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EVERY NORMAL BAND WITH (REP) AND (REP)*
IS AN AMALGAMATION BASE

KUNITAKA SHOJI

(Communicated by Ronald M. Solomon)

Abstract. We shall prove that every normal band with the representation ex-

tension property and its dual is an amalgamation base in the class of all semi-

groups.

1. Introduction

A semigroup S is called an amalgamation base in the class of all semigroups

(simply called an amalgamation base), if for any semigroups T\, T2 containing

51 as a subsemigroup the amalgam [Fi, T2; S] is embedded into a semigroup.
A semigroup S has the representation extension property (denoted by (REP))

if for every embedding S —> T of semigroups and every right S-set X, the
canonical map: X —> X ® Tl is injective (see [2, 6, 7]). The left-right dual
of (REP) is denoted by (REP)op . Hall [6] showed that any semigroup which
is an amalgamation base always has (REP) and (REP)op. The author [9]
constructed an example of a monoid which has (REP) and (REP)op but is

not an amalgamation base. However, such an example of regular semigroups is
still unknown. In this direction, Bulman-Fleming and McDowell [4] determined

the structure of normal bands with (REP) and (REP)op and, consequently,

showed that every right (left) normal band with (REP) and (REP)op is left
(right) absolutely flat (see [3]) and hence is an amalgamation base. The purpose
of this paper is to prove the following stronger result.

Main Theorem. A normal band has both (REP) and (REP)op if and only if it
is an amalgamation base.

Our method is to appeal the criterion for an amalgamation base given in [9],
which is a modified version of Renshaw's Theorem [8, Theorem 6.11].

2. Preliminaries

Throughout this paper, let S denote a semigroup and S[ the semigroup with

the adjoined identity 1 whether S has an identity or not. Let # \5C, 3i\ de-

note Green's /- \SC-, &-] relation on a semigroup. We often use the notation
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and conventions from Clifford and Preston's book [5] for semigroup theory. Let

S-Ens (Ens-S, S-Ens-S) denote the category of all left S-sets (right S-sets,
S-bisets). Let X £ Ens-S and Y £ S-Ens. The tensor product over 5 of X

and Y is denoted by X ®SY (simply, X ® Y if there is no confusion). Also,

any element of X® Y is written in a form x®y (x £ X, y £ Y). For brevity,
X dY (X, Y £ S-Ens (Ens-S, S-Ens-S)) means that Y is a left S- (right
S-, S-bi) subset of X.

We will use the following results in the sequel.

Result 1 [9, Theorem 2.1]. A semigroup S has (REP) if and only if, for each
M £ S-Ens with M d Sl and each X £ Ens-S, the map: X -* X $ M

(x i-+ x ® 1) is infective.

Result 2 [9, Theorem 2.2]. A semigroup S is an amalgamation base if and only

if for each X £ Ens-S, Y £ S-Ens, and N e S-Ens-S with N D S1, the map:
X®Y -* X $ N®Y  (x®y->x®l®y) is injective.

We recall that a normal band satisfies the identity xyzx — xzyx (equiva-

lently, xyza = xzya).

For a normal band S, let S - \J{Sx : k £ A} be the semilattice decompo-

sition. In this case each Sx is a ./"-class of S. So by using the partial order

> on A, we define a quasi-order >j on S by s >j t (s, t £ S) if and only

if ^ > ^7. Then, for convenience, we sometimes write t <^ s. Also, s >f t

means both J"s > ^t and & ^ ^. If necessary, we extend the quasi order >^

from S to Sl. Clearly, 1 >f s in Sl for all s £ S.

Result 3 [4, Theorem 1]. A normal band S = \J{SX : k £ A} has (REP) and
(REP)op if and only if S has the following:

(i) uau = vav for any u, v, a £ S with u^v, u >/ a ;
(ii)  |iS^| < 2 for each k e A; and

(iii) if \Sx\ = 2 (k £ A) then f\Sx does not exist with respect to the natural
ordering > of S.

3. Proof of the main theorem

To prove the main theorem, it suffices to prove the "only if' part. In this

section, we let S be a normal band with (REP) and (REP)op . Then we shall

show first the preliminary lemmas.

Lemma 1. Let S be as above, and a, u, v £ S. Let X £ Ens-S, Y £ S-Ens,

x, x' £ X, and y,y'eY. Then:

(i) xu = x'v implies xuau = x'vav ; and
(ii) uy = vy' implies uauy = vavy'.

Proof, (i) If uv >f uva, then vuauv = (vu)2a(uv)2 — uv(vuauv)vu  (by

Result 3(i)) = uvavu, so that xuau = xuvau = x(uvavu) = x'v(uvavu) =

x'v(vuauv) — x'(vuav) — x'vav . If uv^uva, then xuau — xuvau = x(uvu)

= xu, and similarly x'vav = x'v . Hence (i) holds.

(ii) Similarly.   □

Lemma 2 (cf. [1, Lemma 2]). Let S, X, Y, x, and y be as above. Suppose

that x <8> y = x' <S> y' in X ®s Y. Then there exist si, ... , sn, t\, ..., t„ £ S],
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x\,..., xn£ X, and y2,... ,y„£Y such that

x = X\S\,        sxy = txyi,

xxtx=x2s2,       s2y2 = t2y3,

(1) : :

Xn-ltn-l — xnsn,       snyn = tny ,

Xrttn = X

and

Sl >f h >f ■ ■ ■ >f Si >f U <jr 5;+i <f ti+l <f-<jrSn <f t„

(or si >f ti>f ■■■ >f Si <j ti <jr sM <f ti+\ </■■■</ sn <f t„)

where >j is the quasi order of S1.

According to [I], a set of equations (1) is called a scheme of length n over X

and Y joining (x, y) to (x', y'). If a scheme satisfies (2), then we say that it

is V-formed.

Proof. By [1, Lemma 2], there exists a scheme (1) joining (x, y) to (jc' , y').
By appropriate substitution of s,, r,, we will show that (2) is satisfied. Let us
assume in (1) that

s(£S   (1 < i < n),        ti£S   (I <i<n).

For if st = 1 (1 < i < n), then st-M-i = ^-l^+i, *i-i*i-i*i = x*+i*i+i;
hence, the scheme gets shorter; similarly, if t,■ = 1   (1 < i < n).

Next, if /,, Si+i are incomparable with respect to >^ , then one can insert

new equations into the equations (1) as follows:

Xjtj = Xj+i(si+itiSi+i),        (si+itiSi+i)yi+i = (Si+ltjSi+l)yi+i,

*i+1 (Si+1 tjSi+1) = xi+iSj+i,       Si+iyi+i - ti+1yi+2.

(If st, ti are incomparable with respect to >j , then

styt = (tiSjtj)yi+i,       Xi(tiSjti) = Xi(tiSjtj),        (tjSitj)yi+i = r,y,+i.)

By repeating such insertions, we may assume any adjacent two elements of the

sequence Si, ti, ... , s„, tn are ^-comparable. If scheme (1) is not F-formed,

then several of the following four cases may occur. In each case, we will convert

a part of the scheme into a F-formed scheme as follows.

Case 1. 5, <jr ti<?■ • ■ J'tj-xJ'sj >f tj . Then, by assumption, all s,, U, ...,
tj-i, Sj, tj are in S. Set

tk ~ tksitk , S)c+i = Sk+\SiSk+i ,

tk = tktjtk , Sk+l = Sk+{tjSk+i ,

t*k = tkSjSjtjtk,       s*k+i = sk+lSiSjtjSk+i       (i<k<j-l).

By Result 3(i), we have

t'k=s',,    t'l = s\',    t*k=sj       (i<k<j, i<l<j).

From (1) we get

m{ = s'jyj = s'jSjyj = s'jSjtjSjyj) = s*yj,

XjS* = Xit*, t*yj( - t*yi+i = titjSiUy^x = titjtiyi+1) = t'/yi+l,

Xit'l = Xjs'J ,       s'jyi+x ( = s'jyj = Sjyj) = tjyj+i,
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and Si >f s*ft* </ t'( </ tj. This is a required scheme.
Case 2. ti <j Sj+i^f ■ ■ ■J'tj-ifsj >^ tj . Then by assumption, all tj,

Sj+i, ... , tj_x,Sj, tj are in S.

Set

s'k - SktiSk , t'k = tktitk ,

Sk = SktjSk , tk = tktjtk ,

s*k = sktiSjtjSk,       t*k = tktiSjtjtk      (i+l<k<j).

By Result 3(i), we have

s'k = t',,    s'k' = t'/,    s*k = tj   (i+l<k<j,i+l<l<j).

From (1) we get

*,*/(= xi+ls'i+l) = xjs'j ,       s'jyi+i(= s^yj = s'jSjyj = s'jSjtjSjyj) = s]yj,

XjSj(= Xi+iSi+i = Xj+iSj+itiSjtjSi+i = Xi+\Si+iSjtjSj+i = Xi+\Si+\tjSi+\) = XjSj ,

s"yj = tjyj+i

and ti >jr s'j >jr s* <f s'j <f tj. We are done.

Case 3. j, </ titf • --^tj-] >/ Sj . By reversely ordering the equations (1),
it is just Case 2.

Case 4. f, <j Si+iJ' • ■■</tj-\ >j Sj . In a way similar to the above, this is

Case 1.
Notice that the subband of Sl generated by all the s;, ti in (1) is finite

(of course, it has finitely many ^-classes) and it contains all the elements

s't, t\, s'l, t", s\, t* occurring in the substitutions above. Thus by finitely re-
peating those substitutions of parts of the scheme by F-formed one, scheme
(1) becomes F-formed.   □

Lemma 3. Let S, X, Y be as above and x, x' £ XS and y, y' £ SY.

(i) If x <g> y = x' ® y' in X ®s Y, then xa <g> y = x'a <g> y' in X ®SY for
all a£S.

(ii) If xs ® y - x' ® y', x ®y = x't ®y' in X ®s Y for some s, t e S,
then x ® y = x' ® y'.

Proof, (i) By Lemma 2, there exist X\, ... , xn£ X, y2, ... , y„ £Y, si, ... ,
s„ , and 11, ... , t„ £ Sl such that

x = xisi, Siy = tiy2,

Xiti=x2s2,        s2y2 = t2y3,

(3) : :

Xfi—itn—i = xns„,       snyn = tny ,

Xntn = X .

Here we may assume that all Sj, tj belong to S. For, if $i = 1, then si, ti can

be replaced by s, sti, respectively, where j is any element of S with xs = x .

Also if t„ = 1, then t„ can be also replaced by some element of S. Further if

Si =1 (2 < i), then as seen in the proof of Lemma 2 the scheme gets shorter;

similarly, if t,; = 1   (!</<«).
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Note next that efy - efey (efy' = efey') for all e, f £ S. For, by
assumption, we can write y = hy (h £ S) and by normality of S, efy =

ef(hy) = (eefh)y = (efeh)y = efey . (Similarly, efy' = efey'.)
Thus by using Lemma 1 and the note above, we get

xa = xi(s{a),        (sia)y(= (siasi)y) = (t2at2)y2

((s„as„)yn(= (t„at„)y') = (t„a)y',       x„(t„a) = x'a).

So, by Lemma 1, we get a scheme joining (xa, y) to (x'a, y') by replacing

Si, ti by stasi, ttati respectively. Then (i) holds.
(ii) This is an immediate consequence of (i).   □

Remarks. 1. Lemma 3(i) is false without assumption that x, x' £ XS and

y, y' £ SY. For instance, let S be a left zero semigroup. Then 1 ® a = a ® a
in Sl ® S, but b®a^ aba ® a.

2. Given a scheme (3) of length n joining (x,y) to (x' ,y') (not necessarily,
x, x' £ XS), it is shown, in the proofs of Lemmas 2 and 3, that it is possible

to assume all the s,, t, except possibly «i, t„ belong to S and that Si is in S

if x £ XS (tn is in S if x' £ XS). Under these assumptions, if x £ X - XS

and y £ Y - SY, then Si — t\ = 1 and n - 1; that is, x = x' and y - y'.
Otherwise, one can find x" £ XS and y" £ SY such that x ® y = x" ® y".

The proof of the "only if" part of the main theorem. We will appeal to Result

2. Let S be a normal band with (REP) and (REP)op. Suppose

(4) x® (1 ®y) = x'® (1 ®/)   in X® (W ® Y)

where x, x' £ X, y,y' e F, S1 C W, X £ Ens-S, W £ S-Ens-S, and
Y £ S-Ens. Then we shall show that

(5) x®y = x'®y'   inX®Y.

By the remarks after Lemma 3, we may assume that x, x' £ XS and y, y' £

SY.
Here we may assume that W has the following property:

aws £ S, a3£b, and a>j s (a,b, s £ S, w £ W)

(6) implies

bws = bsbws £ S.

Proof of (6). Let £ be the congruence on W generated by the relation (bws,

bsbws) and £|,s the restriction to S of £,. Then we shall show that £\$ is an

identity relation on S. For our purpose, it suffices to show that

(7) ubwsv = u'bwsv' (u, u', v , v' £ S)   implies   ubsbwsv = u'bsbwsv'.

If a = b, then, by assumption, bws £ S and so, by normality of S, bws =

b2wsi = b(sbws)s. Hence (7) holds. Then we can assume that a ^ b. By
Result 3(ii), ^a-^a- If u,u' >^ b , then ub — b, u'b — b and, hence,

(ub)sbwsv - bsbwsv — bs(ub)wsv - bs(u'bwsv') — u'bsbwv'

as required. If u ~£_j b (or u' ~$_f b), then, by Result 3(i),

bub = b(bub)b = a(bub)a — aua
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so that, by assumption,

ubwsv = (ubub)wsv — u(aua)wsv £ S.

Then, by normality of S,

ubwsv = ub(bub)wsv = ub(aua)w(ssv) = ubs(aua)wsv

= ubs(bub)wsv = ubsbwsv.

Then u'bwsv' £ S. Similarly, u'bwsv' - u'bsbwsv'. In any case, (7) holds.

Therefore, £|s is an identity relation on S. So S can be naturally embedded

in W/l; . Hence bws = bsbws = (asa)ws £ S, which proves (6).

Hereafter, by Result 1, we may identify y £ Y with 1 ® y e W ®Y.
By Lemma 2, we obtain a F-formed scheme of length n over X and W® Y

joining (x,\®y) to (x', 1 ®y') as follows:

x = xxax, ax(\®y) = bx(w2®y2),

xxbx=x2a2,        a2(w2®y2) = b2(wi®yi),

(8) : :

xn-ib„-i =x„an,       an(wn®y„) = b„(l®y'),

Xn"n = X

where x, £ X, Wi £ W, yt £ Y, and a,, bi £ S1 .
We are going to prove (5) by induction on the length n of scheme (8).

By the remarks after Lemma 3, we may assume, in (8),

all the at, bi belong to S.

If n — 1, then, obviously, x ® y = x' ® y'. Assuming that (4) implies (5)

when n < m , we proceed to the case where n = m + 1. First we may assume

(9) ax & bx M a2   and   bx^a2.

Proof of (9). If bx >j ax, then we obtain the ascending chain

fli <f bi <f a2 <f ■ • ■ <f a„ <f bn

since scheme (8) is F-formed. In this case, regarding scheme (8) as joining

(x', y') to (x, y), we can assume that a\ >f b\.
Next, if ai >/ bi, then «i(l ®y) = bi(w2 ®y2) = (aibiai)(\ ®y). Conse-

quently,

x = xxai, ai(\®y) = (aibxai)(\®y),

xx(axbiai) = x(axbiax),

so that

x®y = x(a\bxax) ®y,

while

x(aibxax) = xx(aibiax),        (axbxai)(\ ®y) = b2(w2 ®y2).

Therefore, we may assume that aXafbx.



NORMAL BAND WITH  (REP) AND (REP)0" 397

If bi >f ai, then

x-x\a\,       ax(l®y)(=bx(w2®y2)) = bxax(l®y),

xx(biax)( = (x2a2)(bxax) = (xxbxa2)(bxax)

= xx(axa2ax)ax    [by Result 3(i)]) = x(axa2ax).

On the other hand,

x(axa2ax) = xx(axa2ax),       (axa2ax)(\ ®y) = (bxa2bx)(w2 ®y2),

xx(bxa2bx) = x2a2.

Hence, we may assume that a2 >f bx.

If a2 >f bx, then, since scheme (8) is F-formed,

ax <j bx <f a2 <j ■ ■ ■ <j an <f bn.

In this case, as shown above, we can reduce to the case that bnf anf bn~x.

By renumbering reversely the equations (8), we may assume that ax ̂  bx / a2 .

If fax = -2£,»then we can replace w2®y2 by \®y in (8) and scheme (8)

gets shorter. On the other hand, if fax = «^fll and bx = a2, then x - xax -

xx(bxax) = (x2a2)ax = x2ax. So we can remove xx, w2®y2 from scheme (8).
Hence (9) may be assumed.

Case 1. There exists some 2 < i < n such that all ak, bk (1 < k < i) belong

to ^, but ai >j ai+x. Since ^, = MaK, by multiplying the equations (8) on

the left by ax from the right, we get

x — xax = xxax = x2ax = ■■■ = xiax = Xi+Xat+Xax,

so that x = Xi(axai+Xax), while, by Result 3(i), akai+xak - bkai+xbk for all
1 < k < i. So from (8) we obtain a scheme of length < m joining (x, \®y)

to (x', l®y') as follows:

x = Xi(axai+Xax),       (axai+xax)(l ®y) = (biai+xbi)(wi+i ®yM),

Xi(biai+Xbi) = xi+xai+x, ai+x(wi+l ®yi+x) = bi+x(Wi+2®yi+2),

xn-Xbn-X =x„a„, a„(wn®yn) = b„(\ ®y'),

XnOn = X .

By the inductive assumption, x ® y = x' ® y'.

Case 2. There exists some 1 < i < n such that all ak, bk (1 < k < i) belong

to fax but axfai+x >f bi+x. By applying Lemma 1 (ii) to (8) we have

(axbi+xax)y(= (bxbi+xbi)(w2 ®y2) = ■■■ = (bibi+xbi)(wi+x ®yi+x)

= (ai+xbi+xai+x)(Wi+x ®yi+x) = ai+i(wi+x ®yi+x)) = bi+x(wi+2®yi+2).

Also, x(axbi+xai) — Xi+X(axbi+Xax). Then there exists a scheme of length < n

over X and W ®Y joining (x(axbi+xax), y) to (x', y'). Consequently, it fol-

lows from the inductive assumption that x(axbi+xax) ®y = x'®y'. We have to

prove that x®y = x®(axbi+xax)y. Since ai+x(Wi+x®yi+x) = ax(axbi+xaxyi+x),
x,+iai = x, this case can be reduced to the case for all a}■■, bj (1 < j < n). So

we proceed to the next case.
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Case 3. All a, ,6,   (1 < / < n) belong to 9?ax . Then

(10) x' = x = xs   for all 5 £ 9?a,.

From Lemma 2, it follows that for each 1 < i < n, there exists a F-formed

scheme of length «, over W and Y joining (aiWt■■, y,) to (biWi+x, yi+x) as
follows:

ajWj = wnsn, siXyi = taya,

wntii = wi2si2, si2yi2 = ti2yn,

(U) ; ;

wi rij-lti B,-l = winjSinj > 5;'n,ym, = ^/n,Fi+1 >

Wimtim = bjWi+i

where wt(wx = 1, iu„+1 = 1), wiX,... ,wirii £ X, yt(yx = y, yn+x = y'),

yi2, ■■■ , Yin € Y, siX, ... , Sim > and til,---, tin, e Sl.

Set s'tj = jvaify and rj7 = r/yair,-;.
Subcase 3.1. There exist some of all the sL, t'^ , which are under ax with

respect to >j . Then we shall show that there exist u, v £ S such that ax> u,

ax > v and x ® y = xu ® y, x' ®y = x'v ® y'. Suppose first that all s'pq, t'pq

(2<i, 1 < p < i - 1, 1 < q < rip), s'iq, tiq (\<q<r-\) belong to ^a,,

but ax >f s'ir.

Set u — axs'irax. Since eu = u for all e £ S with e >f ax, it follows from

(11) that

apwpu = bpWp+x u   (1 < p < i - 1),        ajWjU = io,>_i u.

By applying (6) to the equations just above, we obtain u = wir-Xu, so that

u = Wir-Xsir-Xu = wirs'rlu. By Result 3(iii), u is not the greatest lower bound

of 91 ax, since by Result 3(ii) and (9) \92ax \ = 2. So there exists u' e S such

that u' is a lower bound of 9?ax but w' ^ uu'. In the same way as above,

«' = u'ax — wirs'iru'. Hence u' = uu', which is a contradiction. Thus it

must hold that all s'M, t'pq (2 < i, 1 < p < i - 1, 1 < q < np), s'iq, t'iq

(1 < Q < r - 1), and 5,'r belong to 92ai , but «i >^ t'ir.

Then, by Result 3(i), akt\jak = bkt'ijbk  (1 < k < n), say a*. From equations

(11) on the right, we have a*y - a*yk+x (1 < k < i), which, together with
(10), yields x ® y = x ® a*y. By the same way as above, we can find b* £ S

satisfying that bn > b* and x' ® y' = x' ® b*y', as required.

Moreover, by multiplying the right side of (8) by a*, b*, respectively that

a*y = a*y' and b*y = b*y'. Hence, x®y = x' ® a*y' and x' ®y' - x® b*y .

By Lemma 3(ii), we conclude that x ® y = x' ® y'.

Subcase 3.2. All the s-7, t'^ belong to 92a^ . By applying Lemma 1 to (11),

we obtain schemes joining (x,y,) to (jc,y,+i) as follows:

x = xs'n , s'iXyi = t'iXyi2,

xt'iX= xs'i2, s'i2yi2 = t'i2yi3,

(12) ; ;

xtj „._i = xsin.,       sin.yi„. = tin.yj+x,

xt'ini = x.
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From (10) and (12), it follows that x ®y - x' ® y'. This completes the proof

of the main theorem.
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