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Abstract. Based on the work of Hirschfeld, it is known that there is a close

connection between models for the n°j fragment of arithmetic and homomor-

phic images of the semiring of recursive functions. This fragment of arithmetic

includes most of the familiar results of classical number theory. There is a real-

ization of this fragment in the isols in systems called tame models. In this paper

a new proof is given to the following result of Ellentuck and McLaughlin on the

minimality of tame models: If two tame models share an infinite element, then

the models are equal.

1. Introduction

We will assume that the reader is familiar with topics in the theory of isols.

Our paper is concerned with a particular algebraic system of isols called a tame

model and with a minimality result about tame models. The result was discov-

ered by Ellentuck and McLaughlin independently. It states that if Tm(^) and

Tm(B) are tame models that share an infinite element, then Tm(A) = Tm(B).

It may be obtained as a consequence of Theorems 3.2(1), 3.5, and 3.10 of [10]

and the fact that the intersection of any two tame models is a model of all true

n^ statements of arithmetic, a fact that can be deduced from Lemma 2 of [9].

The aim of our paper is to give another proof to the result.
Tame models were introduced in [2]. Let % be the collection of all increasing

recursive functions of one variable. If / is any recursive function, then fA will

denote the extension of / to the isols. If ^4 is a regressive isol and / is an

increasing recursive function, then the value of f^(A) is also a regressive isol.

To each regressive isol A , let Tm(A) be the collection of isols defined by

Tm(A) = (fA(A):fe&).

If A is a finite isol, then Tm(A) = co. The interesting setting for the collections

Tm(^4) is when A is an infinite regressive isol, for then Tm(^) contains co
together with infinitely many infinite isols. It is always true that Tm(^) is a

countable collection, and it is closed under addition and multiplication. Some

of the elements in Tm(^) are A, A2, and 2A .
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2. Tame models

Let A be an infinite regressive isol. The algebraic system [Tm(v4), +, •] has

embedded within it the familiar system [co ,+,•]; we shall simply write Tm(^l)

and to for these systems. It will depend upon the choice of A as to how close

one may find familiar arithmetic properties among the isols of Tm(^). For

example, if A is neither even nor odd, then not all elements of Tm(A) have

parity.

Tame models were introduced in an effort to find algebraic systems in the

isols with arithmetic properties that may more closely resemble those in the

familiar arithmetic of w. Based upon an earlier notion of a tone isol, Ellentuck

introduced in [5] the concept of a recursively strongly torre isol. An infinite

regressive isol A is called recursively strongly torre if either fA(A) < gA(A) or

gh(A) < f\(A), for all increasing recursive functions / and g. In an earlier

work [ 12] Nerode showed the existence of regressive isols that are recursively

strongly torre. Proved in [2] is the existence of infinite regressive isols A that

are recursively strongly torre, and with the additional property that if f and

g are any increasing recursive functions with f\(A) < g\(A), then fA(A) +

hA(A) = gA(A) for some increasing recursive function h. When A is an

infinite regressive isol with these two properties, then Tm(A) is called a tame

model.
Let Tm(C) be a tame model. In [2] it was shown that the following properties

are true:

(a) All elements of Tm(C) have parity, and all elements are comparable by

the relation < among isols.

(b) If r is any recursive function of ^-variables and Ux, ... , U„ are mem-

bers of Tm(C), then rA(Ux, ... , Un) is also a member of Tm(C).

(c) If U is a member of Tm(C) and U is a prime isol, then U may be
expressed in the following way: U = prA(A) where pr is the principal function

for the set of prime numbers and A is an element of Tm(C).

(d) If U and V belong to Tm(C) and U <* V, then U < V.
An important result about the arithmetic properties of tame models was

proved by McLaughlin in [8]. It establishes that every tame model is a model

for the true AE sentences of Peano Arithmetic. We shall now begin the steps

that lead us to the minimality property of tame models.

Definition. Let Tm(£) be a tame model and B an element of Tra(£). Let

Pre(5, Tm(£)) = (S G Tm(£): S < B).

Lemma LI. Let Tm(£) and Tm(F) be tame models. Let B be an isol in both

Tm(£) and Tm(F). Then Pre(B, lm(E)) = Pre(B, Tm(F)).

Proof. We shall just verify the one inclusion that Pre(B, Tm(E)) is a subset
of Pre(5, Tm(F)), as the other inclusion may be shown in a similar way. If B

is a finite isol, then the desired conclusion is easy, as then both Pre(B, Tra(£))

and Pre(5, Tm(F)) consist of the values 0, ... , B.
Let us assume now that B is infinite. Then to is a subset of both

Pre(fi, Tm(E)) and Pre(B, Tm(F)). Let Y be in Pre(B, Tm(£)). To show
that Y is also in Pre(5, Tm(F)), we may assume that Y is infinite.
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Let g and h be increasing recursive functions such that

(1) gA(E) = hA(F) = B.

Because Tm(E) is a tame model and Y £ Pre(B, Tm(£)), there will then also

be increasing recursive functions p and r with

(2) Y = pA(E)   and   pA(E) + rA(E) = gA(E).

The functions g and p range over infinite sets, since B and Y are infinite

isols. Let the function u be defined by

u(m) = (py)(g(y) > m and p(y) + r(y) > m)

for m £ co. Then u is everywhere defined, since the functions g , p , and r are

increasing, and the functions g and p have infinite ranges. By its definition,

it is easy to see that u is an increasing recursive function. Hence u £ %.

The following two properties about the functions defined above are true. (We

shall write o for the composition operation between functions.) For all numbers

e, erj, and /,

(3) if g(e) = h(f), then(uog)(e) = (uoh)(f),

(4) if e0 = (u° g)(e) and p(e) + r(e) = g(e), then p(e0) = p(e).

Property (3) is clear. To verify (4), assume that eo = (uog)(e) and p(e)+r(e) =

g(e). Then substitution in the definition of u gives

eo = (py)(g(y) > g(e) and p(y) + r(y) > p(e) + r(e)).

Hence, eo < e and p(eo) + r(eo) > p(e) + r(e). Also, because the functions p
and r are increasing, e0 < e implies p(e0) + r(eo) < p(e) + r(e). Therefore,

p(eo) + r(eYj) = p(e) + r(e). Then p(e0) = p(e), since both p and r are

increasing functions. Hence, property (4) is also true.

Each of the statements (3) and (4) corresponds to a Horn sentence that is

true in co. If we now apply the metatheorem of Nerode, we can conclude that

each of the statements has an extension to the isols that is also true. In view of
(1) and the extension of (3) to the isols, one obtains (uog)A(E) = (uoh)A(F).

Let E0 = (uo g)A(E). Then E0 = (uoh)A(F), and

(5) Eo £ Tm(F),

since (u o h) is an increasing recursive function. By combining (2) with the

extension of (4) to the isols, we get

(6) r = pA(£)=pA(£0).

Lastly, from (5), (6), and the fact that p is an increasing recursive function,

it follows that Y £ Tm(F). Therefore, Y belongs to Pre(5, Tm(F)). This
completes our proof.

Lemma L2. Let Tm(£) be a tame model. Let U be an element of Tm(£) with

U infinite. There is then an increasing recursive function r, with E < rA(U).

Proof. Let U = uA(E) with u an increasing recursive function. Define the

function r by r(n) — (py)(u(y) > n) for each number n. Then u has an

infinite range, since U is an infinite isol. Also, e < r(u(e)) for all numbers e,
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since u is increasing and has an infinite range. Hence,

(7) e < r(u(e))

for all numbers e. Statement (7) may be extended to the isols; and since E is a

regressive isol, we may then obtain E <* rA(uA(E)). Therefore, E < rA(uA(E))
by property (d) and the fact that Tm(£) is a tame model. Hence, E < rA(U),

and the desired result follows.

Lemma L3. Let Tm(£) be a tame model and U an infinite element of Tm(£).

Let V be any element of Tm(£). Then V < gA(U) for an increasing recursive

function g.

Proof. V = vA(E) with v an increasing recursive function. By Lemma L2 E <

rA(U) for an increasing recursive function r. Therefore, vA(E) < vA(rA(U)),

since v is increasing recursive, Tm(£) is a tame model, and property (d).

Setting g = (v or) gives g an increasing recursive function and V < gA(U).

Theorem TI (Ellentuck and McLaughlin). Let Tm(^4) and Tm(B) be tame
models. Let U be an infinite element of Tm(^) and Tm(B). Then Tm(^4) =
Tm(B).

Proof. We shall simply verify that Tm(,4) is a subset of Tm(B), as the other
inclusion may be similarly shown. Let V be an element of Tm(^l). By Lemma

L3 there is an increasing recursive function g, with V < gA(U). Then gA(U)

is an element of both Tm(^) and Tm(5).

By Lemma LI it follows that Pre(gA(U), 7m(A)) = Pre(gA(U), Tm(B)).
Since V is an element of the first set, it follows that V will be an element of

Tm(5). Hence, Tm(^) is a subset of Tm(B), and this completes our proof.

Since every tame model contains co, we may obtain directly the following

corollary to Theorem TI.

Corollary CI. Let Tm(^4) and Tm(5) be tame models. Then either Tm(A) n

Tm(B) = co or Tm(A) = Tm(B).

3. Elementary models

An infinite regressive isol A is called recursively torre, if for all recursive sets

a, one has A £ aA or A £ (co- a)A. Recursively torre isols are studied in [1]

and [5]. In [1] it was shown that A is recursively torre if fA(A) <* gA(A) or

£a(^) <* f\(A) for all increasing recursive functions / and g. In addition,
if A is recursively torre, then the system Tm(A) generates an integral domain
in the isolic integers.

A system Tm(A), when A is an infinite regressive isol that is recursively

torre, will be called an elementary model. It is easy to see that a recursively
strongly torre regressive isol is recursively torre, since among regressive isols

D < E implies D <* E. Therefore, each tame model is also an elementary
model. In [8] McLaughlin proved that every elementary model is a model of the

true universal sentences of Peano Arithmetic. Our interest here in elementary

models is to express the fact that it is open at the moment whether elementary

models are also minimal, as are the tame models.
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