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BOUNDARY BEHAVIOR
OF HOLOMORPHIC FUNCTIONS OF 4}
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ABSTRACT. In this paper we prove that the Sobolov spaces AZ ,s(D) onbounded
strongly pseudoconvex domains D are continuously contained in BMOA(dD)
for 0<p<oo, g>0,and s=(n+q)/p.

1. INTRODUCTION

Let D be a bounded strongly pseudoconvex domain in C” with smooth
boundary dD. Let d(z) be the distance from z to 8D, and let dV, =
C,0(z)9-'dV for each g > 0, where dV isthe C" = R*" volume element and
C, is chosen so that dV; is a probability measure on D. As g — 0%, these
measures (as measures on D) converge to the normalized surface measure on
dD ,which is denoted by dV,. We use L) for L?(dV,) and | - ||, 4 for the
L% norm. The space of all holomorphic functions on D satisfying

1/p
p
< 400
p.q

is denoted by 4§ ; for 0 < p < o, ¢ >0, and s a nonnegative integer. For
noninteger values of s >0, 45 ; and ||-||, 4,5 can be defined by interpolation;
see [1] for the details. Let BMOA be the space of all holomorphic functions in
D whose boundary values are in BMO(8D) (see [9, pp. 235, 253]). The BMO
norm is denoted by ||« |lsmo (strictly speaking, ||-|pmo is @ norm on functions
modulo constants). Let % be the space of all Bloch functions defined in [6]
and %, be the little Bloch space of all holomorphic functions satisfying

(1) sup |fi(2)-¢I/FR(z,¢) — 0 asd(z) -0,
i

where f, and F? are as defined in [6]. For a > 0 let A, be the Lipschitz
space of order a [4].

o°f

a

1 1p.q.s = (Z

lal<s
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In [3] Graham proved that Rf(z) € Af ,(B) implies f € Agf’(/)(”_”)(B) if
O<p<nand feA_y,if p>n,where B={ze C":|z|] <1} and
Rf(z) = Z;;, z;0 f/9z; . Employing analysis on the Heisenberg group, Krantz
also obtained these results, and, furthermore, he proved that Rf(z) € 43 ,(B)
implies f € BMOA ; see [5]. Later on, Beatrous and Burbea proved that, for
0<p<ooand g0, 45 (B) c AN D=P)(p) if 0 <5< (n+4q)/p,
A5 s CBOMANG, if s=(n+q)/p,and Af s C A_(niq)p if s> (n+4q)/p
(see [2, Theorem 2.7]). In [1] Beatrous proved a theorem which implies that
on strongly pseudoconvex domains the inclusion 45 ; C Af;(,'g“q)/ ((n+0)=ps) jq
continuous if s < (n+ ¢g)/p. In this paper we prove

Theorem 1. Let D be a bounded strongly pseudoconvex domain with smooth
boundary, andlet 0 <p < oo, ¢ >0. If s = (n+q)/p then 4 ; C BMOAN%,
and the inclusion is continuous with respect to the BMO norm in BMO N %, .

2. PROOF OF THE THEOREM

If f € A}, we take three numbers p, > max(n, p), g2 >0, and 5, > 0
such that

(2) (n+a)/p2—(n+q)/p=5,-5.
Using Theorem 1.5(iii) of [1] for M = D we have f € 4% ;, and || flip,,q,,5, <

C\fllp.q,s- Observe that s, = (n + g2)/p2 since s = (n+ q)/p. Applying
Theorem 1.2 in [1] we obtain AZ ;, = 4;?_, |, and the norms are equivalent.
Therefore, it is sufficient to prove that f € Ag (p > n) implies f €
BMOAN% and ||f|lemo < Cl|fllp,p-n,1 -

For z € D near 8D, let A(z) be a polydisc centered at z with radius ¢,6(z)
in the complex normal direction and radius ¢;6(z)"/? in n — 1 orthogonal
complex tangential directions (c; is fixed and small enough). Since D has

smooth boundary, there exists a constant ¢, such that

-n,1

0(z)/c2 £0(8) < c2d(z) for & € A(z).

From the plurisubharmonicity of |V f|? we have
VIP(2)3(zP < Coph [ 9 fP@ave)
Az)
<cC / IV APE)SEP "D dV(E)
A(z)

<C VP& dV,—n(&) - 0 asd(z)— 0.
3(§)<c2d(2)

This means that for any ¢ > 0 there exists do > 0 such that

(3) IV£|(2)d(z) <& for 8(z) < do.

By the argument of Lemma 4.8 in [8], we can prove that, for any complex
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tangential direction u at z, the complex tangential derivative V, f satisfies
(4) IVufI(2)8(2)!/* < Ce  for 8(z) < do/4.

By a proof similar to that on p. 152 of [6] we know that (3) and (4) imply (1).
Hence, f € %,.

Now we are going to prove f € BMOA. For f € Aﬁ_",l , using Corollary
2.3 in [1] we have

f(z) = /D (OKo(z, O) + DAOK(z, O1dVnir (0,

where 9 f = (df, dp) (see[l, p. 93]) and K, and K, are kernels of type p.
Let D, ={z € D: p(z) < —¢} and do, be the Hausdorff measure of (2n—1)
dimensions on dD,, where p(z) is the defining function of D and ¢ > 0.
From Theorem 2.4 in [1] we obtain

/a If(2)ldar(2)
< / (SO +1L AN AVpns1 () / (Ko(z, Ol + |Ki(z, O))) day(z)
D dDe
<cC /D (SO +1Z LN Q)™ dVpni1 ()
e / IO+ 12 O) V(L)
D

1/p
< c{ /D IFPQ) + 12 £8P dV(C)}
1/p'
» { / 5(C)p'(n/p-1/p')dy(g)}
D

1/p'
< C”f”p,p—n,l{/D6(C)p "/”"dV(C)} < Clifllp,p—n,15

where 1/p+1/p’ = 1. Hence, f is in the Hardy space Aé,o = H'. Then we
know from [7] that

/a I+ D) = SOIAVO =0 as2— 0",

where v({) is the inward unit normal of 8D and f({) is the admissible limit
of f at { € dD. Therefore, f({) must be of analytic type (for the definition
see [9]). Additionally, we claim that (|f(z)| + |V f(2)])dV(z) is a Carleson

measure on D . In fact, for any Carleson window B,({y) as in [9],

B(8o) = {Bi(Lo) + Av(Lo) : 4 € (0, 1)},
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where B;({o) is the nonisotropic ball of 0D at {, with radius ¢, we have

/~ (@) +IVf(2) dV(z2)
B:($o)

1/p
< {/~ (If(2)|+IVf(Z)I)"é(Z)”“"“’dV(Z)}
B:(Co)

(o-1)/
9 {/ 5(Z)p((n+1)/p—1>/<p—n)dV(Z)}
(5) B/(¢)

(>=1/p
< C"f“p,p—n,l{%, 5(2)("+1_p)/(”_')dV(Z)}
B

t (p=1)/p
< C”f”p,p—n,l{t”/ [("'H—P)/(P—l)dt}
0

= Cllfllp,p-n,1 (2" - /O~ =D = C|| flp pn 1"

Therefore, we know from Theorem 2.1.3(ii) of [9] that f € BMOA . From the
proof on p. 253 of [9] and (5), we obtain

(6) I/ lemo < CllfNlp,p-n,1-
This completes the proof.

Remark 1. As mentioned by Varopoulos in [9], Theorem 2.1.3(ii) of [9] is still
valid for strongly pseudoconvex domains, but for simplicity’s sake it was stated
there only in the case D ={z € C":|z| < 1}.

Remark 2. We can also prove
s CAs_(niqyp fors>(n+4q)/p.

In order to prove thls assertion, we take k > s a fixed integer. From [1] we

have Af ;=A% ., o, For fed) ., ., and|o|/<k
aaf(z) < C5(z)—(n+1)—(q+p(k—s)—1)/ - (C)‘ 5(()‘”1’("‘3 Lav (D)
z(l
< CUANG gaptimsy i 027 ("“’)/") k),
Hence,
7 s <O (z)s—(n+a)/p)—k
@ E}<k azﬂ( 2)| £ CllSNlp, g+pte—s) .k = 6(2)

Applying Theorem 8.8.6 of [4], we have f € As_(niq)/p -
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