A GENERALIZATION OF THE ISOPERIMETRIC INEQUALITY ON S^2 AND FLAT TORI IN S^3

KAZUYUKI ENOMOTO

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. A geometric inequality is proved for closed curves on S^2 which are regularly homotopic to simple closed curves. This generalizes the classical isoperimetric inequality for simple closed curves on S^2 . The proof is based on the study of flat tori in S^3 and their images under the Gauss map.

Introduction

Let α be an oriented closed curve of class C^3 in the unit 2-sphere S^2 . We denote the length of α by L, the oriented geodesic curvature by k, and the arclength parameter by s. In this paper we prove the following theorem.

Theorem. Suppose that α is regularly homotopic to a simple closed curve. Then

$$L^2 + \left(\int_{\alpha} k \, ds\right)^2 \ge 4\pi^2.$$

The equality holds if and only if α is a small circle.

If α is a simple closed curve, the Gauss-Bonnet theorem gives

$$\int_{\Omega} k = 2\pi - A,$$

where A is the area bounded by α . Thus our theorem implies the following classical isoperimetric inequality for simple closed curves in S^2 :

$$L^2 + (2\pi - A)^2 \ge 4\pi^2.$$

By Smale's theorem [3], any regular closed curve in S^2 is regularly homotopic to either a circle traversed once or a circle traversed twice. For the latter case our theorem fails, since the quantity on the left-hand side in our inequality can be arbitrarily close to zero for small "figure-eight" curves.

Our theorem has come out of the study of flat surfaces in S^3 . We now describe the correspondence between curves in S^2 and flat surfaces in S^3 . Let γ be a tangent vector of α whose norm is $1/\sqrt{2}$. γ defines a closed curve in

Received by the editors May 16, 1991 and, in revised form, May 20, 1992.

1991 Mathematics Subject Classification. Primary 53A04; Secondary 53C42.

Key words and phrases. Isoperimetric inequality, flat torus, Gauss map.

a round 2-sphere of radius $1/\sqrt{2}$. Let $G_{2,4}$ be the Grassmannian manifold of oriented 2-dimensional linear subspaces of \mathbb{R}^4 . Equipped with the standard invariant Riemannian metric, $G_{2,4}$ is isometric to $S_1 \times S_2$, where each S_i (i=1,2) is a round 2-sphere of radius $1/\sqrt{2}$. We regard γ as a curve in S_1 . Let Γ be a great circle in S_2 . Using a method given in [3,4], we can construct a flat torus T whose image under the Gauss map $G\colon T\to G_{2,4}$ is $\gamma\times\Gamma$. By a result of Weiner [4], if γ is regularly homotopic to a circle (or equivalently, if α is regularly homotopic to a circle), T has antipodal symmetry, i.e., $-x\in T$ for any $x\in T$. There exists a curve σ in T which connects x and -x and is mapped by G onto γ with an element in S_2 fixed. The main ingredient of the proof is to express the distance between x and x in x in terms of the length and the geodesic curvature of x via x.

1. Gauss maps of flat tori in S^3

In this section we recall some results from [1, 2, 4] on flat tori in S^3 and their Gauss maps.

For an oriented surface M in \mathbb{R}^4 we define the Gauss map $G: M \to G_{2,4}$ by assigning each point x of M to the 2-dimensional linear subspace parallel to the tangent plane of M at x. $G_{2,4}$, equipped with the standard invariant metric, is isometric to $S_1 \times S_2$, where each S_i (i = 1, 2) is a round 2-sphere of radius $1/\sqrt{2}$.

Lemma 1 [1]. Suppose that M is flat (i.e., the Gaussian curvature is identically zero) and the normal connection of M is flat. If the Gauss map G is regular on M, then G(M) is locally the product of a curve γ_1 in S_1 and a curve γ_2 in S_2 .

Let T be a flat torus in S^3 . Then the normal connection of T as a submanifold in \mathbf{R}^4 is flat and the Gauss map G is regular everywhere. Hence G(T) is a finite covering of $\gamma_1 \times \gamma_2$, where γ_i (i=1,2) is a closed regular curve in S_i . Let σ_i be a curve in T which is mapped by G onto γ_i with an element in the other factor fixed.

Lemma 2. For i=1, 2 let K_i and κ_i be the oriented geodesic curvatures of σ_i and γ_i respectively. Then for any x in σ_i we have $K_i(x) = \sqrt{2} \kappa_i(G(x))$. Proof. Let N be a unit normal vector field of T in S^3 and $\{e_1, e_2\}$ be a set of orthonormal principal vectors of T in S^3 . Let λ_i (i=1,2) be the principal curvature corresponding to e_i . Since T is flat, $\lambda_1\lambda_2 = -1$. We may assume that $\lambda_1 > 0$. If we set $\lambda_1 = \tan \beta$ and $\lambda_2 = -\cot \beta$, β defines a smooth function on T. Set

$$X_1 = \cos \beta e_1 - \sin \beta e_2$$
, $X_2 = \cos \beta e_1 + \sin \beta e_2$,
 $e_3 = -\cos \beta x + \sin \beta N$, $e_4 = \sin \beta x + \cos \beta N$.

Since $G(x) = e_1(x) \wedge e_2(x)$, we have

(1.1)
$$dG(X_1) = de_1(X_1) \wedge e_2 + e_1 \wedge de_2(X_1) \\ = \langle de_1(X_1), e_3 \rangle e_3 \wedge e_2 + \langle de_1(X_1), e_4 \rangle e_4 \wedge e_2 \\ + \langle de_2(X_1), e_3 \rangle e_1 \wedge e_3 + \langle de_2(X_1), e_4 \rangle e_1 \wedge e_4 \\ = e_1 \wedge e_4 - e_2 \wedge e_3.$$

 $\{e_1 \wedge e_3, e_1 \wedge e_4, e_2 \wedge e_3, e_2 \wedge e_4\}$ forms an orthonormal base of the tangent space of $G_{2,4} = S_1 \times S_2$. Since the tangent space of S_1 is spanned by $\{e_1 \wedge e_3 + e_2 \wedge e_4, e_1 \wedge e_4 - e_2 \wedge e_3\}$, (1.1) shows that $dG(X_1)$ is a tangent vector of γ_1 . Thus X_1 is a unit tangent vector of σ_1 , since $G(\sigma_1) = \gamma_1$. By a similar argument we see that X_2 is a unit tangent vector of σ_2 . Let D denote the covariant differentiation on T. The oriented geodesic curvature K_1 of σ_1 is given by

(1.2)
$$K_1 = \langle D_{X_1} X_1, -\sin \beta e_1 - \cos \beta e_2 \rangle = X_1 \beta - \sin \beta \langle D_{e_1} e_2, e_1 \rangle - \cos \beta \langle D_{e_1} e_1, e_2 \rangle.$$

By the Codazzi equation, we have

$$(1.3) \langle D_{e_1}e_1, e_2 \rangle = \tan \beta e_2 \beta, \langle D_{e_2}e_2, e_1 \rangle = -\cot \beta e_1 \beta.$$

It follows from (1.2) and (1.3) that

$$(1.4) K_1 = 2X_1\beta.$$

By a similar computation, we have

$$(1.5) K_2 = 2X_2\beta.$$

We denote by \tilde{g} the standard invariant metric on $G_{2,4}$ and by \tilde{D} the covariant differentiation corresponding to \tilde{g} . Since a unit tangent vector of γ_1 is given by $dG(X_1)/\sqrt{2} = (e_1 \wedge e_4 - e_2 \wedge e_3)/\sqrt{2}$,

$$\kappa_{1} = \tilde{g} \left(\tilde{D}_{\frac{dG(X_{1})}{\sqrt{2}}} \frac{e_{1} \wedge e_{4} - e_{2} \wedge e_{3}}{\sqrt{2}}, -\frac{e_{1} \wedge e_{3} + e_{2} \wedge e_{4}}{\sqrt{2}} \right) \\
= \frac{1}{2\sqrt{2}} \, \tilde{g} (de_{1}(X_{1}) \wedge e_{4} + e_{1} \wedge de_{4}(X_{1}) - de_{2}(X_{1}) \wedge e_{3} \\
- e_{2} \wedge de_{3}(X_{1}), -e_{1} \wedge e_{3} - e_{2} \wedge e_{4} \right) \\
= \frac{1}{2\sqrt{2}} \, \tilde{g} (\langle D_{X_{1}}e_{1}, e_{2} \rangle e_{2} \wedge e_{4} + \langle D_{X_{1}}e_{4}, e_{3} \rangle e_{1} \wedge e_{3} \\
- \langle D_{X_{1}}e_{2}, e_{1} \rangle e_{1} \wedge e_{3} - \langle D_{X_{1}}e_{3}, e_{4} \rangle e_{2} \wedge e_{4}, -e_{1} \wedge e_{3} - e_{2} \wedge e_{4} \rangle \\
= \frac{1}{2\sqrt{2}} \left(-\langle D_{X_{1}}e_{1}, e_{2} \rangle - \langle D_{X_{1}}e_{4}, e_{3} \rangle + \langle D_{X_{1}}e_{2}, e_{1} \rangle + \langle D_{X_{1}}e_{3}, e_{4} \rangle \right) \\
= \frac{1}{2\sqrt{2}} \left(-\cos \beta \langle D_{e_{1}}e_{1}, e_{2} \rangle + \sin \beta \langle D_{e_{2}}e_{1}, e_{2} \rangle \\
+ \cos \beta \langle D_{e_{1}}e_{3}, e_{4} \rangle - \sin \beta \langle D_{e_{2}}e_{3}, e_{4} \rangle \right).$$

Here we have

(1.7)
$$\langle D_{e_i}e_3, e_4 \rangle = \langle D_{e_i}(-\cos\beta x + \sin\beta N), \sin\beta x + \cos\beta N \rangle = e_i\beta$$

for $i = 1, 2$. It follows from (1.3), (1.6), and (1.7) that
(1.8)
$$\kappa_1 = \sqrt{2}(\cos\beta e_1\beta - \sin\beta e_2\beta) = \sqrt{2}X_1\beta.$$

Similarly, we have

Now the lemma follows from (1.4), (1.5), (1.8), and (1.9).

Let l_i be the length of γ_i for i=1,2. Since $G|_{\sigma_i}:\sigma_i\to\gamma_i$ is a finite covering and $|dG(X_i)|=\sqrt{2}$ by (1.1), σ_i is a closed curve in T whose length is an integral multiple of $l_i/\sqrt{2}$. We need the following lemma due to Weiner.

Lemma 3 [4]. Suppose that either γ_1 or γ_2 is regularly homotopic to a simple closed curve. Then $G: T \to \gamma_1 \times \gamma_2$ is a double covering.

We assume that γ_1 is regularly homotopic to a simple closed curve. Let u be the arclength parameter of σ_1 . By Lemma 3, $G|_{\sigma_1}: \sigma_1 \to \gamma_1$ is a double covering and σ_1 is a closed curve in T whose length is $\sqrt{2} l_1$. Then

(1.10)
$$\sigma_1(u + \sqrt{2} l_1) = \sigma_1(u)$$

holds for any u. The following lemma is also a result of Weiner and a key to proving our theorem.

Lemma 4 [4]. Suppose that γ_1 is regularly homotopic to a simple closed curve. Then $\sigma_1(u + l_1/\sqrt{2})$ is the antipodal point of $\sigma_1(u)$ in S^3 .

Remark. Lemma 4 implies the antipodal symmetry of certain flat tori in S^3 ; if either γ_1 or γ_2 is regularly homotopic to a simple closed curve, then $-x \in T$ for any $x \in T$.

2. Construction of a flat torus in S^3

Let $\alpha(s)$ be an oriented closed C^3 curve in S^2 which is parameterized by its arclength s. We set

$$\gamma(s) = \frac{1}{\sqrt{2}} \frac{d\alpha}{ds}.$$

 $\gamma(s)$ defines an oriented closed C^2 curve in $S^2(1/\sqrt{2})$. Let k and κ be the oriented geodesic curvature of α and γ , respectively. By an easy computation, we have

(2.1)
$$\kappa = \sqrt{2} (1 + k^2)^{-3/2} \frac{dk}{ds}.$$

Since

$$\left|\frac{d\gamma}{ds}\right| = \sqrt{\frac{1+k^2}{2}}\,,$$

we have for any subarc $\gamma' = \gamma([s_1, s_2])$

(2.2)
$$\int_{\gamma'} \kappa = \int_{s_1}^{s_2} \sqrt{2} (1+k^2)^{-3/2} \frac{dk}{ds} \sqrt{\frac{1+k^2}{2}} ds = \int_{s_1}^{s_2} \frac{1}{1+k^2} \frac{dk}{ds} ds = \arctan k(s_2) - \arctan k(s_1).$$

In particular, we have

and, for any subarc γ' of γ ,

$$\left|\int_{\gamma'}\kappa\right|<\pi.$$

We regard γ as a curve in the first factor S_1 of $G_{2,4} = S_1 \times S_2$. Let Γ be a great circle in S_2 . Using a method that is first given by the author [2] and then developed by Weiner [4], one can construct a flat torus T_{α} immersed in S^3 whose image under the Gauss map $G: T_{\alpha} \to G_{2,4}$ is a finite covering of $\gamma \times \Gamma$. We note that the conditions (2.3) and (2.4) imply that T_{α} is regular at every point.

3. Generalized isoperimetric inequality on S^2

Let α be an oriented closed C^3 curve in S^2 , and let T_α be a flat torus in S^3 which is constructed from α in §2. Fix a point x_0 in T_α . Then there exists a closed curve σ in T_α passing through x_0 such that the Gauss map G maps σ onto γ with an element in S_2 fixed. Let $\pi: \tilde{T}_\alpha \to T_\alpha$ be the universal covering of T_α . Let \tilde{x}_0 be a point in \tilde{T}_α such that $\pi(\tilde{x}_0) = x_0$, and let $\tilde{\sigma}$ be a curve in \tilde{T}_α passing through \tilde{x}_0 such that $\pi(\tilde{\sigma}) = \sigma$.

Theorem. Let α be an oriented closed C^3 curve in S^2 . Suppose that α is regularly homotopic to a simple closed curve in S^2 . Then

$$L^2 + \left(\int_{\Omega} k \, ds\right)^2 \ge 4\pi^2 \,,$$

where L is the length of α , k is the oriented geodesic curvature of α , and s is the arclength parameter of α . The equality holds if and only if α is a small circle.

Proof. Let (x, y) be the Cartesian coordinate system on $\tilde{T}_{\alpha} = \mathbb{R}^2$. We write

$$\tilde{\sigma}(u) = (x(u), y(u)),$$

where u is the arclength parameter of $\tilde{\sigma}$. We may assume that $\tilde{x}_0 = (0, 0)$ and

$$\tilde{\sigma}(0) = (0, 0), \qquad \frac{d\tilde{\sigma}}{du}(0) = (1, 0).$$

Let l be the length of γ . If α is regularly homotopic to a simple closed curve in S^2 , then so is γ . By Lemma 4, $\sigma(l/\sqrt{2})$ is the antipodal point of $\sigma(0)$ and the distance between $\tilde{\sigma}(0)$ and $\tilde{\sigma}(l/\sqrt{2})$ in \tilde{T}_{α} is not less than π . This gives

$$\left| \tilde{\sigma} \left(\frac{l}{\sqrt{2}} \right) \right|^2 \ge \pi^2.$$

If we write

(3.2)
$$\frac{d\tilde{\sigma}}{du} = (\cos\theta(u), \sin\theta(u)),$$

 $\theta(u)$ is given by

(3.3)
$$\theta(u) = \int_0^u K(u) \, du,$$

where K is the oriented geodesic curvature of $\tilde{\sigma}$. Let t be the arclength parameter of γ and κ be the oriented geodesic curvature of γ . By (1.1), we have

$$\frac{dt}{du} = \sqrt{2}.$$

Combining (2.2), (3.3), (3.4), and Lemma 2, we obtain

(3.5)
$$\theta(u) = \int_0^t \sqrt{2}\kappa(t) \cdot \frac{1}{\sqrt{2}} dt = \arctan k(s) - \arctan k(0).$$

It follows from (3.2) and (3.5) that

(3.6)
$$\frac{d\tilde{\sigma}}{du} = \left(\frac{1 + k(s)k(0)}{\sqrt{1 + k(s)^2}\sqrt{1 + k(0)^2}}, \frac{k(s) - k(0)}{\sqrt{1 + k(s)^2}\sqrt{1 + k(0)^2}}\right).$$

Thus we have

$$\tilde{\sigma}\left(\frac{l}{\sqrt{2}}\right) = \int_0^{l/\sqrt{2}} \frac{d\tilde{\sigma}}{du} du = \int_0^L \frac{d\tilde{\sigma}}{du} \frac{du}{dt} \frac{dt}{ds} ds$$

$$= \int_0^L \left(\frac{1 + k(s)k(0)}{2\sqrt{1 + k(0)^2}}, \frac{k(s) - k(0)}{2\sqrt{1 + k(0)^2}}\right) ds$$

$$= \frac{1}{2\sqrt{1 + k(0)^2}} \left(L + k(0) \int_0^L k \, ds, -k(0)L + \int_0^L k \, ds\right).$$

It follows from (3.1) and (3.7) that

(3.8)
$$\pi^{2} \leq \frac{1}{4(1+k(0)^{2})} \left(\left(L + k(0) \int_{\alpha} k \, ds \right)^{2} + \left(-k(0)L + \int_{\alpha} k \, ds \right)^{2} \right) \\ = \frac{1}{4} \left(L^{2} + \left(\int_{\alpha} k \, ds \right)^{2} \right) .$$

This proves the inequality of the theorem.

Suppose that the equality holds. Then $\tilde{\sigma}([0, l/\sqrt{2}])$ must be a geodesic segment in T_{α} . Thus the oriented geodesic curvature K of σ vanishes for $0 \le s \le l/\sqrt{2}$ and, by Lemma 2, the geodesic curvature κ of γ vanishes. Then (2.1) implies that k(s) is constant, and hence α is a small circle.

REFERENCES

- 1. K. Enomoto, The Gauss image of flat surfaces in R⁴, Kodai Math. J. 9 (1986), 19-32.
- 2. _____, Global properties of the Gauss image of flat surfaces in R⁴, Kodai Math. J. 10 (1987), 272-284.
- S. Smale, Regular curves on Riemannian manifolds, Trans. Amer. Math. Soc. 87 (1958), 492-512.
- 4. J. Weiner, Flat tori in S³ and their Gauss maps, Proc. London Math. Soc. (3) 62 (1991), 54-76

FACULTY OF INDUSTRIAL SCIENCE AND TECHNOLOGY, SCIENCE UNIVERSITY OF TOKYO, OSHAMANBE, HOKKAIDO, 049–35, JAPAN

E-mail address: ENOMOTOGJPNSUT40.BITNET