical subspace of L2(G) where {<pa,i}

represents an enumeration of the matrix coefficients {x -* (n(x)Uj, uk)nK} for

an orthonormal basis {Uj} of Hn ((n, Hn) £ a). We then get a formula anal-

ogous to (6) for these functions; it is this type of formula which is necessary

for these types of theorems and which seems to be special to orthogonal de-

compositions that are group Fourier series. By Schur orthogonality, {dj <paj}

are orthonormal. Let f(a, i) - (f, tpaj) for / in L2(G). Using (1) and

Halloo = 1, we get Y,a2Zida\f(a, i)\q < IIZIIlp(G) • If in Theorem A we use

U &g{(a< 011 < ' < d2} instead of G and set i>({(a, /')}) = da , then Theorem

A remains true without hypothesis (iv).
Now suppose that X — (G, K) is a compact Gelfand pair: G is as above

and K is a closed subgroup such that the continuous A^-bi-invariant functions

C(G//K) form a commutative convolution algebra. Let Gk denote the sub-

set of G consisting of representations with a K-faeA. vector. Let v and vr

denote normalized Haar measure on G and K respectively. For a e Gk let

<pa(x) = $KXa(xk)dvK(k). Let LP(G//K) denote the space of A^-bi-invariant

functions in LP(G,dv). Now let Ox denote the measure on Gk given by

vx({a}) - da (a £ Gk); this is, in effect, the Plancherel-Godement mea-

sure on Gk (and, in particular, i>x is not the restriction of v to the power

set of Gk) ■ The correspondence a —> <pa is a bijection between Gk and

the set of positive-definite spherical functions on G. For / e Ll(G//K), let

f(a) = (f, Xa)mo) = (/. <Pa)o(G) ■ By either the Peter-Weyl theory (includ-

ing the functional equation of spherical functions) or the Bochner-Godement

theory [3], one has

(7) Wf\\h(G) = E da\f(a)\2 = \\f\\2L2(dK)       (feL2(G//K)),

(8) / = E daf(a)<pa       (f £ L2(G//K)).
aEGK

Since <pa is positive-definite and spherical, we have Halloo < <Pa(e) = 1 which
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implies that ||/||Loo(g- , < \\f\\v(G) • Then Riesz-Thorin interpolation gives

(9)    \\f\\LHdK) < WfWmo)       (feL"(G//K),  l<p<2, q=p/(p-l)).

Again crucial to a generalization of the Ash-Rains-Vagi theorem to a noncom-

mutative setting is that

(10)
tpa(x) • <pp(x) = Y dyc(a, p : y)(py(x),        c(a, p : y) > 0 (a, p £ GK).

yedK

Once again, the proof given in [6, Lemmas 3.2, 3.3] is valid in greater gener-

ality. That proof, however, is based on an argument given by Flensted-Jensen

and Koornwinder for noncompact symmetric spaces. Here it is more natural,

perhaps, to observe that since G is compact, tpa and q>p are positive-definite

and, therefore, so is their product [5, §32.9], from which (10) is immediate.

Finally we need the auxiliary function h . Shrink the set W of the previous

lemma so that KWK c U, let ho be the function in the lemma associated with

this new W, and set h(x) = JKxK ho(kixk2) duK(kx)dvK(k2). Then h > 0 on

Gk, h(xg) = 1, h is supported in U, and h £ C(G//K). Now, by direct
computation

(11)       (h-f)(y)=    Y   dadpc(a,P:y)h(a)-f(P)       (f £ L\G//K)).
a,fi€GK

Theorem B. Let (G, K) be a compact Gelfandpair. Suppose that f £ Ll(G//K)
and that f\u£Lp(U,dv\u) for some neighborhood U of e in G and 1 <p <

2. If f(y) > 0 for all y in Gk then f is in Lq(GK, dvx) where q =p/(p-l).

Proof. Since c(xG, y : y) - d~l, it follows from (10) and (11) that f(y) <

(h • f)"(y) (y S Gk) ■ The result now follows from Hausdorff-Young applied

to h • f which is in LP(G//K) by construction.   □
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