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ISOPERIMETRIC INEQUALITIES
FOR IMMERSED CLOSED SPHERICAL CURVES

JOEL L. WEINER

(Communicated by Jonathan M. Rosenberg)

Abstract. Let a: Sl ->S2 be a C2 immersion with length L and total

curvature K . If a is regularly homotopic to a circle traversed once then

L2 + K2 > 4n2 with equality if and only if a is a circle traversed once.

If a has nonnegative geodesic curvature and multiple points then L + K > An

with equality if and only if a is a great circle traversed twice.

1. Introduction

The classical isoperimetric inequality for a C2 embedded closed spherical
curve a: Sx —► S"2 states that

(1) L2 + ^2-4^>0,

where L is the length of a and A is the area of either component of the

complement of a(Sl). Let k and ds be the geodesic curvature and element

of arc length induced on Sl by a, respectively, and define the total curvature

K by

K = j k ds.

Using the Gauss-Bonnet Theorem, (1) may be rewritten as

(2) /     L2 + K2> An2.

The left-hand side of (2) makes sense even if a is an immersion, i.e., has self-

intersections. Since L2+K2 can be made arbitrarily close to 0 for curves whose

configuration is a figure-eight, it will be necessary to impose further hypotheses

on a in order to obtain a positive lower bound for L2 + K2 .

Recall that any C1 immersed curve is regularly homotopic to either a circle

traversed once or to a circle traversed twice [7]. In fact, a C1 immersed curve

is regularly homotopic to a circle traversed once if and only if it has an even

number of double points; of course, one may have to perturb the curve into

general position before one counts the number of double points.
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Theorem 1. Let a: S{ —> S2 be a C2 immersion which is regularly homotopic

to a circle traversed once. Then L2 + K2 > An2. Equality holds if and only if

a(Sl) is a circle which a traverses once.

This theorem was recently proved by Enomoto [1]; a new proof is presented

here which we believe is more transparent than the one given by Enomoto. Both

proofs use the torus T in S3 which is the inverse image of a(Sl) under the

Hopf map, but while Enomoto works with the image of the torus T in the

Grassmannian (72,4 under the Gauss map by viewing T as being in E4, we

work directly with the T.

Another isoperimetric inequality like (2) is obtained for curves in S2 whose

geodesic curvature k does not change sign. By appropriately orienting the curve

we may assume that k > 0. This inequality follows immediately from the next

result.

Theorem 2. Let a: Sl —> S2 be a C2 immersion with at least one multiple point

for which k > 0. Then L + K > An with equality if and only if a(Sl) is a great
circle which a traverses twice.

Corollary 1. With the same hypotheses as in Theorem 2, L2 + K2 > 8tt2 .

The lower bound in Corollary 1 is the best possible. If z and -z are a

pair of antipodal points of S2, then it is possible to construct an immersion

a: Sl -* S2 with nonnegative geodesic curvature whose configuration consists

of a pair of half great circles running between z and -z and two loops, one

each at z and -z. By letting the angle between the half great circles approach

zero and the lengths of the loops approach zero, L2 + K2 approaches &n2 .

Fenchel [3] suggested that for a closed space curve with curvature k > 0 and

torsion x > 0, there may be a lower bound greater than 2n for the sum of the
total curvature and total torsion. It was shown that An is a lower bound, in

fact, the best possible lower bound, even when the condition x > 0 is weakened

to t > 0 and not identically zero [5, 8, 9]. This same result is an easy corollary

of Theorem 2.

Corollary 2. Let /?: S1 —> E3 be a C3 nonplanar space curve with curvature

k > 0 and torsion x > 0. Then ficdo + J xdo > An, where do is the element

of arc length induced on S1 by P .

Proof. Let a be the tangent indicatrix of p . Then a is a C2 immersion into

S2 with at least one multiple point [2] and its geodesic curvature is nonnegative.

Also, the sum L + K for a equals the sum JKdo + J xdo for P , so the result

follows directly from Theorem 2 since a(S{) is not a great circle.

The proofs of Theorems 1 and 2 will be presented in the remainder of the

paper.

2. The proof of Theorem 1

Let z: [a, b] —> S2 be a parametrization of a(Sl); by this we mean that z

extends to a C2 periodic function on E with period b - a which induces a

when we view Sl as R/(b-a)TL. Associated to z is a map e:[a,b]-+ SO(3),

where we view SO(3) as the set of all positively oriented orthonormal frames

of E3. If e = (eo, e\, e2) then eo = z and e\ is the unit tangent vector field

along z.
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Let M denote the quaternions and identify E3 with the space of pure quater-

nions. Let S3 and S2 denote the unit spheres in E and E3, respectively.

Recall the double covering n: S3 —> SO(3) defined by

n(Q)(P) = QPQ   f°r aH Q m S3 an£l aH P m E3.

The Hopf map h: S3 —> S2 is defined as follows:

h(q) = n(q)(i) — qiq   for all q in S3.

Of course, h(e'^q) = h(q) for all q in S3 and all <p in R. For the given C2
immersion a: Sl —> S2 it is known that h~[(a(S1)) is a flat torus immersed in

S3 [6]. We will denote this torus by T.
We now proceed in the manner of Pinkall [6] to study the relation of T

to a(S{), but the reader should note that the Hopf map defined in [6] and

the one in this paper are somewhat different. Let n: [a, b] ^ S3 be a lift of

z through the Hopf map h which is orthogonal to the fibers of h . We now

choose the parameter s in [a, b] to represent arclength along n . Necessarily,
z = fjin and if we denote differentiation with respect to s using a prime, then

n' = ur\, where \u(s)\ = 1 and u(s) is in spanfj, k}. Then z' = 2f\iun so

that \z'\ - 2; hence b - a = L/2. From now on, we let a = 0 and b = L/2.

Also z" = A(-z + jijiu'n), where u' = 2iku and k(s) = the geodesic curvature

of a(Sl) at z(s). Thus

\z' = fjiurj   and    \z" =-z+ kf\(-u)r\.

In particular,

(3) e = (f}in,tjiuTi,fj(-u)ti).

The Hopf torus T is parametrized by

x(s, <p) = e^tiis).

Since xs(s, <p) = ei(t'u(s)n(s) and x^(s, cp) = ie'^n(s), the normal u(s, <f>) to

x at x(s, cp) is given by

v(s,(j)) = iu(s)e~i'l>r](s).

Since v^ — -xs, x^ is an asymptotic direction field as is to be expected. Also

vs = -2kxs - x$.

One may now easily check that w = xs - kx^ is the other asymptotic direction

field. If X(s) = e'^'n(s) is an asymptotic curve corresponding to w then one

may show that (p'(s) = -k(s). In particular, one such X is given by

(4) X(s) = exp (-i f k(t)dt\ n(s).

Of course, X is also a lift of z through the Hopf map h . If o is arclength

along z then

... dX      1 k..
(5) To = 2Xs°X-2lL

Note that xs is a unit vector field orthogonal to the generators of T while iX

is a unit vector field in the direction of these generators, and these generators

form a field of (nonintersecting) geodesies in T.
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Since u' = 2iku it follows that

(6) u(s) = exp(2i I'k(t)dt\u(0).

From (3), (4), and (6) it is straightforward to show that

e = (XiX,Xiu(0)X,X(-u(0))X).

That is, we may view X as a lift of e through the covering n . It is well known

[7] that the lift X of e begins and ends at antipodal points of S3 if and only if

a is regularly homotopic to a circle traversed once. Hence the distance d on

T between the beginning and end of X is at least n .

Let E2 be the universal Riemannian covering space of T. Lift A to a curve

A in E2. The great circular generators of T are covered by a field of parallel

lines in E2 . By (5), the velocity of A, parametrized with respect to the arclength

of a, in the direction of this field and the direction orthogonal to this field is

-1 and j , respectively. If D is the distance between the beginning and end of

A then the Pythagorean theorem implies that L2 + K2 = AD2 . But D > d >n
and the desired inequality follows.

Now assume equality holds, i.e., L2 + K2 — An2 . Then D = d = n . Choose
a Euclidean coordinate system on E2 so that the origin is the beginning of A

and the first coordinate axis maps onto a generator of T. With appropriately

oriented axes the end of A has coordinates (-§, f). Hence the straight line

segment T from the origin to (-§, j) has length n and projects to a geodesic

segment y of length n whose beginning and end are antipodes of S3. Thus,

y is a half great circle of S3. Also, it is clear that y does not lie in a generator

of T because T is not parallel to the first axis in E2. Since y is necessarily an

asymptotic line of T, X = y . Hence a(Sl) is a circle and it is traversed once

by a since L2 + K2 = An2 .

3. The proof of Theorem 2

Give E3 an orientation. Let & and 5? be the space of great circles and

the space of oriented great circles on S"2 , respectively. We, of course, identify

& with RP2 and, using the orientation of E3, identify # with S2 in the

usual fashion. Then let 9~ = {(G, p) e & x RP2 : p c G} and 9r = {(G, z) e

5/xS2:zgG}, where we view p as a pair of antipodal points of S2 . We may

identify 9~ with SO(3), viewed as the space of positively oriented orthonormal

frames of E3, as follows: Assign (G, z) e 9~ to the frame (eo, e\,e2) e

SO(3), where eo is the unit vector (orthogonal to the plane of G) identified

with G and e\ = z . Using the bijection just described between 9~ and SO(3),

we pull back the kinematic density a>io A O32o A co2\ on SO(3) to 9". The forms

(Oij are defined by dej • e, = &>,;, 0' < i, j < 2. The map (G, z) e 9~ —>
(G, {z, -z}) e 9~ is a covering space whose deck transformations preserve

the kinematic density. Thus, we push down this kinematic density to 9~ and

denote it by dF. Using locally defined forms a>// the kinematic density on

9~ may still be written (y10 A w2o A co2i. There are two natural fibrations on

9~ C J* x RP2 coming from the product structure on & x RP2, 0,: 9~ -» &

and <f>2: 9~ —> RP2. The fibration <p\ suggests that we write dF = dG A ds,
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where dG is the density of great circles and ds is the density of the set of

antipodal pairs on a fixed great circle. The fibration cp2 suggests that we write

dF = dphdd , where dp is the density of points on RP2 and dd is the density
of great circles through a fixed pair of antipodes.

Define n:9~ -+1L by n(G, p) = n(G) is the number of points in Gf)a(S1)
counted with multiplicity, i.e., if y e Gf)a(Sl) has k preimages under a, then

y is counted k times. The function n is defined off a set of measure zero.

Also define m: 9~ —> Z by m(G, p) = m(p) is the number of great circles

through p tangent to a(Sl) counted with multiplicity. If a(5'1)* denotes the

polar of a(Sl) [3], then m(p) is the number of points in G*C\a(S1)* counted

with multiplicity, where G* is the great circle in the plane orthogonal to the

line containing p . The function m is also defined off a set of measure zero.

Lemma 1.  2n(L + K) = f#-(n + m)dF.

Proof. Just note

/ (n + m)dF = /  ndGAds+      mdpAdO
J? Jf J?

= n I ndG + n        mdp = 2n(L + K).
Jg Jupi

The last equality uses standard results about integral geometry on S2 and the

fact that the length of the polar a(S1)* is K .

Lemma 2.  n + m > A, generically, in particular, on the set JV of all (G, p)

such that G has transversal intersections with a(S{) and p<la(Si) is empty.

Proof. Clearly, we need only show that n + m > 4 for those (G, p) in JV with

n(G) = 2 or 0.
Suppose first that n(G) = 2. Note that this implies that G n a(Sl) contains

no multiple points of a. Let H\ and H2 be the two closed hemispheres

determined by G and say that H\ contains multiple points of a. Pick an

antipodal pair p such that (G, p) € JV and let p - {z, -z} . Suppose every
half great circle in H\ connecting z and -z meets a(51). Then there must

be at least two such half great circles tangent to a(S*) . For if there were no half

great circles tangent to a(Sl) in Hi then there would be no multiple points

of a in Hi, and if there were only one half great circle tangent to a(S{) in

#1 then there would be two "arcs" of a in a(Sl) n Hi meeting G in four

points, counting multiplicity. If not every half great circle in Hi connecting

z and -z meets a(Sl), then the same is the case for the half great circles

in H2 connecting z and -z. Necessarily there is a half great circle in each

hemisphere connecting z and -z tangent to a(S*). Thus n(G) + m(p) > A
for this (G,p)eJf.

Now suppose that n(G) - 0 and let H be the open hemisphere determined

by G containing a(Sl). Consider the central projection of H onto a plane P.

Under this projection a(Sl) becomes a plane curve with nonnegative curvature

and self-intersections. Since the plane curve is not simple, the total curvature of

such a curve is at least An . Hence every height function in P has at least four
critical points. This means that for each antipodal pair of points p = {z, -z}

such that (G, p) e JV, there are, counting multiplicities, at least four half

great circles in H connecting z and -z that are tangent to a(5'1). Hence
n(G) + m(p) > A for these (G,p)£jV .
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Proof of Theorem 2. The inequality in Theorem 2 follows immediately from

Lemmas 1 and 2 once we observe that J^ dF = 2n2 . Now suppose L + K =

An. First observe that there must exist some (G,p) e JV with n(G) = A.

Simply choose G to be a great circle through an antipodal pair of points that a

winds around twice. Since this implies that m(G, p) = 0 for almost all p c G,

almost all great circles are not tangent to a(S]). Thus a(Sl) is a great circle

clearly traversed twice by a.

Remark. An argument similar to the above will show that L + K < An if a is

an embedding with nonnegative geodesic curvature, i.e., a(Sl) is convex. This

observation along with Theorem 2 shows the following: Suppose at is a regular

homotopy such that ao and ai have nonnegative geodesic curvature. If ao is an

embedding and ai is not, then there must exist t e (0, 1) such that the geodesic

curvature of at changes sign. This somewhat strengthens a result of Little [4,

Proposition 3].
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