BOUNDARY BEHAVIOR OF HOLOMORPHIC FUNCTIONS OF $A_{a,s}^p$

HU ZHANGJIAN

(Communicated by Clifford J. Earle, Jr.)

ABSTRACT. In this paper we prove that the Sobolov spaces $A_{q,s}^p(D)$ on bounded strongly pseudoconvex domains D are continuously contained in BMOA (∂D) for $0 , <math>q \ge 0$, and s = (n+q)/p.

1. Introduction

Let D be a bounded strongly pseudoconvex domain in C^n with smooth boundary ∂D . Let $\delta(z)$ be the distance from z to ∂D , and let $dV_q = C_q \delta(z)^{q-1} dV$ for each q > 0, where dV is the $C^n = R^{2n}$ volume element and C_q is chosen so that dV_q is a probability measure on D. As $q \to 0^+$, these measures (as measures on \overline{D}) converge to the normalized surface measure on ∂D , which is denoted by dV_0 . We use L_q^p for $L^p(dV_q)$ and $\|\cdot\|_{p,q}$ for the L_q^p norm. The space of all holomorphic functions on D satisfying

$$||f||_{p,q,s} = \left(\sum_{|\alpha| \le s} \left\| \frac{\partial^{\alpha} f}{\partial z^{\alpha}} \right\|_{p,q}^{p} \right)^{1/p} < +\infty$$

is denoted by $A_{q,s}^p$ for $0 , <math>q \ge 0$, and s a nonnegative integer. For noninteger values of s > 0, $A_{q,s}^p$ and $\|\cdot\|_{p,q,s}$ can be defined by interpolation; see [1] for the details. Let BMOA be the space of all holomorphic functions in D whose boundary values are in BMO(∂D) (see [9, pp. 235, 253]). The BMO norm is denoted by $\|\cdot\|_{\text{BMO}}$ (strictly speaking, $\|\cdot\|_{\text{BMO}}$ is a norm on functions modulo constants). Let $\mathscr B$ be the space of all Bloch functions defined in [6] and $\mathscr B_0$ be the little Bloch space of all holomorphic functions satisfying

(1)
$$\sup_{\substack{\xi \in T_z(D) \\ |\mathcal{F}|=1}} |f_*(z) \cdot \xi| / F_K^D(z, \xi) \to 0 \quad \text{as } \delta(z) \to 0,$$

where f_* and F_K^D are as defined in [6]. For $\alpha > 0$ let Λ_{α} be the Lipschitz space of order α [4].

Received by the editors November 26, 1990 and, in revised form, December 13, 1991. 1991 Mathematics Subject Classification. Primary 32A40.

In [3] Graham proved that $Rf(z) \in A^p_{0,0}(B)$ implies $f \in A^{np/(n-p)}_{0,0}(B)$ if $0 and <math>f \in \Lambda_{1-n/p}$ if p > n, where $B = \{z \in C^n : |z| < 1\}$ and $Rf(z) = \sum_{j=1}^n z_j \partial f/\partial z_j$. Employing analysis on the Heisenberg group, Krantz also obtained these results, and, furthermore, he proved that $Rf(z) \in A^n_{0,0}(B)$ implies $f \in BMOA$; see [5]. Later on, Beatrous and Burbea proved that, for $0 and <math>q \ge 0$, $A^p_{q,s}(B) \subset A^{p(n+q)/((n+q)-ps)}_{q,0}(B)$ if $0 \le s < (n+q)/p$, $A^p_{q,s} \subset BOMA \cap \mathcal{B}_0$ if s = (n+q)/p, and $A^p_{q,s} \subset \Lambda_{s-(n+q)/p}$ if s > (n+q)/p (see [2, Theorem 2.7]). In [1] Beatrous proved a theorem which implies that on strongly pseudoconvex domains the inclusion $A^p_{q,s} \subset A^{p(n+q)/((n+q)-ps)}_{q,0}$ is continuous if s < (n+q)/p. In this paper we prove

Theorem 1. Let D be a bounded strongly pseudoconvex domain with smooth boundary, and let $0 , <math>q \ge 0$. If s = (n+q)/p then $A_{q,s}^p \subset BMOA \cap \mathcal{B}_0$ and the inclusion is continuous with respect to the BMO norm in BMO $\cap \mathcal{B}_0$.

2. Proof of the theorem

If $f \in A_{q,s}^p$, we take three numbers $p_2 > \max(n, p)$, $q_2 \ge 0$, and $s_2 \ge 0$ such that

(2)
$$(n+q_2)/p_2 - (n+q)/p = s_2 - s.$$

Using Theorem 1.5(iii) of [1] for M=D we have $f\in A^{p_2}_{q_2,s_2}$ and $\|f\|_{p_2,q_2,s_2}\leq C\|f\|_{p,q,s}$. Observe that $s_2=(n+q_2)/p_2$ since s=(n+q)/p. Applying Theorem 1.2 in [1] we obtain $A^{p_2}_{q_2,s_2}=A^{p_2}_{p_2-n,1}$, and the norms are equivalent. Therefore, it is sufficient to prove that $f\in A^p_{p-n,1}$ (p>n) implies $f\in BMOA\cap \mathscr{B}_0$ and $\|f\|_{BMO}\leq C\|f\|_{p,p-n,1}$.

For $z \in D$ near ∂D , let $\Delta(z)$ be a polydisc centered at z with radius $c_1\delta(z)$ in the complex normal direction and radius $c_1\delta(z)^{1/2}$ in n-1 orthogonal complex tangential directions $(c_1$ is fixed and small enough). Since D has smooth boundary, there exists a constant c_2 such that

$$\delta(z)/c_2 \le \delta(\xi) \le c_2\delta(z)$$
 for $\xi \in \Delta(z)$.

From the plurisubharmonicity of $|\nabla f|^p$ we have

$$\begin{split} |\nabla f|^p(z)\delta(z)^p &\leq C\delta(z)^{p-(n+1)} \int_{\Delta(z)} |\nabla f|^p(\xi) \, dV(\xi) \\ &\leq C \int_{\Delta(z)} |\nabla f|^p(\xi)\delta(\xi)^{p-(n+1)} \, dV(\xi) \\ &\leq C \int_{\delta(\xi) \leq c_2 \delta(z)} |\nabla f|^p(\xi) \, dV_{p-n}(\xi) \to 0 \quad \text{as } \delta(z) \to 0. \end{split}$$

This means that for any $\varepsilon > 0$ there exists $\delta_0 > 0$ such that

(3)
$$|\nabla f|(z)\delta(z) < \varepsilon \text{ for } \delta(z) < \delta_0.$$

By the argument of Lemma 4.8 in [8], we can prove that, for any complex

tangential direction μ at z, the complex tangential derivative $\nabla_{\mu} f$ satisfies

(4)
$$|\nabla_{\mu} f|(z) \delta(z)^{1/2} \le C \varepsilon \text{ for } \delta(z) \le \delta_0/4.$$

By a proof similar to that on p. 152 of [6] we know that (3) and (4) imply (1). Hence, $f \in \mathcal{B}_0$.

Now we are going to prove $f \in BMOA$. For $f \in A_{p-n,1}^p$, using Corollary 2.3 in [1] we have

$$f(z) = \int_{D} [f(\zeta)K_0(z, \zeta) + \mathscr{D}f(\zeta)K_1(z, \zeta)] dV_{p-n+1}(\zeta),$$

where $\mathscr{D}f=\langle df,\partial\rho\rangle$ (see [1, p. 93]) and K_0 and K_1 are kernels of type p. Let $D_{\varepsilon}=\{z\in D:\rho(z)\leq -\varepsilon\}$ and $d\sigma_{\varepsilon}$ be the Hausdorff measure of (2n-1) dimensions on ∂D_{ε} , where $\rho(z)$ is the defining function of D and $\varepsilon>0$. From Theorem 2.4 in [1] we obtain

$$\begin{split} &\int_{\partial D\varepsilon} |f(z)| \, d\sigma_{\varepsilon}(z) \\ &\leq \int_{D} (|f(\zeta)| + |\mathcal{D}f(\zeta)|) \, dV_{p-n+1}(\zeta) \int_{\partial D\varepsilon} (|K_{0}(z,\zeta)| + |K_{1}(z,\zeta)|) \, d\sigma_{\varepsilon}(z) \\ &\leq C \int_{D} (|f(\zeta)| + |\mathcal{D}f(\zeta)|) \, \delta(\zeta)^{n-p} \, dV_{p-n+1}(\zeta) \\ &= C \int_{D} (|f(\zeta)| + |\mathcal{D}f(\zeta)|) \, dV(\zeta) \\ &\leq C \bigg\{ \int_{D} (|f|^{p}(\zeta) + |\mathcal{D}f(\zeta)|^{p}) \delta(\zeta)^{p-n-1} \, dV(\zeta) \bigg\}^{1/p} \\ &\qquad \times \left\{ \int_{D} \delta(\zeta)^{p'(n/p-1/p')} \, dV(\zeta) \right\}^{1/p'} \\ &\leq C \|f\|_{p,p-n,1} \bigg\{ \int_{D} \delta(\zeta)^{p'n/p-1} \, dV(\zeta) \bigg\}^{1/p'} \leq C \|f\|_{p,p-n,1} \,, \end{split}$$

where 1/p + 1/p' = 1. Hence, f is in the Hardy space $A_{0,0}^1 = H^1$. Then we know from [7] that

$$\int_{\partial D} |f(\zeta + \lambda \nu(\zeta)) - f(\zeta)| \, dV_0(\zeta) \to 0 \quad \text{as } \lambda \to 0^+,$$

where $\nu(\zeta)$ is the inward unit normal of ∂D and $f(\zeta)$ is the admissible limit of f at $\zeta \in \partial D$. Therefore, $f(\zeta)$ must be of analytic type (for the definition see [9]). Additionally, we claim that $(|f(z)| + |\nabla f(z)|) dV(z)$ is a Carleson measure on D. In fact, for any Carleson window $\widetilde{B}_t(\zeta_0)$ as in [9],

$$\widetilde{B}_t(\zeta_0) = \{B_t(\zeta_0) + \lambda \nu(\zeta_0) : \lambda \in (0, t)\},\,$$

where $B_t(\zeta_0)$ is the nonisotropic ball of ∂D at ζ_0 with radius t, we have

$$\int_{\widetilde{B}_{t}(\zeta_{0})} (|f(z)| + |\nabla f(z)|) dV(z)
\leq \left\{ \int_{\widetilde{B}_{t}(\zeta_{0})} (|f(z)| + |\nabla f(z)|)^{p} \delta(z)^{p-(n+1)} dV(z) \right\}^{1/p}
\times \left\{ \int_{\widetilde{B}_{t}(\zeta_{0})} \delta(z)^{p((n+1)/p-1)/(p-1)} dV(z) \right\}^{(p-1)/p}
\leq C \|f\|_{p,p-n,1} \left\{ \int_{\widetilde{B}_{t}(\zeta_{0})} \delta(z)^{(n+1-p)/(p-1)} dV(z) \right\}^{(p-1)/p}
\leq C \|f\|_{p,p-n,1} \left\{ t^{n} \int_{0}^{t} t^{(n+1-p)/(p-1)} dt \right\}^{(p-1)/p}
= C \|f\|_{p,p-n,1} (t^{n} \cdot t^{n/(p-1)})^{(p-1)/p} = C \|f\|_{p,p-n,1} t^{n}.$$

Therefore, we know from Theorem 2.1.3(ii) of [9] that $f \in BMOA$. From the proof on p. 253 of [9] and (5), we obtain

(6)
$$||f||_{BMO} \le C||f||_{p, p-p, 1}.$$

This completes the proof.

Remark 1. As mentioned by Varopoulos in [9], Theorem 2.1.3(ii) of [9] is still valid for strongly pseudoconvex domains, but for simplicity's sake it was stated there only in the case $D = \{z \in C^n : |z| < 1\}$.

Remark 2. We can also prove

$$A_{q,s}^p \subset \Lambda_{s-(n+q)/p}$$
 for $s > (n+q)/p$.

In order to prove this assertion, we take k>s a fixed integer. From [1] we have $A^p_{q+s}=A^p_{q+p(k-s),k}$. For $f\in A^p_{q+p(k-s),k}$ and $|\alpha|\leq k$

$$\left| \frac{\partial^{\alpha} f}{\partial z^{\alpha}}(z) \right|^{p} \leq C \delta(z)^{-(n+1)-(q+p(k-s)-1)} \int_{\Delta(z)} \left| \frac{\partial^{\alpha} f}{\partial z^{\alpha}}(\zeta) \right|^{p} \delta(\zeta)^{q+p(k-s)-1} dV(\zeta)$$

$$\leq C \|f\|_{p,q+p(k-s),k}^{p} \cdot \delta(z)^{p((s-(n+q)/p)-k)}.$$

Hence,

(7)
$$\max_{|\alpha| \le k} \left| \frac{\partial^{\alpha} f}{\partial z^{\alpha}}(z) \right| \le C \|f\|_{p, q+p(k-s), k} \cdot \delta(z)^{(s-(n+q)/p)-k}.$$

Applying Theorem 8.8.6 of [4], we have $f \in \Lambda_{s-(n+q)/p}$.

REFERENCES

- 1. F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116.
- 2. J. Burbea, Boundary behavior of holomorphic functions in the ball, Pacific J. Math. 127 (1987), 1-17.

- 3. I. Graham, The radial derivatives, fractional integrals, and the comparative growth of holomorphic functions on the unit ball of C^n , Recent Developments in S. C. V., Ann. of Math. Stud., no. 100, Princeton Univ. Press, Princeton, NJ, 1981, pp. 171-178.
- 4. S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982.
- 5. _____, Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables, Math. Ann. 244 (1979), 243-262.
- S. G. Krantz and D. Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-163.
- 7. E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton Univ. Press, Princeton, NJ, 1972.
- 8. R. M. Timoney, Bloch functions in several complex variables. I, Bull. London Math. Soc. 12 (1980), 241-267.
- 9. N. Th. Varopoulos, BMO functions and the δ -equation, Pacific J. Math. 71 (1977), 221–273.

DEPARTMENT OF MATHEMATICS, HUZHOU TEACHERS COLLEGE, HUZHOU, ZHEJIANG 313000, PEOPLE'S REPUBLIC OF CHINA