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Abstract. A geometric inequality is proved for closed curves on S2 which

are regularly homotopic to simple closed curves. This generalizes the classical

isoperimetric inequality for simple closed curves on S2 . The proof is based on

the study of flat tori in S3 and their images under the Gauss map.

Introduction

Let q be an oriented closed curve of class C3 in the unit 2-sphere -S2. We
denote the length of a by L, the oriented geodesic curvature by k, and the

arclength parameter by s . In this paper we prove the following theorem.

Theorem. Suppose that a is regularly homotopic to a simple closed curve. Then

L2+(fkds\   >An2.

The equality holds if and only if a is a small circle.

If a is a simple closed curve, the Gauss-Bonnet theorem gives

J k = 2n - A,
J a

where A is the area bounded by a. Thus our theorem implies the following

classical isoperimetric inequality for simple closed curves in S2 :

L2 + (2n-A)2 >An2.

By Smale's theorem [3], any regular closed curve in S2 is regularly homotopic

to either a circle traversed once or a circle traversed twice. For the latter case

our theorem fails, since the quantity on the left-hand side in our inequality can

be arbitrarily close to zero for small "figure-eight" curves.

Our theorem has come out of the study of flat surfaces in S3. We now

describe the correspondence between curves in S2 and flat surfaces in S3. Let

y be a tangent vector of a whose norm is l/\/2 .  y defines a closed curve in
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a round 2-sphere of radius l/\/2. Let C?2,4 be the Grassmannian manifold

of oriented 2-dimensional linear subspaces of R4 . Equipped with the standard

invariant Riemannian metric, G2 t 4 is isometric to Si x S2, where each 5,

(i = 1, 2) is a round 2-sphere of radius l/\/2. We regard y as a curve in Si.

Let r be a great circle in S2 • Using a method given in [3, 4], we can construct

a flat torus T whose image under the Gauss map G: T —> G2^ is y xY. By a

result of Weiner [4], if y is regularly homotopic to a circle (or equivalently, if

a is regularly homotopic to a circle), T has antipodal symmetry, i.e., -x e T

for any x e T. There exists a curve a in T which connects x and -x and
is mapped by G onto y with an element in S2 fixed. The main ingredient of

the proof is to express the distance between x and -x in T in terms of the

length and the geodesic curvature of a, via a .

1. Gauss maps of flat tori in S3

In this section we recall some results from [1, 2, 4] on flat tori in S3 and

their Gauss maps.

For an oriented surface M in R4 we define the Gauss map G: M —> G2,a

by assigning each point x of M to the 2-dimensional linear subspace parallel

to the tangent plane of M at x. G24 , equipped with the standard invariant

metric, is isometric to Si x S2, where each S, (i = 1, 2) is a round 2-sphere

of radius l/\/2.

Lemma 1 [1]. Suppose that M is flat (i.e., the Gaussian curvature is identically

zero) and the normal connection of M is flat. If the Gauss map G is regular

on M, then G(M) is locally the product of a curve yi in Si and a curve y2 in

S2.

Let T be a flat torus in S3 . Then the normal connection of T as a subman-

ifold in R4 is flat and the Gauss map G is regular everywhere. Hence G(T)

is a finite covering of yi x y2 , where 7, (i = 1, 2) is a closed regular curve in

Sj. Let ct, be a curve in T which is mapped by G onto yt with an element

in the other factor fixed.

Lemma 2. For i = 1, 2 let Ki and k, be the oriented geodesic curvatures of

cr, and yi respectively. Then for any x in 07 we have Kt(x) = y/2~Ki(G(x)).

Proof. Let N be a unit normal vector field of T in S3 and {ei, e2} be a set of

orthonormal principal vectors of T in S3. Let Xj (i = 1, 2) be the principal

curvature corresponding to e,. Since T is flat, XiX2 = -1. We may assume

that Xi > 0. If we set X\ — tan/? and X2 = -cot)?, /? defines a smooth

function on T. Set

Xi = cos fiei - sin /??2, %2 = cos /tei + sin fie2,

?3 = - cos fix + sin /?jV ,.       £4 = sin /?x + cos /? A/.

Since G(x) = ei(x) A ̂ (x), we have

dG(Xi) = de{(Xi)/\e2 + ei Ade2(Xi)

= (dei(Xi), e3)e3 Ae2 +(dex(Xi), e4)e4 Ae2

+ (de2(X{), <?3) exf\ey + (de2(X{), e4) ex A <?4

= ?i A £4 - fc"2 A £3.
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{ei A e3, ei A e4, e2 A e3, e2 A e4} forms an orthonormal base of the tangent

space of 67,4 = Si x S2. Since the tangent space of Si is spanned by {ex A

e-i + e2 A et,, ei A e4 - e2 A e3} , (1.1) shows that dG(Xi) is a tangent vector of

7i . Thus Xi is a unit tangent vector of ai, since G(a{) = y\. By a similar

argument we see that X2 is a unit tangent vector of a2 . Let D denote the

covariant differentiation on T. The oriented geodesic curvature Ki of 0*1 is
given by

Kx = (DXl Xi, - sin flei - cos pe2)

= Xi/3 - sin P(Deie2, e.) - cosfi(Deiei, £?2) •

By the Codazzi equation, we have

(1.3) (Deiex,e2)= tan pe2p,        (Deie2, ex) = - cot pexp.

It follows from (1.2) and (1.3) that

(1.4) Kx = 2Xi f3.

By a similar computation, we have

(1.5) K2 = 2X2p.

We denote by g the standard invariant metric on G2 t 4 and by D the covariant

differentiation corresponding to g . Since a unit tangent vector of 71 is given

by dG(Xi)/V2 = (e{ Ae4-e2Ae3)/V2,

(1.6)
ff,       exAe4-e2Ae3      exAe3 + e2Ae4\

Ki=g r^ —T2—' —T2—)

= —j=g(dex(Xx)Ae4 + ex A de4(Xx) - de2(Xx) A <?3

-e2A de3(Xx), -ex A e3 - e2 A e4)

= r-J= 8((DXlex, e2) e2Ae4 + (DXle4, e3> ex A <?3

- (DXle2 ,ex)exAe3- (DXle3, e4) e2Ae4, -ex A^-^A e4)

= tj= (~ (Dxtex, e2) - (DXle4, e3) + (DXle2, ex) + (DXle3, e4))

= -j=(-cos P(De]ex, e2) +sin P(Deiex, e2)

+ cosP (Dexe-i, e4) - sinP(De2e3, e4)).

Here we have

(1.7) (Deie3,e4) = (Dei(-cos Px + sin PN), sin px + cos pN) = aP

for / = 1, 2. It follows from (1.3), (1.6), and (1.7) that

(1.8) Ki =V2(cosPeip-sinPe2p) = y/2XiP.
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Similarly, we have

(1.9) K2 = y/2X2B.

Now the lemma follows from (1.4), (1.5), (1.8), and (1.9).

Let /, be the length of y, for i - 1,2. Since G\ai : o-,- —► y, is a finite

covering and \dG(Xt)\ = \/2 by (1.1), er, is a closed curve in T whose length

is an integral multiple of U/\f2 . We need the following lemma due to Weiner.

Lemma 3 [4]. Suppose that either yx or y2 is regularly homotopic to a simple

closed curve. Then G:T ~* y\ xy2 is a double covering.

We assume that yx is regularly homotopic to a simple closed curve. Let u

be the arclength parameter of ax. By Lemma 3, G\„x '■ oi —> 7i is a double

covering and &i is a closed curve in T whose length is \/2/i . Then

(1.10) Oi(u + V2li) = ai(u)

holds for any u. The following lemma is also a result of Weiner and a key to

proving our theorem.

Lemma 4 [4]. Suppose that yx is regularly homotopic to a simple closed curve.

Then cti (u + l\ /\[2) is the antipodal point of oi (u) in S3.

Remark. Lemma 4 implies the antipodal symmetry of certain flat tori in S3; if

either yx or y2 is regularly homotopic to a simple closed curve, then -x e T

for any x e T.

2. Construction of a flat torus in S3

Let a(s) be an oriented closed C3 curve in S2 which is parameterized by

its arclength s. We set
1   da

7{S) = T2Ts-

y(s) defines an oriented closed C2 curve in S2(l/y/2). Let k and k be the

oriented geodesic curvature of a and y , respectively. By an easy computation,

we have

(2.1) K = y2(l+fc2)-3/2^.

Since
dy_        l\+k2

ds  ~V     2     '
we have for any subarc / = y([sx, s2])

fS2     1     dk
= /    -—t^--j-ds = arctank(s2) - arctank(si).

Jsi     t + K    US

In particular, we have

(2.3) Ik = 0,
Jy
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and, for any subarc y' of y ,

(2.4) f k <n.
Jy>

We regard y as a curve in the first factor Si of G2t4 = Si x S2. Let Y be

a great circle in S2. Using a method that is first given by the author [2] and

then developed by Weiner [4], one can construct a flat torus Ta immersed in

S3 whose image under the Gauss map G: Ta -> G2>4 is a finite covering of

y xY. We note that the conditions (2.3) and (2.4) imply that Ta is regular at

every point.

3. Generalized isoperimetric inequality on S2

Let a be an oriented closed C3 curve in S2, and let Ta be a flat torus

in S3 which is constructed from a in §2. Fix a point Xo in Ta . Then there

exists a closed curve a in Ta passing through Xo such that the Gauss map G

maps a onto y with an element in S2 fixed. Let n: Ta —> Ta be the universal

covering of Ta . Let x0 be a point in fa such that n(x0) = x0 , and let a be

a curve in Ta passing through xo such that 7r(ct) = cr.

Theorem. Let a be an oriented closed C3 curve in S2. Suppose that a is

regularly homotopic to a simple closed curve in S2. Then

L2+(f kds\   > An2,

where L is the length of a, k is the oriented geodesic curvature of a, and s

is the arclength parameter of a. The equality holds if and only if a is a small

circle.

Proof. Let (x, y) be the Cartesian coordinate system on fa = R2. We write

a(u) = (x(u),y(u)),

where u is the arclength parameter of a . We may assume that Xq = (0, 0)

and

a(0) = (0,0),        ^(0) = (1,0).

Let / be the length of y. If a is regularly homotopic to a simple closed curve

in S2 , then so is y. By Lemma 4, o(l/V2) is the antipodal point of <r(0) and

the distance between cr(0) and a(l/V2) in Ta is not less than n . This gives

(3.1) K^*2'

If we write

(3.2) -j-= (cos6(u), sin9(u)),

6(u) is given by

(3.3) 6(u)= [ K(u)du,
Jo
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where K is the oriented geodesic curvature of a. Let i be the arclength

parameter of y and k be the oriented geodesic curvature of y. By (1.1), we

have

(3.4, iL-Vl.

Combining (2.2), (3.3), (3.4), and Lemma 2, we obtain

/■t j
(3.5) 6(u) = j  V2x(t) • -=dt = arctan k(s) - arctan A:(0).

Jo v2

It follows from (3.2) and (3.5) that

da_ = (        l + k(s)k(0) k(s)-k(0) \

du       \y/\ + k(s)2^J\ + k(0)2 ' y/l + k(s)2^l + k(0)2) '

Thus we have

~ (_L\ - f'^^l^u- [L— — — ds
\V2J     Jo       du J0   du dt ds

(3 7) fLh+k(s)k(0)     k(s)-k(0)\ds

1     ' Jo   ^2^1+^(0)2' 2^/l+k(0)2)

= —.   l \L + k(0) f kds, -k(0)L+ [ kds) .
2^l+k(0)2 \ 'Jo Jo J

It follows from (3.1) and (3.7) that

"'s WTkW) ((L + mLkds)2 + {-k{0)L + J.k*f)
(3 8)

=-*(Ll+(M2) ■

This proves the inequality of the theorem.

Suppose that the equality holds. Then <?([0, 1/V2]) must be a geodesic

segment in Ta. Thus the oriented geodesic curvature K of a vanishes for

0 < s < 1/V2 and, by Lemma 2, the geodesic curvature k of y vanishes. Then

(2.1) implies that k(s) is constant, and hence a is a small circle.
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