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ABSTRACT. A geometric inequality is proved for closed curves on S2? which
are regularly homotopic to simple closed curves. This generalizes the classical
isoperimetric inequality for simple closed curves on S2 . The proof is based on
the study of flat tori in S3 and their images under the Gauss map.

INTRODUCTION

Let o be an oriented closed curve of class C3 in the unit 2-sphere S2. We
denote the length of o by L, the oriented geodesic curvature by k, and the
arclength parameter by s. In this paper we prove the following theorem.

Theorem. Suppose that o is regularly homotopic to a simple closed curve. Then

2
L*+ (/kds) > 472,

The equality holds if and only if « is a small circle.

If a is a simple closed curve, the Gauss-Bonnet theorem gives

/k=27z—A,

where A is the area bounded by a. Thus our theorem implies the following
classical isoperimetric inequality for simple closed curves in S?:

L? + (2m — A)? > 4n?.

By Smale’s theorem [3], any regular closed curve in S? is regularly homotopic
to either a circle traversed once or a circle traversed twice. For the latter case
our theorem fails, since the quantity on the left-hand side in our inequality can
be arbitrarily close to zero for small “figure-eight” curves.

Our theorem has come out of the study of flat surfaces in S3. We now
describe the correspondence between curves in S? and flat surfaces in S3. Let
7 be a tangent vector of o whose norm is 1/v/2. y defines a closed curve in
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a round 2-sphere of radius 1/v2. Let G,,4 be the Grassmannian manifold
of oriented 2-dimensional linear subspaces of R*. Equipped with the standard
invariant Riemannian metric, G, 4 is isometric to S; x S, where each S;
(i=1,2)isaround 2-sphere of radius 1/ V2. Weregard y asacurvein S;.
Let I" be a great circle in .S, . Using a method given in [3, 4], we can construct
a flat torus T whose image under the Gaussmap G: T — G, 4 is yxI'. Bya
result of Weiner [4], if y is regularly homotopic to a circle (or equivalently, if
a is regularly homotopic to a circle), T has antipodal symmetry, i.e., —x € T
for any x € T. There exists a curve ¢ in T which connects x and —x and
is mapped by G onto y with an element in S, fixed. The main ingredient of
the proof is to express the distance between x and —x in T in terms of the
length and the geodesic curvature of «, via o .

1. GAUSS MAPS OF FLAT TORI IN S°3

In this section we recall some results from [1, 2, 4] on flat tori in S? and
their Gauss maps.

For an oriented surface M in R* we define the Gauss map G: M — G, 4
by assigning each point x of M to the 2-dimensional linear subspace parallel
to the tangent plane of M at x. G, 4, equipped with the standard invariant
metric, is isometric to S; x S, , where each S; (i =1, 2) is a round 2-sphere
of radius 1/v2.

Lemma 1 [1]. Suppose that M is flat (i.e., the Gaussian curvature is identically
zero) and the normal connection of M is flat. If the Gauss map G is regular
on M, then G(M) is locally the product of a curve y, in S, and a curve y, in
S,.

Let T be a flat torus in S3. Then the normal connection of T as a subman-
ifold in R* is flat and the Gauss map G is regular everywhere. Hence G(T)
is a finite covering of y; x y, , where y; (i =1, 2) is a closed regular curve in
Si. Let o; be a curve in T which is mapped by G onto y; with an element
in the other factor fixed.

Lemma 2. For i=1,2 let K; and x; be the oriented geodesic curvatures of
o; and y; respectively. Then for any x in o; we have K;(x) = vV2ki(G(x)).

Proof. Let N be a unit normal vector field of T in S3 and {e;, e;} be a set of
orthonormal principal vectors of T in S3. Let 4; (i =1, 2) be the principal

curvature corresponding to e;. Since T is flat, 4;4; = —1. We may assume
that 4; > 0. If we set 4; = tanf and A; = —cotf, B defines a smooth
function on T . Set

X} = cos fe; —sin Be;, X, = cos Be; + sin fe;,

e3 = —cos Bx +sin BN, . es =sin fx +cos § N.

Since G(x) = e;(x) A ez(x), we have
dG(X,) =de (X)) Ney + e Ndex(X))
= (de\(X)), es)es Ney + (dei(X1), es) ea N e
+(dex(X1), e3) ey Aes + (dex(X1), es) ey N ey
=e Nes—eyNe;.

(1.1)
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{e1 Ne3, e Nes, e, Nes, e; Aey} forms an orthonormal base of the tangent
space of G, 4 = S} x S,. Since the tangent space of .S, is spanned by {e; A
es+exNes, e Nes—ey Nes}t, (1.1) shows that dG(X)) is a tangent vector of
y1. Thus X, is a unit tangent vector of gy, since G(g,) = y;. By a similar
argument we see that X, is a unit tangent vector of g, . Let D denote the
covariant differentiation on 7. The oriented geodesic curvature K; of o is
given by

K, = (Dx, X, —sin Be; — cos fe;)
= Xlﬂ - SinB<D€2e27 el) - COSﬂ(Dele] H 82) .

By the Codazzi equation, we have

(1.2)

(1.3) (De,e1, ;) =tanfe;f,  (De,er, €1) = —cot fe; B.
It follows from (1.2) and (1.3) that
(1.4) K, =2X,8.

By a similar computation, we have
(1.5) K, =2X,8.

We denote by g the standard invariant metric on G, 4 and by D the covariant
differentiation corresponding to &. Since a unit tangent vector of y; is given
by dG(X])/\/i= (e1ANes—ex A 83)/\/5,

. g([) eghNes—eNe; el/\e3+e2/\e4>
= dG(X s
=8\ P %

| S
mg(del(Xl) Nes+ep Adey(Xy) —dey(X1) Nes

—eyNdey(Xy), —ey Nes — ey Ney)

1
—=&((Dx,e1,e)ers Nes+ (Dx,es, e3)e; Ne
2\/§g((X|l2)24(X4 3) e Ney

— (Dx,e2, e1)e1 Ne3 — (Dx,e3, es)er Ney, —ey Aes — ey Aey)

S
L P
NITS

(—(Dx,e1, e2) — (Dx,e4, e3) + (Dx,e,, ;) + (Dx,e3, €s))
(—cos B(De, ey, ;) + sin B(D,,e1 , €3)

+ cosf (De,e3, es) — sin B(D,,e3, €4)).

Here we have

(L.7)  (D,e3, es) = (D, (—cosBx +sin BN), sin fx + cos BN) = ¢;
for i=1, 2. It follows from (1.3), (1.6), and (1.7) that

(1.8) K1 = V2(cos Be; f —sin Ber B) = V2X, B.
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Similarly, we have
(1.9) K2 = V2X28.
Now the lemma follows from (1.4), (1.5), (1.8), and (1.9).

Let /; be the length of y; for i = 1,2. Since Gl : 0; — y; is a finite
covering and |dG(X;)| = V2 by (1.1), o, is a closed curve in T whose length
is an integral muluple of [;/V2. We need the following lemma due to Weiner.

Lemma 3 [4]. Suppose that either y, or y, is regularly homotopic to a simple
closed curve. Then G: T — y; x y, is a double covering.

We assume that y, is regularly homotopic to a simple closed curve. Let u
be the arclength parameter of o;. By Lemma 3, G|s, : g, — y; is a double
covering and o, is a closed curve in T whose length is v/2/,. Then

(1.10) o\ (u+ V21h) = 0y(u)

holds for any u. The following lemma is also a result of Weiner and a key to
proving our theorem.

Lemma 4 [4]. Suppose that y, is regularly homotopic to a simple closed curve.
Then ay(u + 1,/V2) is the antipodal point of a,(u) in S3.

Remark. Lemma 4 implies the antipodal symmetry of certain flat tori in S3; if
either y; or y, is regularly homotopic to a simple closed curve, then —x € T
forany x e T.

2. CONSTRUCTION OF A FLAT TORUS IN .S3

Let a(s) be an oriented closed C3 curve in S? which is parameterized by

its arclength 5. We set
1 da

y(s) = ads
y(s) defines an oriented closed C? curve in S%(1/v/2). Let k and x be the

oriented geodesic curvature of o and y, respectively. By an easy computation,
we have

(2.1) x=\/§(1+k2)-3/251§.
Since
QZ 1+ k2?
ds| ™ 2

we have for any subarc y' = y([sy, $3])

/IC— \/_1+k2 3/2dk ds
N

(2.2)

1 dk
- /x| 1+k2ds ds = arctank(s;) — arctan k(s;).

In particular, we have

(2.3) /x -0,
Y
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IE:
yl

We regard y as a curve in the first factor S; of G, 4 =S, x S,. Let T" be
a great circle in S, . Using a method that is first given by the author [2] and
then developed by Weiner [4], one can construct a flat torus 7, immersed in
S3 whose image under the Gauss map G: T, — G, 4 is a finite covering of
y x I'. We note that the conditions (2.3) and (2.4) imply that T, is regular at
every point.

and, for any subarc y’ of y,

(2.4) <.

3. GENERALIZED ISOPERIMETRIC INEQUALITY ON S2

Let a be an oriented closed C3 curve in S?, and let 7, be a flat torus
in S3 which is constructed from « in §2. Fix a point xo in T,. Then there
exists a closed curve ¢ in T, passing through x; such that the Gauss map G
maps ¢ onto y with an element in S, fixed. Let n: T, — T, be the universal
covering of T,. Let X, be a point in T, such that n(%;) = xo, and let & be
a curve in T, passing through %, such that n(6)=0.

Theorem. Let o be an oriented closed C3 curve in S*. Suppose that o is
regularly homotopic to a simple closed curve in S?. Then

2
L2+(/kds) > 4n?,

where L is the length of «, k is the oriented geodesic curvature of a, and s
is the arclength parameter of o. The equality holds if and only if a is a small
circle.

Proof. Let (x,y) be the Cartesian coordinate system on 7, = R?. We write

G(u) = (x(u), y(u)),

where u is the arclength parameter of . We may assume that X, = (0, 0)
and

dé
du
Let / be the length of y. If « is regularly homotopic to a simple closed curve
in S2, thensois y. By Lemma 4, o(//V/2) is the antipodal point of ¢(0) and
the distance between &(0) and &(//v2) in T, is not less than 7. This gives

(0)=(0,0), 0)=(1,0).

2

] 2
(3.1 g (\/—i) > n”.
If we write
(3.2) d—& = (cos B(u), sinf(u)),

du
0(u) is given by

(3.3) 0(u) = /0 K du,
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where K is the oriented geodesic curvature of 4. Let ¢ be the arclength
parameter of y and k be the oriented geodesic curvature of y. By (1.1), we
have

dt
(3.4) - = V2.
Combining (2.2), (3.3), (3.4), and Lemma 2, we obtain

(3.5) O(u) = /0 l V2K (1) - \/% dt = arctan k(s) — arctan k(0).
It follows from (3.2) and (3.5) that
(3.6) ds _ 1 + k(s)k(0) k(s) — k(0)
' du  \ /T+k(s)2V/1+k(02 V1+k(s)2\/T+k(0)2)"
Thus we have
(1 V2 4g L d¢ du dt
dCORTA TRV

(3.7)

~ /L L+k©kO)  ks) kO \
" Jo \2/T+k(0)2 2¢/1+k(0)2

1 L L
=W(L+k(0)/o kds,—k(O)L+/0 kds).

It follows from (3.1) and (3.7) that

< Z_(Tl—lk_(@—) ((L+k(0)/akds)2 + (—k(O)L+/akds)2)

-1 (L2+ (/akds)z)

This proves the inequality of the theorem.

Suppose that the equality holds. Then &([0, // \/E]) must be a geodesic
segment in T,. Thus the oriented geodesic curvature K of ¢ vanishes for
0 < s <1/V2 and, by Lemma 2, the geodesic curvature x of y vanishes. Then
(2.1) implies that k(s) is constant, and hence « is a small circle.

(3.8)
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