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Abstract. Let A be a ring with a finite group of automorphisms G , and let fx

and fi be homomorphisms from A into some division algebra D such that fx

and f2 agree on the fixed ring AG . Assuming certain additional assumptions,

it is shown that fx and f2 differ only by an automorphism in G and an inner

automorphism of D.

1. Introduction

Let A be a commutative ring with a finite group G of automorphisms, and

let /i and f2 be maps from A into some field D such that f \Aa = f2\Aa . Then
there is some a £ G such that f2 = fx°o [B, Chapter V, §2, no. 2, Corollary

to Theorem 2]. We generalize this result to the setting of noncommutative

rings and division algebras, proving—under certain additional assumptions—
the existence of some a £ G and some inner automorphism ip of D such that

f2 = \p o fxoo (Theorems 1 and 2 below).
We begin with a simple but instructive example due to Montgomery, which

shows why inner automorphisms are needed in the noncommutative case. Let

A = C denote the complex numbers, and let G be the group of automorphisms

of A generated by complex conjugation. Then AG = R. Let fx be the natural
inclusion of A into the quaternions D = H, and let f2: A -* D be the R-linear

map defined by f2(i) = j . Then f\AG = f2\Ac , but f(A) ^ f2(A). Hence for
all o £ G, f2 ^ f o ct . Montgomery noted, however, that the Skolem-Noether

theorem implies the existence of some inner automorphism ip of D such that

f2 = \pofx . (E.g., let \p be conjugation by i+j.) This led her to conjecture that

in generalizing the commutative result, one should aim to prove f2 = \p o fx o a .

In this direction, we obtained the following two results:

Theorem 1. Let A be a ring with a finite group of automorphisms G such that

\G\~~X £ A. Let D be a division algebra, and let fx and f2 be homomorphisms
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1062 NIKOLAUS VONESSEN

from A into D such that fx\Aa = f2\Aa . Suppose that f(A) is a ring satisfying

a polynomial identity. Then there is some a £ G and some inner automorphism

ip of D such that f2 = y ° f° o.

A few remarks are in order. First of all, there are two interesting cases where

the hypothesis that fx(A) be a polynomial identity ring is trivially satisfied: If

either A itself is a Pi-ring, in particular, if A is actually commutative, or if

D is finite dimensional over its center. I do not know if the Pi-hypothesis is

necessary. It is certainly needed in the proof in an essential way; cf. Remark 5
below.

Secondly, note that the map \p in the theorem, when restricted to f(AG),

is the identity. Given any map f:A—>D, call / equivalent to fx if f =

xp o /, o a , where a £ G and where ip is any inner automorphism of D with

y/\ft(AG) = idf(AG). Trivially, equivalent maps agree on the fixed ring AG . The

theorem says that all maps which agree on AG are equivalent! This is quite

surprising. For example, another way to construct maps which agree on AG is

as follows: Given any automorphism t of ^ which induces the identity on

AG, the maps fx and fx o t agree on AG. So by the theorem, fx and for

are equivalent, i.e., fxox=ipofxoo, although AutAc(A) is in general much

bigger than G. (Of course, this situation occurs already in the commutative

setting, but only if fx is not injective. In the noncommutative setting, it appears

even if A is a division algebra. And we will see that—given a theorem of

Montgomery—it is fairly easy to reduce the proof of Theorem 1 to the latter

case; see §3.)

Thirdly, in general one cannot drop the assumption that \G\~X £ A, even

if A is an affine prime Noetherian Pi-ring finite over its center and if D is

a (commutative) field (Example 7). However, we have the following positive

result:

Theorem 2. Let A be a ring with a finite group of automorphisms G. Let D be

a division algebra, and let f and f2 be homomorphisms from A into D such

that fx\Aa = f2\AG . Suppose that either

(a) fx is injective and A satisfies a polynomial identity, or
(b) A is commutative and D is finite over its center.

Then there is some a £ G and some inner automorphism \p of D such that

fi = V ° fi ° <?.

In generalizing the commutative result, one could also try to replace the field

D by a finite-dimensional central simple algebra. We will see later in Example

8 that this approach does not work, even if A is commutative.

I should mention a related result on equivalence of maps by F. Pop and H.

Pop [PP]. They proved among other things the following: Let A be a semisim-

ple algebra over a field k, and let D be a separable k-algebra. Then up to

composition by inner automorphisms of D, there are only finitely many alge-

bra homomorphisms from A to D.

This paper is organized as follows. Section 2, the heart of this paper, deals

with the special case that A is a division algebra. Section 3 contains the proofs

of the main theorems, and §4 consists of two examples.

Finally, I would like to thank Susan Montgomery for bringing this problem

to my attention.
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2. The division algebra case

The following proposition is the basic technical result we will need. It is

the special case that A = S is a division algebra. Note that here we make no

assumptions on the order of G.

Proposition 3. Let S be a division algebra finite over its center K. Let G be a

finite group of automorphisms of S. Let fx and f2 be embeddings of S into

a division algebra D such that fx\Ka = f2\Ka. Then there is some a £ G and

some inner automorphism xp of D such that f2 = W ° fi ° a ■

Let k be some subfield of KG such that KG is a finite purely inseparable
extension of k . The proof will show that it is actually sufficient to require only

that f \k = f2\k ■ Moreover, if D is finite over its center, KG may be an infinite

purely inseparable extension of k . We will prove the proposition in this slightly

greater generality. This will be important in the proof of Theorem 2(b).

Proof. We first show that we may assume that S c D, and that f is the

natural embedding. Namely, if the proposition is true in the latter case, then

h° fx~x = ¥ ° o' for some a' £ (f o G o f~x) and some ip £ lnn(D). Say

a' = f o o o fr' for a £ G. Then f2 = y/ o (a' o fx) = y/ o fx o a, as desired. So

from now on we will assume that S c D, and that fx is the natural embedding.

To simplify notation, set f = f2, T = f(S), and L = f(K). Then f\k = id^ ,
and L is the center of T. We have to find a £ G and ip £ Inn(D) such that

/ = \p o o . The following figure illustrates the situation:

/!>
C S—^T

I I    „      I
E A—^UL

\/
k

Here C denotes the center of D, and E always denotes a subfield of C.

In the sequel, we will work with various division subalgebras of D generated

by some subfield E of C and either S or T. For example, ES denotes

the division algebra generated by E and S inside D. If EK denotes the

compositum of the fields E and K inside D, the EA' ®K S is a simple ring

with center EA'. The natural map from EK ®K S into ES is thus injective;

hence EA' ®K S is a domain. Since S is finite over K, EK t8>K S is finite over

the field EK. Thus it is a division algebra and therefore isomorphic to ES. To

summarize, ES « EK ®k S is a division algebra which is finite dimensional

over its center EK. (See Remark 5 below for a discussion of what would

happen if 5 were not finite over K.)
Let D' C D be the division algebra generated by CS and CT. Then Ck

is central in D'. (This follows immediately from the construction of D': Let

Rx be the subring of D generated by CS and CT, and for any integer i > 1,
let Ri be the subring of D generated by Rt-X and the inverses of all nonzero
elements in /c,-_i. Then D' = IJ, R, is a division algebra, and Ck is central in
D' since it is central in all /?,-.) Since every inner automorphism of D' extends

to D, we may therefore replace D by D' and thus assume that k is contained

in the center C of D.
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We will see in Lemma 4 below that for some o £ G, f o a extends to an

isomorphism g: CS —» CT such that g\c = idc ■ If KG is a finite extension of

k , then CK is finite over Ck = C. Since 5 is finite over K, CS « CK <8>k S
is finite over CK. Thus CS is finite over C, and so is CT = g(CS). If AG is
not finite over k, D is finite over C by assumption. So in any event, now both

CS and CT are finite dimensional over C . It follows by the Skolem-Noether

theorem that g is the restriction of some inner automorphism xp of D . Since

V\s — g\s = / o rj, we conclude that f = xp o o~x , proving the proposition

modulo the following lemma.

Lemma 4. There is a a e G such that foo extends to an isomorphism g: CS -»

CT such that g\c = idc ■

Proof. Let Jf be the set of all tuples (E, h) such that E is a subfield of C
containing k and h is an isomorphism ES —> ET extending / and inducing

the identity on E. Note that Jt ^ 0 since (k, f) £ Jf. We introduce a

partial ordering on Jf by setting (E, h) < (E', h') iff E c E' and h'\Es = h .
We next show that Jf is inductively ordered. Let {(E,, hi)} be a chain in Jf .

Then E = |J; E, is a subfield of C. Since ES « EK ®k S, every element
a of ES involves only a finite number of elements of E. Thus a £ EjS for

some i. It follows easily that the hi extend to an isomorphism h: ES —► ET

inducing the identity on E. Hence Jf is inductively ordered.

Thus Zorn's lemma implies the existence of a maximal element (Ex, gx) ■

Assume that there is a subfield E2 of C properly containing Ex and an iso-

morphism g2: E2S —> E2T inducing the identity on E2 and extending f ° o2

for some a2 £ G. Choose (E2, g2) maximal with respect to these proper-

ties, and continue. Since G is finite, we eventually obtain a subfield E of

C maximal with respect to the following property (*): There is an isomor-

phism g: ES —> ET inducing the identity on E and extending foo for some

a £ G. Since we do not mind replacing / by / o a, we can as well assume

that g extends /.
Let a be an element of C. We will show that a £ E. Let ES[x] and

ET[x] be the polynomial rings in one central indeterminate over the division

algebras ES and ET. Consider the homomorphisms O: ES[x] -» ES[a] and

4*: ET[x] —> ET[a] sending x to a. The kernel of 4> is generated by a

polynomial q(x) with central coefficients [MR, 9.6.3]. That is, q(x) £ EK[x].

It follows that q(x) = 0 iff Ker<P = 0 iff a is transcendent over EK iff a is

transcendent over E iff a is transcendent over EL iff Ker^F = 0. Here we

used that both EK and EL are algebraic over E. Assume that Ker<l> = 0.

Then it follows by the above remarks that a is a central indeterminate over both

ES and ET. Set E' = E(a). Then g extends to an isomorphism g': E'S —>

E'T by defining g'(a) = a. Clearly g' extends f, and g'\E' = id£< . This is
a contradiction to the maximality of E. Hence Ker<I> ̂  0, and a is algebraic

over EK with irreducible polynomial q(x).

Consider the polynomial p(x) = T[a o~(q(x)), where a runs over all elements

in Gal(EA/E). Since K is normal over k, EK is normal over E. If K is

separable over k , then also EK is separable over E, and p(x) belongs to the

polynomial ring E[x]. Otherwise, some power of p(x) belongs to E[x]; we

denote that power again by p(x). Since g(p(x)) = p(x), g(p(a)) = 0. It fol-

lows that for some a £ Gal(EK/E), g(o(q(x))) is the irreducible polynomial

of a over EL. That is, the kernel of *F is generated by g(o(q(x))).
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We claim that a, which is an automorphism of EK, extends to an auto-

morphism of ES stabilizing S. Since K is normal over k, and since k C E

is pointwise fixed under a , a\jc is an automorphism of K/k . Since the group

G of automorphisms of S maps via restriction onto Gal(K/KG) = Gal(K/k),

there is some x £ G such that x\k = g\k ■ Hence o ® x induces an au-

tomorphism of ES « EK ®K S extending both a and x. We denote this

automorphism again by a .

Let E' = E(a). As seen above, the irreducible polynomials of a over EK

and EL are q(x) and g(o(q(x))), respectively. Hence goa:ES -» ET

extends to an isomorphism g': E'S —> E'T by setting g (a) = a. Clearly

g'\E< = ids' and g' extends fox. This is a contradiction to the maximality of

E, unless a £ E . It follows that E = C, completing the proof of the lemma,

and thus the proof of Proposition 3.   □

As an immediate corollary, we obtain Theorem 2(a):

Proof of Theorem 2(a). Since A is a Pi-domain, its division ring of fractions

Q(A) can be obtained by a central localization. One concludes easily that AG

has also a division ring of fractions Q(AG), and that Q(^G) = Q(A)G . Now

the result follows immediately from Proposition 3.   □

Remark 5. Where in the proof of Proposition 3 did we use the fact that S is

finite over its center K ? Certainly via the Skolem-Noether theorem: There we

needed it to show that CS is finite over C. And this is in fact the only place

where we needed this assumption: Assume that S is not necessarily finite over

its center K. If again E is an arbitrary subfield of C, and if R denotes the

image of EK ®k S in ES, then R is now not necessarily equal to ES. But

one can check that R is an Ore domain, so that S « Q(EK ®K S). Moreover,

the center of Q(EK ®k S) is still EK (if c belongs to the center of Q(R),
then {r £ R\cr £ R} is a nonzero two-sided ideal of R and thus all of R;

hence c £ R, so that the center of Q(R) is isomorphic to EK). Using these
facts, the proof of Lemma 4 goes through. In order to attempt a generalization

of Proposition 3 to the case of an arbitrary division algebra S, we reduced thus

to the case that / extends to a map CS -+ CT with f\c = idc ■ It is not
clear if this is of any help. I should remark that the Pi-assumption in Theorem

1 is also used in the proof in the next section: There we need it to show that a

certain prime homomorphic image A/P of A is a Goldie ring. Of course, one
could assure this by assuming, e.g., that A is Noetherian.   □

3. The proofs of the main theorems

These proofs consist now of reduction steps to the case that A is a division

algebra. First we need the following lemma which incorporates a general reduc-

tion technique which is sometimes useful when studying actions of finite groups

on rings. It is most likely known, but included for lack of a reference.

Lemma 6. Let A be a ring with a finite group of automorphisms G such that

\G\~X £ A. Let P be a prime ideal of A such that A/P is a right Goldie ring.

Set H = StabG(P) and I = f)aeGo(P). Then

Q(AG/P n AG) « Q(A/I)G « Q(A/P)H,

where the isomorphisms are induced by the quotient map A —* A/P.
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Note that here G acts on A/I but not necessarily on A/P. This lemma is

useful in that it relates—on the quotient ring level—the actions of G on A and

A/I with the action of H on A/P , allowing in certain situations the reduction

from arbitrary rings to prime rings. We shall use it in the proof of Theorem 1.

One should note that the lemma does not hold "before" localization. Let me

be more precise. Recall that if a group G acts on a semiprime right Goldie ring

R such that |C|_1 £ R, then also RG is a semiprime right Goldie ring, and

Q(i?G) = Q(R)G [MR, 10.5.19]. We will use these facts frequently. Thus the

lemma says that the quotient rings of AG/PnAG and (A/P)H are isomorphic.

However, it is in general not true that AG/PnAG and (A/P)H are isomorphic,

even if A is commutative; see [B, Chapter V, §2, no. 2, Exercise 10].

Proof. Note that P n AG = I n AG, so that AG/P n AG = AG/I n AG « (A/I)G .

Thus Q(AG/P n AG) « Q(A/I)G, and this isomorphism is induced by the quo-
tient map A/I —> A/P. To prove the second isomorphism, we may as well

replace A by A/I and thus assume that 7 = 0. It is easy to see that A is now

a semiprime right Goldie ring. (Use the embedding A <-* 0CTeG A/a(P), and
the fact that the latter ring is right Goldie.) Note that G permutes the min-

imal prime ideals of A transitively. Denote by B the total ring of fractions

of A . Then B is a direct sum of simple Artinian rings, say Bx, ... , B„. The

action of G on A extends to B, and G permutes the 5, transitively. Say

Q = B2®-®B„ is the prime ideal of B which is the localization of P. Then

Bx « B/Q « Q(A/P). Note that H = StabG(P) = StabG(B1).
The projection from B onto Bx induces a homomorphism from BG into

Bf . Since G permutes the Bj transitively, this map is one-to-one. It is actually

also onto, as one can see as follows: Let Oj be right coset representatives of H
in G such that Oj(Bx) = Bj. Let b £ Bf, and set jc = zZiai(b) • Then given
x £ G, there is a permutation n and elements ht £ H such that tct, = a„(,-)A,-.

Thus x(x) = Yst a%(i)(hi(b)) = x . Hence x £ BG , and the image of x in Bf is

b. Thus BG w Bf , i.e., Q(A)G « Q(A/P)H , and this isomorphism is induced
by the quotient map A -> A/P.   □

Proof of Theorem 1. Denote by P, the kernel of f . Then PxnAG = P2nAG.
It follows by a theorem of Montgomery [M^ (see also [M2]) that there is some

o £ G such that o(P2) = P\ . Replacing f by f 00 , we may therefore assume

that fx and f2 have the same kernel P. Moreover, A/P is now by assumption

a Pi-ring and thus a Goldie ring. So the hypotheses of Lemma 6 are satisfied.

It follows that the maps f induce maps /,: Q(A/P) —► D which agree on

Q(A/P)H w Q(AG/PnAG). Hence by Proposition 3, there is some 0 £ H and

some inner automorphism xp of D such that f2 = xp °fx° aQ(A/P) • (If a acts

on a ring R, we denote here the corresponding automorphism by Or .) We

conclude that f2 = xp o /J o aA , as was to be shown.   □

Proof of Theorem 2(b). Using Proposition 3 instead of some elementary facts
about commutative fields, this result follows exactly like [B, Chapter V, §2, no.

2, Corollary to Theorem 2]. The proof is only included for completeness.

Denote by P, the kernel of f . Then Px n AG = P2 n AG . Thus there is
some a € C7 such that o(P2) = Px . Replacing f by f ° o, we may therefore

assume that f\ and f2 have the same kernel P. Denote by K and k the fields

of fractions of A/P and AG/P n /1G, respectively. Then /1  and f2 induce
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embeddings /, and f2 of K into D such that fx\k = f2\k • By [B, loc. cit.,
Theorem 2], K/k is normal with finite Galois group H. By Proposition 3

applied to S = K_, there issome a £ H and some inner automorphism xp

of D such that f2 = xp o fxo~. Every element a £ Stabo(P) defines an

automorphism a of A/P which extends to K and leaves k pointwise fixed.

Again by the already cited theorem in [B], the map Stabc(P) —► H sending

a to a is onto.  Hence cf comes from some o £ Stabc(P).  It follows that

f2 = xpofoo .     D

4. Examples

First we show that in general it is impossible in the noncommutative case to

drop the assumption that |C|_1 £ A, even if A is an affine prime Noetherian

Pi-algebra finite over its center, and D is a (commutative) field. It is fairly

simple to find such examples where fx and f2 have kernels which are not

conjugate under the group action. Essentially, examples of this type are based

on the fact that Montgomery's theorem does not hold if |C7| is not invertible in

A . In the following somewhat more complicated example, f and f2 have the

same kernel and agree on AG, but are anyhow not equivalent.

Example 7. Let R = k[x, t] be a polynomial ring in two variables over a field

of prime characteristic p ^ 2. Let

,     (R R       \
\tR   k[x2] + tRJ -

Then A is an affine prime Noetherian Pi-algebra finite over its center

(&[x2] + tR) • I2. Let G be the group of automorphisms of A generated by

conjugation by (x0 j). Then \G\ = p , and AG = (k[x2] + tR)-I2 + R- el2. Let

P be the prime ideal

(tR R       \
\tR   k[x2] + tRj ■

Then A/P = k[x] and AG/PnAG = k[x2]. (Note that ^G/Pn^G £ (A/P)G =
k[x]; if |C7| were invertible in A , equality would hold.) Let D = k(x), and
let f be the composition A —► A/P <—> D. Let f2 be the composition of f

with the automorphism of D which sends x to -x. Then fx and f2 agree

on AG. But f and f2 are not equivalent: The field D admits only the trivial

inner automorphism xp = id. And if o £ G, then f = foo since o is inner

and fx(A) = A/P is commutative. Thus xp o fo o = f ^ f2.   U

Our last example shows that in generalizing the commutative result, one can-

not replace the field D by a finite-dimensional central simple algebra, even if

A is commutative.

Example 8. Let A = C be the complex numbers, and let G be the group of

automorphisms of A given by complex conjugation. Let D be the (2 x 2)-

matrices over C. Let fx be the natural embedding of A as the center of D,

and let f2 be the map sending a e C to the matrix (q§) . Then f2(A) is not

central in D, so that for all automorphisms xp of D, f2(A) / xp(f(A)).   D
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