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Abstract. A theorem of Quillen, which presents graded group algebras as cer-

tain enveloping algebras, is extended to permutation modules. In positive char-

acteristic this provides a functorial version to Alperin's recent extension of Jen-

nings's theory.

1. Introduction

Let F be a fixed field of characteristic p (which may be either zero or

positive). For a group G, consider the group algebra FG, and let A denote

its augmentation ideal. Define the graded group algebra gr(FG) by

gr(FG) := 0A"/An+1.

In 1968 Quillen described gr(FG) as an enveloping algebra of a certain Lie

algebra [6]. In order to formulate his result, denote by Dn the nth dimension

subgroup of G over F ; namely,

DH:=Gn{l+A"),        n>\.

A group-theoretic description of these subgroups was given by Jennings and

Lazard in [3-5] (see also [7]). In particular, it is known that Dn/Dn+\ is abelian;

it is torsionfree if p = 0 and has exponent p otherwise. Set

L(G):=@D„/Dn+l.
n>\

It is well known that L(G) may be given the structure of a (graded) Lie ring.

Moreover, if p > 0 then L(G) has the structure of a restricted Lie algebra

over Fp (for the basic properties of restricted Lie algebras and their enveloping

algebras, see [2, Chapter 5, §7]). In order to obtain a Lie algebra over F, set

L:=L(G)®F.
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Quillen's result relates gr(FG) with the Lie algebra L in the following way.

Quillen's Theorem.  gr(FG) Si U(L).

Here U(L) denotes the (universal) enveloping algebra of L. It is understood

that if p > 0 then U(L) stands for the enveloping algebra of L as a restricted
Lie algebra.

Our goal here is to prove a certain modification of this result, dealing with

arbitrary permutation modules. This approach is motivated by Alperin's recent

extension of Jenning's theory to permutation modules for ^-groups in charac-

teristic p [1] (see also [8]).

So let G be a group acting transitively on a set Q, and consider the permu-

tation module M := FQ as a left FG-module. Define

gr(M):=0A"M/A',+1M.

Let H < G be a stabilizer of a point in Q. The subgroup H gives rise to a

Lie subring K(H) of L(G), defined by

K(H):=®(HnD„)Dn+l/D„+1.

Set K := K(H) ® F. Then K isa graded (restricted, if p > 0) Lie subalgebra
of L. By identifying L with its image in U(L), we may consider K as a

Lie subalgebra of U(L) and form the (associative) left ideal \J(L)K which it

generates in U(L).
We can now state our main result.

Theorem. With the above notation, gr(Af) a U(L)/ U(L)K.

This isomorphism may be interpreted in two ways. Clearly, gr(Af) is a left

gr(FG)-module, while U(L)/U(L)K is a left U(L)-module. The assertion is
that Quillen's isomorphism between gr(FG) and U(L) induces an isomor-

phism between these two modules. But there is another way to interpret the

result, without relying on Quillen's theorem. As will become clear in the next

section, gr(Af) has a natural structure of a left U(L)-module. The theorem

then asserts that, as such, gr(Af) is isomorphic to U(L)/\J(L)K. Note that,

in this interpretation, Quillen's theorem is obtained as a corollary (consider the
regular representation, in which case M = FG and K = 0).

Now, L and K are graded Lie algebras. As such, they induce a natural

grading on U(L) and on U(L)/U(L)K. The isomorphism between gr(Af)

and U(L)/U(L)K respects the corresponding gradings. Applying the Poincare-
Birkhoff-Witt theorem, it is therefore possible to compute the Hilbert function
associated with %x(M) as follows.

Corollary. Let

cn = dim(A"Ar/A"+1Af),

and let dm be the rank of

(H n Dm)Dm+l/Dm+i S HDm/HDm+l

as an abelian group.
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(1) Suppose p = 0. Then

«>0 m>\

(2) Suppose p > 0. Then

/i>0 m>l

These formulae extend Jennings's formulae for the dimensions of the homo-

geneous components of gr(FG). While the zero characteristic case seems to be
new, part (2) of the corollary follows from Alperin's work [1, Theorem 2].

Our theorem, whose proof for the case of finite p-groups (p > 0) is partic-

ularly simple, may be used to derive Alperin's results.

2. Proof of the theorem

Some of the arguments applied in the proof of the theorem follow those used

by Quillen and Alperin.
Obviously, we may identify Q with the set G/H and M with F[G/H].

Let A(H) denote the augmentation ideal of FH, and set I := FGA(H). Then
I is a left ideal of M = FG/I. The ideal / gives rise to a graded left ideal in
gr(FG), defined by

gr(/) := 0((/ n A") + A"+,)/AB+1.

Clearly, gr(Af) 2 gr(FG)/gr(/).
Consider the F-linear map /: L —» gr(FG) given by

f(xDn+l):=x-l+An+i,        xeDn.

This map plays an important role in Quillen's proof. It is easy to see that /
is well defined and that it is a (restricted, if p > 0) Lie-homomorphism [6].
Hence, / gives rise to a homomorphism of associative algebras U(/) : U(Z-) —►

gr(FG). The map U(/) induces on gr(Af) (as well as on any other gr(FG)-

module) a structure of a U(L)-module. It is clear that U(/) is surjective, as

f(L) contains A/A2, which generates gr(FG) (in fact, by Quillen's theorem,

U{f) is an isomorphism, but we will not make use of this fact).

Observe that, if h e H n Dn, then f{hDn+l) = h - 1 + A"+1 e gr(7).
This shows that f(K) C gr(7), and hence U(/)(U(L)JC) C gr(7) as well. We
conclude that the composition of U(/) with the canonical projection

gr(FG) —► gr(FG)/gr(7) = gr(M) gives rise to a well-defined epimorphism /? :

U(L)/U(L)tf-gr(M).
The proof will be complete if we show that /? is injective. This is the place

where Jennings's theory has to be applied. It is well known that Jennings's

construction of a basis for gr(FG) (see [3, 4]) is valid for arbitrary groups.

Fix a positive integer n , and consider the abelian group L„ := D„/D„+\ and

its subgroup Kn := {H n Dn)Dn+i/Dn+\ . Choose a basis {hnj} for Kn and

complete it to a basis of Ln by adding the elements {#„,}. Choose a fixed

linear ordering on {hmj, g„j} in such a way that g„, < hmj for all n, i, m, j .

Applying the Poincare-Birkhoff-Witt theorem for U(L), we see that the or-

dered monomials in the basis elements g„\ (with exponents < p in each gni if
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p > 0) form a basis for U(L)/ U(L)K . If X = Yi(Sm)a"' is such a monomial,

we define deg(X) = X] "<*«/ •
Now suppose, by contradiction, that /? is not injective, and let u = ^2 asXs e

Ker(y?) be a nonzero element, where as € F and A^ = n(£n<)a"" are dis-

tinct ordered monomials. Since <p respects grading, we may assume that u

is homogeneous. This means that, for some d, deg(JSG) = d for all s. By

abuse of notation we may consider each monomial Xs as an element of U(7_)

and identify each g„,, /zmj with suitable representatives in G and 77, respec-

tively. Note that, since fi(u) = 0, we obtain 2DaiU(/)(Ar5) € gr(7). Clearly,

U(f){Xs) = U(gm - l)Qs"' + Ad+l . It follows that

v := S Qs n^"' ~ 1)a™' 6 (7 n A^ + A</+1 - FGA(H) + Arf+1 ■

This enables us, using Jennings's method, to express v modulo Ad+l as a linear

combination of ordered monomials in (gnj- 1), (hmj- 1) (with exponents </?

if p > 0), all of which terminate with some (ftm; - 1). The linear ordering

we choose on the set {(g„, - 1), (hmj - 1)} is the one induced from the pre-

vious ordering on {gm., hmj} . As noted by Alperin [1], Jennings's method is

applicable relative to any given ordering.

Now, to each monomial we associate its (weighted) degree in the usual way (so

that gni-\ and h„j-l have degree n). Jennings's theory tells us that ordered

monomials of degree ^ d in (gn/-l), (hmj — l) form a basis for FG/Ad+i. In

particular, they are linearly independent modulo Ad+i. Recall that v , which

is spanned (modulo Ad+l) by monomials of degree ^ d all involving some

(hmj - 1), can also be expressed as a linear combination £ as YiiSm - l)a"" of

monomials of degree d not involving any («mj - 1). We conclude that as = 0

for all s, hence u = 0. This contradiction completes the proof of the theorem.
Finally we note that, in the case where p > 0 and G is a finite p-group, a

particularly simple proof that avoids the use of Jennings's theory is available.

Recall that we have defined an epimorphism /? : U(L)/\J(L)K —► gr(A7),
and had to show that it is an isomorphism. Calculating dimensions (using the

Poincare-Birkhoff-Witt theorem), we obtain

dimU(L)/U(L)A: = pdimL-dimA: _ ^dimLIpiimK

= |G|/|7F| = |G/77| = dimgr(M).

The conclusion follows.
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